
Ngspice User’s Manual
Version 45

(ngspice release version)

Holger Vogt, Giles Atkinson, Paolo Nenzi
September 1st, 2025

2

Locations

The project and download pages of ngspice may be found at

Ngspice home page https://ngspice.sourceforge.io/

Project page at SourceForge https://sourceforge.net/projects/ngspice/

Download page at SourceForge https://sourceforge.net/projects/ngspice/files/ng-spice-rework/

Git source download https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/

Status

This manual is a work in progress. Some to-dos are listed in Chapt. 20.3. More is surely
needed. You are invited to report bugs, missing items, wrongly described items, bad English
style, etc. The preferred place for such reports is our bug tracker.

How to use this Manual

The manual is a “work in progress.” It may accompany a specific ngspice release, e.g. ngspice-
44 as manual version 44. If its name contains ‘Version xxplus’, it describes the actual code
status, found at the date of issue in the Git Source Code Management (SCM) tool. This manual
is intended to provide a complete description of ngspice’s functionality, features, commands,
and procedures. This manual is not a book about learning SPICE usage, however the novice
user may find some hints how to start using ngspice. Chapter 17.1 gives a short introduction
how to set up and simulate a small circuit. Chapter 28 is about compiling and installing ngspice
from a tarball or the actual Git source code, which you may find on the ngspice web pages. If
you are running a specific Linux distribution, you may check if it provides ngspice as part of
the package. Some are listed here.

License

This document is covered by the Creative Commons Attribution Share-Alike (CC-BY-SA)
v4.0..

Part of chapters 12 and 25-29 are in the public domain.

Chapter 30 is covered by New BSD (chapt. 29.3.2).

https://ngspice.sourceforge.io/
https://sourceforge.net/projects/ngspice/
https://sourceforge.net/projects/ngspice/files/ng-spice-rework/
https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/
https://sourceforge.net/p/ngspice/bugs/
http://ngspice.sourceforge.net/download.html
http://ngspice.sourceforge.net/packages.html
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Contents

I Ngspice User’s Manual 29

1 Introduction 35

1.1 Simulation Algorithms . 36

1.1.1 Analog Simulation . 36

1.1.2 Matrix solvers . 36

1.1.3 Device Models for Analog Simulation 37

1.1.4 Digital Simulation . 37

1.1.5 Mixed-Signal Simulation . 37

1.1.6 Mixed-Level Simulation (Electronic and TCAD) 38

1.2 Supported Analyses . 39

1.2.1 DC Analysis . 40

1.2.2 AC Small-Signal Analysis . 40

1.2.3 Transient Analysis . 40

1.2.4 Pole-Zero Analysis . 41

1.2.5 Small-Signal Distortion Analysis . 41

1.2.6 Sensitivity Analysis . 41

1.2.7 Noise Analysis . 42

1.2.8 Periodic Steady State Analysis . 42

1.3 Analysis at Different Temperatures . 42

1.3.1 Introduction . 42

1.3.2 Controlling the temperature . 44

1.4 Convergence . 45

1.4.1 Voltage convergence criterion . 45

1.4.2 Current convergence criterion . 46

1.4.3 Convergence failure . 46

3

4 CONTENTS

2 Circuit Description 47

2.1 General Structure and Conventions . 47

2.1.1 Input file structure . 47

2.1.2 Syntax check . 47

2.1.3 Some naming conventions . 48

2.1.4 Topological constraints . 49

2.2 Dot commands . 49

2.3 Circuit elements (device instances) . 51

2.4 Basic lines . 53

2.4.1 .TITLE line . 53

2.4.2 .END Line . 53

2.4.3 Comments . 54

2.4.4 End-of-line comments . 54

2.4.5 Continuation lines . 54

2.5 .MODEL Device Models . 55

2.6 .SUBCKT Subcircuits . 56

2.6.1 .SUBCKT Line . 56

2.6.2 .ENDS Line . 57

2.6.3 Subcircuit Calls . 57

2.7 .GLOBAL . 58

2.8 .INCLUDE . 58

2.9 .INCPSLT . 58

2.10 .LIB . 59

2.11 .PARAM Parametric netlists . 59

2.11.1 .param line . 59

2.11.2 Brace expressions in circuit elements: 60

2.11.3 Subcircuit parameters . 61

2.11.4 Symbol scope . 62

2.11.5 Syntax of expressions . 62

2.11.6 Reserved words . 65

2.11.7 A word of caution on the three ngspice expression parsers 65

2.12 .FUNC . 65

2.13 .CSPARAM . 66

2.14 .TEMP . 66

2.15 .IF Condition-Controlled Netlist . 67

CONTENTS 5

2.16 Parameters, functions, expressions, and command scripts 68

2.16.1 Parameters . 68

2.16.2 Nonlinear sources . 68

2.16.3 Control commands, Command scripts 68

3 Circuit Elements and Models 71

3.1 About netlists, device instances, models and model parameters 71

3.2 General options . 73

3.2.1 Paralleling devices with multiplier m 73

3.2.2 Instance and model parameters . 75

3.2.3 Model binning . 75

3.2.4 Initial conditions . 75

3.3 Elementary Devices . 76

3.3.1 Resistors . 76

3.3.2 Semiconductor Resistors . 78

3.3.3 Semiconductor Resistor Model (R) 78

3.3.4 Resistors, dependent on expressions (behavioral resistor) 80

3.3.5 Resistor with nonlinear r2_cmc or r3_cmc models 80

3.3.6 Capacitors . 81

3.3.7 Semiconductor Capacitors . 82

3.3.8 Semiconductor Capacitor Model (C) 82

3.3.9 Capacitors, dependent on expressions (behavioral capacitor) 83

3.3.10 Inductors . 85

3.3.11 Inductor model . 85

3.3.12 Coupled (Mutual) Inductors . 87

3.3.13 Inductors, dependent on expressions (behavioral inductor) 88

3.3.14 Capacitor or inductor with initial conditions 89

3.3.15 Switches . 90

3.3.16 Switch Model (SW/CSW) . 91

4 Voltage and Current Sources 93

4.1 Independent Sources for Voltage or Current 93

4.1.1 Pulse . 94

4.1.2 Sinusoidal . 95

4.1.3 Exponential . 96

4.1.4 Piece-Wise Linear . 96

6 CONTENTS

4.1.5 Single-Frequency FM . 97

4.1.6 Amplitude modulated source (AM) 97

4.1.7 Transient noise source . 98

4.1.8 Random voltage source . 99

4.1.9 External voltage or current input . 100

4.1.10 Arbitrary Phase Sources . 100

4.1.11 RF Port . 101

4.2 Linear Dependent Sources . 101

4.2.1 Gxxxx: Linear Voltage-Controlled Current Sources (VCCS) 101

4.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS) 102

4.2.3 Fxxxx: Linear Current-Controlled Current Sources (CCCS) 102

4.2.4 Hxxxx: Linear Current-Controlled Voltage Sources (CCVS) 102

4.2.5 Polynomial Source Compatibility . 103

5 Non-linear Dependent Sources (Behavioral Sources) 105

5.1 Bxxxx: Nonlinear dependent source (ASRC) 105

5.1.1 Syntax and usage . 105

5.1.2 Special B-Source Variables time, temper, hertz 109

5.1.3 par(’expression’) . 109

5.1.4 Piecewise Linear Function: pwl . 109

5.2 Exxxx: non-linear voltage source . 112

5.2.1 VOL . 112

5.2.2 VALUE . 113

5.2.3 TABLE . 113

5.2.4 POLY . 113

5.2.5 LAPLACE . 113

5.2.6 FREQ . 114

5.2.7 AND/OR/NAND/NOR . 115

5.3 Gxxxx: non-linear current source . 115

5.3.1 CUR . 115

5.3.2 VALUE . 116

5.3.3 TABLE . 116

5.3.4 POLY . 116

5.3.5 LAPLACE . 116

5.3.6 FREQ . 117

CONTENTS 7

5.3.7 Example . 117

5.4 Debugging a behavioral source . 117

5.5 POLY Sources . 118

5.5.1 E voltage source, G current source . 119

5.5.2 F voltage source, H current source . 119

6 Transmission Lines 121

6.1 Lossless Transmission Lines . 121

6.2 Lossy Transmission Lines . 122

6.2.1 Lossy Transmission Line Model (LTRA) 122

6.3 Uniform Distributed RC Lines . 124

6.3.1 Uniform Distributed RC Model (URC) 124

6.4 KSPICE Lossy Transmission Lines . 125

6.4.1 Single Lossy Transmission Line (TXL) 126

6.4.2 Coupled Multiconductor Line (CPL) 126

7 Device Models 129

7.1 Instance lines and .model lines . 129

7.2 Junction Diodes . 130

7.2.1 Diode Model (D) . 130

7.2.2 Diode Equations . 134

7.2.3 Diode models available via OpenVAF/OSDI 138

7.3 BJT . 139

7.3.1 Bipolar Junction Transistors (BJTs) 139

7.3.2 BJT Models (NPN/PNP) . 140

7.3.3 Gummel-Poon Models . 140

7.3.4 VBIC Model . 146

7.3.5 HICUM level 2 Model . 147

7.3.6 BJT models available via OpenVAF/OSDI 148

7.4 JFETs . 149

7.4.1 Junction Field-Effect Transistors (JFETs) 149

7.4.2 JFET Models (NJF/PJF) . 150

7.4.3 Basic model statement . 150

7.4.4 JFET level 1 model with Parker Skellern modification 150

7.4.5 JFET level 2 Parker Skellern model 152

7.5 MESFETs . 154

8 CONTENTS

7.5.1 MESFET devices . 154

7.5.2 MESFET Models (NMF/PMF) . 154

7.5.3 Model by Statz e.a. 154

7.5.4 Model by Ytterdal e.a. 155

7.5.5 hfet1 and hfet2 . 155

7.6 MOSFETs . 156

7.6.1 MOSFET devices . 156

7.6.2 MOSFET models (NMOS/PMOS) . 157

7.6.3 BSIM Models . 162

7.6.4 BSIMSOI models (levels 10, 58, 55, 56, 57) 166

7.6.5 SOI3 model (level 60) . 166

7.6.6 HiSIM models of the University of Hiroshima 166

7.6.7 MOS models available via OpenVAF/OSDI 166

7.7 Power MOSFET model (VDMOS) . 167

8 Mixed-Mode and Behavioral Modeling with XSPICE 175

8.1 Code Model Element & .MODEL Cards . 175

8.1.1 Syntax . 175

8.1.2 Examples . 179

8.1.3 Search path for file input . 180

8.1.4 Code model location and assessment 180

8.2 Analog Models . 181

8.2.1 Gain . 181

8.2.2 Summer . 182

8.2.3 Multiplier . 183

8.2.4 Divider . 184

8.2.5 Limiter . 185

8.2.6 Controlled Limiter . 187

8.2.7 PWL Controlled Source . 188

8.2.8 PWL Time Controlled Source with optional edge smoothing 190

8.2.9 Filesource (PWL sourced from file) 193

8.2.10 Multi_input_PWL_block . 194

8.2.11 Analog Switch . 195

8.2.12 Alternative Analog Switch . 197

8.2.13 Zener Diode . 198

CONTENTS 9

8.2.14 Current Limiter . 199

8.2.15 Hysteresis Block . 202

8.2.16 Differentiator . 203

8.2.17 Integrator . 205

8.2.18 S-Domain Transfer Function . 206

8.2.19 PWL Transfer Function . 209

8.2.20 Slew Rate Block . 211

8.2.21 Inductive Coupling . 212

8.2.22 Magnetic Core . 213

8.2.23 Controlled Sine Wave Oscillator . 217

8.2.24 Controlled Triangle Wave Oscillator 218

8.2.25 Controlled Square Wave Oscillator . 219

8.2.26 Controlled One-Shot . 221

8.2.27 Capacitance Meter . 223

8.2.28 Inductance Meter . 224

8.2.29 Memristor . 224

8.2.30 2D table model . 225

8.2.31 3D table model . 227

8.2.32 Simple Diode Model . 229

8.2.33 Analog delay . 231

8.2.34 Potentiometer . 232

8.3 Hybrid Models . 234

8.3.1 Digital-to-Analog Node Bridge . 234

8.3.2 Analog-to-Digital Node Bridge . 235

8.3.3 Bidirectional Analog/Digital Node Bridge 237

8.3.4 Controlled Digital Oscillator . 240

8.3.5 Node bridge from digital to real with enable 241

8.3.6 A Z**-1 block working on real data 242

8.3.7 A gain block for event-driven real data 242

8.3.8 Node bridge from real to analog voltage 243

8.3.9 Controlled PWM Oscillator . 243

8.4 Digital Models . 245

8.4.1 Buffer . 247

8.4.2 Inverter . 247

8.4.3 And . 248

10 CONTENTS

8.4.4 Nand . 249

8.4.5 Or . 249

8.4.6 Nor . 250

8.4.7 Xor . 250

8.4.8 Xnor . 251

8.4.9 Tristate . 251

8.4.10 Pullup . 253

8.4.11 Pulldown . 253

8.4.12 D Flip Flop . 254

8.4.13 JK Flip Flop . 256

8.4.14 Toggle Flip Flop . 258

8.4.15 Set-Reset Flip Flop . 260

8.4.16 D Latch . 262

8.4.17 Set-Reset Latch . 264

8.4.18 State Machine . 266

8.4.19 Frequency Divider . 269

8.4.20 RAM . 270

8.4.21 Digital Source . 273

8.4.22 LUT . 274

8.4.23 General LUT . 275

8.4.24 D_process . 277

8.4.25 d_cosim . 279

8.5 Transmission lines models . 281

8.5.1 Generic transmission line . 281

8.5.2 Generic coupled lines . 283

8.5.3 Microstip line . 286

8.5.4 Coupled microstrip . 290

8.5.5 Microstrip open end . 295

8.6 Predefined Node Types for event driven simulation 297

8.6.1 Digital Node Type . 297

8.6.2 Real Node Type . 297

8.6.3 Int Node Type . 298

8.6.4 (Digital) Input/Output . 298

8.7 Automatic insertion of bridging devices . 298

CONTENTS 11

9 Verilog-A Compact Device Models 301

9.1 Introduction . 301

9.2 OSDI/OpenVAF . 301

9.3 How to create and apply OpenVAF models . 302

9.3.1 Preparing for simulation . 302

9.3.2 OSDI/OpenVAF examples distributed with ngspice 304

10 Digital Device Models 305

10.1 U devices (basic digital building blocks) . 305

10.1.1 General format . 306

10.1.2 List of devices available in ngspice (basic types) 306

10.1.3 URC transmission line versus U devices 307

10.2 Support for standard digital devices . 307

10.3 Digital devices defined by a Hardware Description Language 308

10.3.1 Using Verilator, Verilog, and code model d_cosim 309

10.3.2 Using Icarus Verilog, and code model d_cosim 309

10.3.3 Using GHDL and code model d_cosim. 310

10.3.4 Using independent processes (e.g. C coded), pipes, and code model
d_process . 311

10.3.5 Using Yosys to map digital Verilog onto basic code model cells 311

11 Analyses and Output Control (batch mode) 313

11.1 Simulator Variables (.options) . 313

11.1.1 General Options . 314

11.1.2 OP and DC Solution Options . 315

11.1.3 AC Solution Options . 317

11.1.4 Transient Analysis Options . 317

11.1.5 ELEMENT Specific options . 318

11.1.6 Transmission Lines Specific Options 319

11.1.7 Precedence of option and .options commands 319

11.2 Initial Conditions . 319

11.2.1 .NODESET: Specify Initial Node Voltage Guesses 319

11.2.2 .IC: Set Initial Conditions . 320

11.3 Analyses . 321

11.3.1 .AC: Small-Signal AC Analysis . 321

11.3.2 .DC: DC Transfer Function . 322

12 CONTENTS

11.3.3 .DISTO: Distortion Analysis . 322

11.3.4 .NOISE: Noise Analysis . 324

11.3.5 .OP: Operating Point Analysis . 325

11.3.6 .PZ: Pole-Zero Analysis . 327

11.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis 327

11.3.8 .SP S-Parameter Analysis . 328

11.3.9 .TF: Transfer Function Analysis . 329

11.3.10 .TRAN: Transient Analysis . 329

11.3.11 Transient noise analysis (at low frequency) 330

11.3.12 .PSS: Periodic Steady State Analysis 333

11.4 Measurements after AC, DC and Transient Analysis 334

11.4.1 .meas(ure) . 334

11.4.2 batch versus interactive mode . 334

11.4.3 General remarks . 334

11.4.4 Input . 335

11.4.5 Trig Targ . 335

11.4.6 Find ... When . 337

11.4.7 AVG|MIN|MAX|PP|RMS|MIN_AT|MAX_AT 338

11.4.8 Integ . 338

11.4.9 param . 339

11.4.10 par(’expression’) . 339

11.4.11 Deriv . 340

11.4.12 More examples . 340

11.5 Safe Operating Area (SOA) warning messages 341

11.5.1 Resistor and Capacitor SOA model parameters 342

11.5.2 Diode SOA model parameters . 342

11.5.3 BJT SOA model parameters . 343

11.5.4 MOS SOA model parameters . 344

11.5.5 VDMOS SOA model parameters . 345

11.6 Batch Output . 345

11.6.1 .SAVE: Name vector(s) to be saved in raw file 345

11.6.2 .PRINT Lines . 346

11.6.3 .PLOT Lines . 347

11.6.4 .FOUR: Fourier Analysis of Transient Analysis Output 347

CONTENTS 13

11.6.5 .PROBE: Save device node currents, device power dissipation, or dif-
ferential voltages between arbitrary nodes 348

11.6.6 par(’expression’): Algebraic expressions for output 352

11.6.7 .width . 353

11.7 Measuring current through device terminals 353

11.7.1 Using the .probe command . 353

11.7.2 Adding a voltage source in series . 353

11.7.3 Using option ’savecurrents’ . 354

12 Starting ngspice 355

12.1 Introduction . 355

12.2 Where to obtain ngspice . 355

12.3 Command line options for starting ngspice . 356

12.4 Starting options . 358

12.4.1 Batch mode . 358

12.4.2 Interactive mode . 358

12.4.3 Control mode (Interactive mode with control file or control section) . . 359

12.5 Standard configuration file spinit . 360

12.6 User defined configuration file .spiceinit . 362

12.7 Environmental variables . 363

12.7.1 Ngspice specific variables . 363

12.7.2 Common environment variables . 364

12.8 Memory usage . 364

12.9 Simulation time . 364

12.10Ngspice on multi-core processors using OpenMP 365

12.10.1 Introduction . 365

12.10.2 Internals . 365

12.10.3 Some results . 366

12.10.4 Usage . 367

12.10.5 Literature . 367

12.11Server mode option -s . 367

12.12Pipe mode option -p . 369

12.13Ngspice control via input, output fifos . 370

12.14Compatibility . 371

12.14.1 Compatibility mode . 371

14 CONTENTS

12.14.2 Missing functions . 372

12.14.3 Devices . 372

12.14.4 Controls and commands . 373

12.14.5 PSPICE Compatibility mode . 374

12.14.6 LTSPICE Compatibility mode . 375

12.14.7 LTSPICE/PSPICE Compatibility mode 377

12.14.8 KiCad Compatibility mode . 377

12.14.9 Spectre Compatibility mode . 378

12.14.10HSPICE Compatibility mode . 378

12.15Tests . 378

12.16Tools for debugging a circuit netlist . 379

12.16.1 options and initial conditions . 379

12.16.2 set debug . 379

12.16.3 set ngdebug . 379

12.16.4 miscellaneous . 380

12.17Reporting bugs and errors . 380

13 Interactive Interpreter 381

13.1 Introduction . 381

13.2 Expressions, Functions, and Constants . 382

13.3 Plots . 386

13.4 Command Interpretation . 387

13.4.1 On the console . 387

13.4.2 Scripts . 387

13.4.3 Add-on to circuit file . 387

13.5 Commands . 388

13.5.1 Ac: Perform an AC, small-signal frequency response analysis 388

13.5.2 Alias: Create an alias for a command 389

13.5.3 Alter: Change a device or model parameter 389

13.5.4 Altermod: Change model parameter(s) 391

13.5.5 Alterparam: Change value of a global parameter 392

13.5.6 Asciiplot: Plot values using old-style character plots 393

13.5.7 Aspice*: Asynchronous ngspice run 393

13.5.8 Bg_ctrl**: suspend running controls until bg_run has finished 393

13.5.9 Bg_halt**: halt a run . 393

CONTENTS 15

13.5.10 Bg_run**: Run analysis from the input file in the background thread . . 394

13.5.11 Bug: Output URL for ngspice bug tracker 394

13.5.12 Cd: Change directory . 394

13.5.13 Cdump: Dump the control flow to the screen 394

13.5.14 Circbyline: Enter a circuit line by line 395

13.5.15 Codemodel: Load an XSPICE code model library 396

13.5.16 Compose: Compose a vector . 397

13.5.17 Cutout: Cut out a section of all vectors in a tran plot 398

13.5.18 Dc: Perform a DC-sweep analysis . 398

13.5.19 Define: Define a function . 398

13.5.20 Deftype: Define a new type for a vector or plot 399

13.5.21 Delete: Remove a trace or breakpoint 399

13.5.22 Destroy: Delete an output data set . 399

13.5.23 Devhelp: information on available devices 400

13.5.24 Diff: Compare vectors . 401

13.5.25 Display: List known vectors and types 401

13.5.26 Echo: Print text . 401

13.5.27 Edit*: Edit the current circuit . 402

13.5.28 Edisplay: Print a list of all the event nodes 402

13.5.29 Eprint: Print an event driven node . 402

13.5.30 Eprvcd: Dump nodes in VCD format 402

13.5.31 Esave: Save a set of event node outputs 403

13.5.32 Fclose: close an open file handle . 403

13.5.33 FFT: fast Fourier transform of vectors 403

13.5.34 Fopen: open a text file . 405

13.5.35 Fourier: Perform a Fourier transform 405

13.5.36 Fread: read into a variable from a text file 406

13.5.37 Getcwd: Print the current working directory 407

13.5.38 Gnuplot: Graphics output via gnuplot 407

13.5.39 Hardcopy: Save a plot to a file for printing 407

13.5.40 Help: Print summaries of Ngspice commands 407

13.5.41 History: Review previous commands 408

13.5.42 Inventory: Print circuit inventory . 410

13.5.43 Iplot*: Incremental plot . 411

13.5.44 Jobs*: List active asynchronous ngspice runs 411

16 CONTENTS

13.5.45 Let: Assign a value to a vector . 411

13.5.46 Linearize: Interpolate to a linear scale 412

13.5.47 Listing: Print a listing of the current circuit 413

13.5.48 Load: Load rawfile data . 414

13.5.49 Mc_source: Reload the circuit netlist from an internal storage 414

13.5.50 Meas: Measurements on simulation data 414

13.5.51 Mdump: Dump the matrix values to a file (or to console) 415

13.5.52 Mrdump: Dump the matrix right hand side values to a file (or to console) 415

13.5.53 Noise: Noise analysis . 415

13.5.54 Op: Perform an operating point analysis 416

13.5.55 Option: Set a ngspice option . 416

13.5.56 Plot*: Plot vectors on the display . 417

13.5.57 Pre_<command>: execute commands prior to parsing the circuit 419

13.5.58 Pre_OSDI: load a *.osdi compact device model shared library 419

13.5.59 Print: Print values . 419

13.5.60 Psd: power spectral density of vectors 420

13.5.61 Quit: Leave Ngspice . 420

13.5.62 Rehash: Reset internal hash tables . 421

13.5.63 Remcirc: Remove the current circuit 421

13.5.64 Remzerovec: Remove zero length vectors 421

13.5.65 Reset: Reset an analysis . 421

13.5.66 Reshape: Alter the dimensionality or dimensions of a vector 422

13.5.67 Resume: Continue a simulation after a stop 422

13.5.68 Rspice*: Remote ngspice submission 423

13.5.69 Run: Run analysis from the input file 423

13.5.70 Rusage: Resource usage . 423

13.5.71 Save: Save a set of outputs . 424

13.5.72 Sens: Run a sensitivity analysis . 426

13.5.73 Set: Set the value of a variable . 426

13.5.74 Setcs: Set the value of a variable, case preserved 427

13.5.75 Setcirc: Change the current circuit . 428

13.5.76 Setplot: Switch the current set of vectors 428

13.5.77 Setscale: Set the scale vector for the current plot 429

13.5.78 Setseed: Set the seed value for the random number generator 429

13.5.79 Settype: Set the type of a vector . 429

CONTENTS 17

13.5.80 Shell: Call the command interpreter 430

13.5.81 Shift: Alter a list variable . 430

13.5.82 Show: List device state . 430

13.5.83 Showmod: List model parameter values 430

13.5.84 Snload: Load the snapshot file . 431

13.5.85 Snsave: Save a snapshot file . 432

13.5.86 Source: Read a ngspice input file . 433

13.5.87 Sp: S-Parameter Analysis . 434

13.5.88 Spec: Create a frequency domain plot 434

13.5.89 Status: Display breakpoint information 435

13.5.90 Step: Run a fixed number of time-points 435

13.5.91 Stop: Set a breakpoint . 435

13.5.92 Strcmp: Compare two strings . 436

13.5.93 Strslice: Extract a substring . 436

13.5.94 Strstr: Find a substring . 436

13.5.95 Sysinfo: Print system information . 436

13.5.96 Tf: Run a Transfer Function analysis 437

13.5.97 Trace: Trace nodes . 438

13.5.98 Tran: Perform a transient analysis . 438

13.5.99 Transpose: Swap the elements in a multi-dimensional data set 439

13.5.100Unalias: Retract an alias . 439

13.5.101Undefine: Retract a definition . 439

13.5.102Unlet: Delete the specified vector(s) 439

13.5.103Unset: Clear a variable . 440

13.5.104Version: Print the version of ngspice 440

13.5.105Where: Identify troublesome node or device 441

13.5.106Wrdata: Write data to a file (simple table) 442

13.5.107Write: Write data to a file (Spice3f5 format) 442

13.5.108Wrnodev: Write node voltage values to a file (.ic=xx format) 443

13.5.109Wrs2p: Write scattering parameters to file (Touchstone® format) . . . 444

13.6 Control Structures . 444

13.6.1 While - End . 444

13.6.2 Repeat - End . 445

13.6.3 Dowhile - End . 446

13.6.4 Foreach - End . 446

18 CONTENTS

13.6.5 If - Then - Else . 447

13.6.6 Label . 447

13.6.7 Goto . 447

13.6.8 Continue . 448

13.6.9 Break . 448

13.7 Internally predefined variables . 448

13.8 Scripts . 457

13.8.1 Variables . 457

13.8.2 Vectors . 458

13.8.3 Assessing vectors in subcircuits . 458

13.8.4 Commands . 459

13.8.5 control structures . 459

13.8.6 Example script ’spectrum’ . 463

13.8.7 Example script for random numbers 465

13.8.8 Parameter sweep . 466

13.8.9 Output redirection . 466

13.9 Scattering parameters (S-parameters) . 468

13.9.1 Intro . 468

13.9.2 S-parameter measurement basics . 468

13.9.3 Usage of .sp and sp . 470

13.9.4 Usage of the script . 470

13.10Using shell variables . 470

13.11MISCELLANEOUS . 471

13.12Bugs . 471

14 Ngspice User Interfaces 473

14.1 MS Windows Graphical User Interface . 473

14.2 MS Windows Console . 476

14.3 Linux . 476

14.4 CygWin . 476

14.5 Error handling . 477

14.6 Output-to-file options . 477

14.6.1 Graphics files . 477

14.6.2 Tabulated files . 483

14.7 Gnuplot . 486

CONTENTS 19

14.7.1 Using Gnuplot to produce 1D graphs of (electrical) simulation results . 486

14.7.2 Using gnuplot to produce 2D contour plots for Cider 487

14.8 Integration with CAD software and ‘third party’ GUIs 491

14.8.1 KiCad . 491

14.8.2 Xschem . 491

14.8.3 Qucs-S . 491

14.8.4 GNU Spice GUI . 491

14.8.5 XCircuit . 492

14.8.6 GEDA . 492

14.8.7 MSEspice . 492

14.8.8 GNU Octave . 492

15 ngspice as shared library or dynamic link library 493
15.1 Compile options . 493

15.1.1 How to get the sources . 493

15.1.2 Linux, MINGW, CYGWIN . 493

15.1.3 MS Visual Studio . 494

15.2 Linking shared ngspice to a calling application 494

15.2.1 Linking during creating the caller . 494

15.2.2 Loading at runtime . 494

15.3 Shared ngspice API . 494

15.3.1 structs and types defined for transporting data 494

15.3.2 Exported functions . 496

15.3.3 Callback functions . 500

15.4 General remarks on using the API . 504

15.4.1 Loading a netlist . 504

15.4.2 Running the simulation . 506

15.4.3 Accessing data . 507

15.4.4 Altering model or device parameters 508

15.4.5 Output . 508

15.4.6 Error handling . 508

15.5 Example applications . 508

15.6 ngspice parallel . 509

15.6.1 Go parallel! . 509

15.6.2 Additional exported functions . 510

15.6.3 Additional callback functions . 511

15.6.4 Parallel ngspice example . 511

20 CONTENTS

16 TCLspice 513

16.1 tclspice framework . 513

16.2 tclspice documentation . 513

16.3 spicetoblt . 513

16.4 Running TCLspice . 514

16.5 examples . 514

16.5.1 Active capacitor measurement . 514

16.5.2 Optimization of a linearization circuit for a Thermistor 517

16.5.3 Progressive display . 521

16.6 Compiling . 522

16.6.1 Linux . 522

16.6.2 MS Windows . 522

16.7 MS Windows 32 Bit binaries . 523

17 Example Circuits 525

17.1 AC coupled transistor amplifier . 525

17.2 Differential Pair . 531

17.3 MOSFET Characterization . 531

17.4 RTL Inverter . 531

17.5 Four-Bit Binary Adder (Bipolar) . 532

17.6 Four-Bit Binary Adder (MOS) . 534

17.7 Transmission-Line Inverter . 535

18 Statistical circuit analysis 537

18.1 Introduction . 537

18.2 Using random param(eters) . 537

18.3 Behavioral sources (B, E, G, R, L, C) with random control 539

18.4 ngspice control language . 540

18.5 Monte-Carlo Simulation . 541

18.5.1 Varying model or instance parameters 542

18.5.2 Using the ngspice control language 542

18.6 Data evaluation with Gnuplot . 544

CONTENTS 21

19 Circuit optimization with ngspice 547

19.1 Optimization of a circuit . 547

19.2 ngspice optimizer using ngspice scripts . 548

19.3 ngspice optimizer using tclspice . 548

19.4 ngspice optimizer using a Python script . 548

19.5 ngspice optimizer using ASCO . 548

19.5.1 Three stage operational amplifier . 549

19.5.2 Digital inverter . 550

19.5.3 Bandpass . 552

19.5.4 Class-E power amplifier . 552

20 Notes 553

20.1 Glossary . 553

20.2 Acronyms and Abbreviations . 554

20.3 To Do . 555

II XSPICE Software User’s Manual 561

21 XSPICE Basics 563

21.1 ngspice with the XSPICE option . 563

21.2 The XSPICE Code Model Subsystem . 563

21.3 XSPICE Top-Level Diagram . 564

22 Execution Procedures 565

22.1 Simulation and Modeling Overview . 565

22.1.1 Describing the Circuit . 565

22.2 Circuit Description Syntax . 571

22.2.1 XSPICE Syntax Extensions . 571

22.3 How to create code models . 573

23 Example circuits 577

23.1 Amplifier with XSPICE model ‘gain’ . 577

23.2 XSPICE advanced usage . 579

23.2.1 Circuit example C3 . 579

23.2.2 Running example C3 . 582

22 CONTENTS

24 Code Models and User-Defined Nodes 587

24.1 Code Model Data Type Definitions . 588

24.2 Creating Code Models . 588

24.3 Creating User-Defined Nodes . 589

24.4 Adding a new code model library . 590

24.5 Compiling and loading the new code model (library) 590

24.6 Interface Specification File . 591

24.6.1 The Name Table . 593

24.6.2 The Port Table . 593

24.6.3 The Parameter Table . 595

24.6.4 Static Variable Table . 596

24.7 Model Definition File . 598

24.7.1 Macros . 598

24.7.2 Function Library . 607

24.8 User-Defined Node Definition File . 617

24.8.1 Macros . 617

24.8.2 Function Library . 618

24.8.3 Example UDN Definition File . 620

25 Error Messages 625

25.1 Preprocessor Error Messages . 625

25.2 Simulator Error Messages . 630

25.3 Code Model Error Messages . 631

25.3.1 Code Model aswitch . 631

25.3.2 Code Model climit . 632

25.3.3 Code Model core . 632

25.3.4 Code Model d_osc . 632

25.3.5 Code Model d_source . 633

25.3.6 Code Model d_state . 633

25.3.7 Code Model oneshot . 634

25.3.8 Code Model pwl . 634

25.3.9 Code Model s_xfer . 634

25.3.10 Code Model sine . 635

25.3.11 Code Model square . 635

25.3.12 Code Model triangle . 636

CONTENTS 23

III CIDER 637

26 CIDER User’s Manual 639

26.1 SPECIFICATION . 639

26.1.1 Examples . 640

26.2 BOUNDARY, INTERFACE . 641

26.2.1 DESCRIPTION . 641

26.2.2 PARAMETERS . 642

26.2.3 EXAMPLES . 642

26.3 COMMENT . 642

26.3.1 DESCRIPTION . 643

26.3.2 EXAMPLES . 643

26.4 CONTACT . 643

26.4.1 DESCRIPTION . 643

26.4.2 PARAMETERS . 643

26.4.3 EXAMPLES . 643

26.4.4 SEE ALSO . 644

26.5 DOMAIN, REGION . 644

26.5.1 DESCRIPTION . 644

26.5.2 PARAMETERS . 644

26.5.3 EXAMPLES . 644

26.5.4 SEE ALSO . 645

26.6 DOPING . 645

26.6.1 DESCRIPTION . 645

26.6.2 PARAMETERS . 648

26.6.3 EXAMPLES . 648

26.6.4 SEE ALSO . 649

26.7 ELECTRODE . 649

26.7.1 DESCRIPTION . 649

26.7.2 PARAMETERS . 650

26.7.3 EXAMPLES . 650

26.7.4 SEE ALSO . 650

26.8 END . 650

26.8.1 DESCRIPTION . 651

26.9 MATERIAL . 651

24 CONTENTS

26.9.1 DESCRIPTION . 651

26.9.2 PARAMETERS . 652

26.9.3 EXAMPLES . 652

26.9.4 SEE ALSO . 652

26.10METHOD . 653

26.10.1 DESCRIPTION . 653

26.10.2 Parameters . 653

26.10.3 Examples . 653

26.11Mobility . 654

26.11.1 Description . 654

26.11.2 Parameters . 655

26.11.3 Examples . 655

26.11.4 SEE ALSO . 655

26.11.5 BUGS . 656

26.12MODELS . 656

26.12.1 DESCRIPTION . 656

26.12.2 Parameters . 656

26.12.3 Examples . 656

26.12.4 See also . 657

26.12.5 Bugs . 657

26.13OPTIONS . 657

26.13.1 DESCRIPTION . 657

26.13.2 Parameters . 658

26.13.3 Examples . 658

26.13.4 See also . 658

26.14OUTPUT . 659

26.14.1 DESCRIPTION . 659

26.14.2 Parameters . 660

26.14.3 Examples . 660

26.14.4 SEE ALSO . 661

26.15TITLE . 661

26.15.1 DESCRIPTION . 661

26.15.2 EXAMPLES . 661

26.15.3 BUGS . 661

26.16X.MESH, Y.MESH . 661

CONTENTS 25

26.16.1 DESCRIPTION . 662

26.16.2 Parameters . 663

26.16.3 EXAMPLES . 663

26.16.4 SEE ALSO . 663

26.17NUMD . 664

26.17.1 DESCRIPTION . 664

26.17.2 Parameters . 665

26.17.3 EXAMPLES . 665

26.17.4 SEE ALSO . 666

26.17.5 BUGS . 666

26.18NBJT . 666

26.18.1 DESCRIPTION . 666

26.18.2 Parameters . 667

26.18.3 EXAMPLES . 667

26.18.4 SEE ALSO . 668

26.18.5 BUGS . 668

26.19NUMOS . 668

26.19.1 DESCRIPTION . 668

26.19.2 Parameters . 669

26.19.3 EXAMPLES . 669

26.19.4 SEE ALSO . 670

26.202D contour plots . 670

26.21Cider examples . 670

IV Miscellaneous 671

27 Model and Device Parameters 673

27.1 Accessing internal device parameters . 673

27.2 Elementary Devices . 675

27.2.1 Resistor . 675

27.2.2 Capacitor - Fixed capacitor . 677

27.2.3 Inductor - Fixed inductor . 678

27.2.4 Mutual - Mutual Inductor . 679

27.3 Voltage and current sources . 680

27.3.1 Bxxxx - Arbitrary source (ASRC) . 680

26 CONTENTS

27.3.2 Isource - Independent current source 681

27.3.3 Vsource - Independent voltage source 682

27.3.4 Fxxxx: Current-Controlled Current Source (CCCS) 683

27.3.5 Hxxxx: Current-Controlled Voltage Source (CCVS) 683

27.3.6 Gxxxx: Voltage-Controlled Current Source (VCCS) 684

27.3.7 Exxxx: Voltage-Controlled Voltage Source (VCVS) 684

27.4 Transmission Lines . 685

27.4.1 CplLines - Simple Coupled Multiconductor Lines 685

27.4.2 LTRA - Lossy transmission line . 686

27.4.3 Tranline - Lossless transmission line 687

27.4.4 TransLine - Simple Lossy Transmission Line 688

27.4.5 URC - Uniform R. C. line . 689

27.5 BJTs . 690

27.5.1 BJT - Bipolar Junction Transistor . 690

27.5.2 VBIC - Vertical Bipolar Inter-Company Model 693

27.6 MOSFETs . 697

27.6.1 MOS1 - Level 1 MOSFET model with Meyer capacitance model 697

27.6.2 MOS2 - Level 2 MOSFET model with Meyer capacitance model 700

27.6.3 MOS3 - Level 3 MOSFET model with Meyer capacitance model 704

27.6.4 MOS6 - Level 6 MOSFET model with Meyer capacitance model 708

27.6.5 MOS9 - Modified Level 3 MOSFET model 711

27.6.6 BSIM1 - Berkeley Short Channel IGFET Model 715

27.6.7 BSIM2 - Berkeley Short Channel IGFET Model 718

27.6.8 BSIM3 . 722

27.6.9 BSIM4 . 723

28 Compilation notes 725

28.1 Ngspice Installation under Linux (and other ’UNIXes’) 725

28.1.1 Prerequisites . 725

28.1.2 Install from Git . 725

28.1.3 Install from a tarball, e.g. from ngspice-44.tar.gz 727

28.1.4 Compilation using an user defined directory tree for object files 728

28.1.5 ngspice as a shared library . 728

28.1.6 Relative paths for spinit and code models 728

28.1.7 Installation on Red Hat or Oracle Linux (and similar, e.g. Centos) . . . 729

CONTENTS 27

28.1.8 Advanced Install . 729

28.2 Ngspice Compilation under Windows OS . 733

28.2.1 Building ngspice with MS Visual Studio 2022 733

28.2.2 How to make ngspice with MINGW and MSYS2 737

28.2.3 make ngspice with pure CYGWIN . 740

28.2.4 ngspice mingw or cygwin console executable w/o graphics 740

28.2.5 ngspice for MS Windows, cross compiled from Linux 741

28.3 Ngspice Compilation under macOS . 741

28.3.1 Prerequisites . 741

28.3.2 Compiling ngspice . 742

28.3.3 Compiling ngspice shared library . 742

28.3.4 Compiling with Apple M2 . 743

28.4 Reporting errors . 743

29 Copyrights and licenses 745

29.1 Documentation license . 745

29.2 ngspice license . 745

29.3 Some license details . 745

29.3.1 CC-BY-SA . 745

29.3.2 ‘Modified’ BSD license . 746

29.4 On the historical evolvement of the ngspice licenses 747

29.4.1 XSPICE SOFTWARE (documentation) copyright 747

29.4.2 CIDER RESEARCH SOFTWARE AGREEMENT (superseded by 29.4.3)747

29.4.3 ‘Modified’ BSD license . 748

29.4.4 XSPICE . 748

29.4.5 OSDI . 748

29.4.6 tclspice, numparam . 749

29.4.7 Linking to GPLd libraries (e.g. readline, fftw, table.cm): 749

Index 751

28 CONTENTS

Part I

Ngspice User’s Manual

29

Prefaces

Preface to the first edition

This manual has been assembled from different sources:

1. The spice3f5 manual,

2. the XSPICE user’s manual,

3. the CIDER user’s manual

and some original material needed to describe the new features and the newly implemented
models. This cut and paste approach, while not being orthodox, allowed ngspice to have a full
manual in a fraction of the time that writing a completely new text would have required. The
use of LaTex and LYX instead of TeXinfo, which was the original encoding for the manual,
further helped to reduce the writing effort and improved the quality of the result, at the expense
of an on-line version of the manual but, due to the complexity of the software I hardly think that
users will ever want to read an on-line text version.

In writing this text I followed the spice3f5 manual, both in the chapter sequence and presentation
of material, mostly because that was already the user manual of SPICE.

Ngspice is an open source software, users can download the source code, compile, and run it.
This manual has an entire chapter describing program compilation and available options to help
users in building ngspice (see Chapt. 28). The source package already comes with all ‘safe’
options enabled by default, and activating the others can produce unpredictable results and thus
is recommended to expert users only. This is the first ngspice manual and I have removed all
the historical material that described the differences between ngspice and spice3, since it was
of no use for the user and not so useful for the developer who can look for it in the Changelogs
of in the revision control system.

I want to acknowledge the work done by Emmanuel Rouat and Arno W. Peters for converting the
original spice3f documentation to TEXinfo. Their effort gave ngspice users the only available
documentation that described the changes for many years. A good source of ideas for this
manual came from the on-line spice3f manual written by Charles D.H. Williams (Spice3f5
User Guide), constantly updated and useful for its many insights.

As always, errors, omissions and unreadable phrases are only my fault.

Paolo Nenzi

Roma, March 24th 2001

31

http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/index.html#toc
http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/index.html#toc

32

Indeed. At the end of the day, this is engineering, and one learns to live
within the limitations of the tools.

Kevin Aylward, Warden of the King’s Ale

Preface to the current edition (as of Dec 2024)

Due to the wealth of new material and options in ngspice the actual order of chapters has been
revised. Several new chapters have been added. The LYX text processor has allowed adding
internal cross references. The PDF format has become the standard format for distribution of
the manual. There is also a xhtml version available. Within each new ngspice distribution a
manual edition is provided reflecting the ngspice status at the time of distribution. At the same
time, located at ngspice manuals, the manual is constantly updated. Every new ngspice feature
should enter this manual as soon as it has been made available in the Git source code master
branch.

Holger Vogt

Mülheim, 2024

http://ngspice.sourceforge.net/docs/ngspice-html-manual/manual.xhtml
http://ngspice.cvs.sourceforge.net/viewvc/ngspice/ngspice/ng-spice-manuals/

Acknowledgments

ngspice contributors

Spice3 and CIDER were originally written at The University of California at Berkeley (USA).

XSPICE has been provided by Georgia Institute of Technology, Atlanta (USA).

Since then, there have been many people working on the software, most of them releasing
patches to the original code through the Internet.

The following people have contributed in some way:

Vera Albrecht,
Cecil Aswell,
Giles Atkinson,
Giles C. Billingsley,
Phil Barker,
Steven Borley,
Stuart Brorson,
Alessio Cacciatori,
Mansun Chan,
Wayne A. Christopher,
Al Davis,
Glao S. Dezai,
Jon Engelbert,
Daniele Foci,
Noah Friedman,
David A. Gates,
Alan Gillespie,
John Heidemann,
Marcel Hendrix,
Jeffrey M. Hsu,
JianHui Huang,
S. Hwang,
Chris Inbody,
Gordon M. Jacobs,
Min-Chie Jeng,
Beorn Johnson,
Stefan Jones,
Kenneth H. Keller,

33

34

Francesco Lannutti,
Robert Larice,
Mathew Lew,
Robert Lindsell,
Weidong Liu,
Kartikeya Mayaram,
Richard D. McRoberts,
Manfred Metzger,
Jim Monte,
Wolfgang Muees,
Paolo Nenzi,
Gary W. Ng,
Hong June Park,
Stefano Perticaroli,
Arno Peters,
Serban-Mihai Popescu,
Georg Post,
Thomas L. Quarles,
Emmanuel Rouat,
Jean-Marc Routure,
Jaijeet S. Roychowdhury,
Lionel Sainte Cluque,
Takayasu Sakurai,
Amakawa Shuhei,
Kanwar Jit Singh,
Bill Swartz,
Hitoshi Tanaka,
Brian Taylor,
Steve Tell,
Andrew Tuckey,
Andreas Unger,
Holger Vogt,
Dietmar Warning,
Michael Widlok,
Charles D.H. Williams,
Antony Wilson,

and many others...

If someone helped in the development and has not been inserted in this list then this omis-
sion was unintentional. If you feel you should be on this list then please write to <ngspice-
devel@lists.sourceforge.net>. Do not be shy, we would like to make a list as complete as
possible.

mailto:ngspice-devel@lists.sourceforge.net
mailto:ngspice-devel@lists.sourceforge.net

Chapter 1

Introduction

Ngspice is a general-purpose circuit simulation program for nonlinear and linear analyses. Cir-
cuits may contain resistors, capacitors, inductors, mutual inductors, independent or dependent
voltage and current sources, loss-less and lossy transmission lines, switches, uniform distributed
RC lines, and the five most common semiconductor devices: diodes, BJTs, JFETs, MESFETs,
and MOSFETs.

The most common way to use Ngspice is to start it from the OS command prompt, passing the
name of a netlist file: one containing the definition of a circuit. The largest part of this manual
is the description of such files. For a full description of starting options see Chapter 12. Input
files may also contain scripts written in Ngspice’s command language (13). Interactive user
interfaces are described in Chapter 14.

Some introductory remarks on how to use ngspice may be found in Chapter 17.

Ngspice is an update of Spice3f5, the last Berkeley’s release of Spice3 simulator family. Ngspice
is being developed to include new features to existing Spice3f5 and to fix its bugs. Improving
a complex software like a circuit simulator is a very hard task and, while some improvements
have been made, most of the work has been done on bug fixing and code refactoring.

Ngspice has built-in models for the semiconductor devices, and the user need specify only the
pertinent model parameter values.

Ngspice supports mixed-level simulation and provides a direct link between technology param-
eters and circuit performance. A mixed-level circuit and device simulator can provide greater
simulation accuracy than a stand-alone circuit or device simulator by numerically modeling the
critical devices in a circuit. Compact models can be used for all other devices. The mixed-
level extensions to ngspice is CIDER, a mixed-level circuit and device simulator integrated into
ngspice code.

Ngspice supports mixed-signal simulation through the integration of XSPICE code. XSPICE
software, developed as an extension to Spice3C1 by GeorgiaTech, has been enhanced and ported
to ngspice to provide ‘board’ level and mixed-signal simulation. Digital Verilog modules, com-
piled with Verilator or Icarus Verilog, can be attached. Communication with (C coded) pro-
cesses via pipes may be established.

The XSPICE extension enables pure digital simulation as well.

New devices can be added to ngspice by several means: behavioral B-, E- or G-sources, the
XSPICE code-model interface for C-like device coding, and Verilog-A models, when compiled
with OpenVAF, via the OSDI interface.

35

36 CHAPTER 1. INTRODUCTION

Finally, numerous small bugs have been discovered and fixed, and the program has been ported
to a wider variety of computing platforms.

1.1 Simulation Algorithms

Computer-based circuit simulation is often used as a tool by designers, test engineers, and
others who want to analyze the operation of a design without examining the physical circuit.
Simulation allows you to change quickly the parameters of many of the circuit elements to
determine how they affect the circuit response. Often it is difficult or impossible to change
these parameters in a physical circuit.

However, to be practical, a simulator must execute in a reasonable amount of time. The key to
efficient execution is choosing the proper level of modeling abstraction for a given problem. To
support a given modeling abstraction, the simulator must provide appropriate algorithms.

Historically, circuit simulators have supported either an analog simulation algorithm or a digital
simulation algorithm. Ngspice inherits the XSPICE framework and supports both analog and
digital algorithms and is a ‘mixed-mode’ simulator.

1.1.1 Analog Simulation

Analog simulation focuses on the linear and non-linear behavior of a circuit over a continuous
time or frequency interval. The circuit response is obtained by iteratively solving Kirchhoff’s
Laws for the circuit at time steps selected to ensure the solution has converged to a stable value
and that numerical approximations of integrations are sufficiently accurate. Since Kirchhoff’s
laws form a set of simultaneous equations, the simulator operates by solving a matrix of equa-
tions at each time point. This matrix processing generally results in slower simulation times
when compared to digital circuit simulators.

The response of a circuit is a function of the applied sources. Ngspice offers a variety of
source types including DC, sine-wave, and pulse. In addition to specifying sources, the user
must define the type of simulation to be run. This is termed the ‘mode of analysis’. Analysis
modes include DC analysis, AC analysis, and transient analysis. For DC analysis, the time-
varying behavior of reactive elements is neglected and the simulator calculates the DC solution
of the circuit. Swept DC analysis may also be accomplished with ngspice. This is simply the
repeated application of DC analysis over a range of DC levels for the input sources. For AC
analysis, the simulator determines the response of the circuit, including reactive elements to
small-signal sinusoidal inputs over a range of frequencies. The simulator output in this case
includes amplitudes and phases as a function of frequency. For transient analysis, the circuit
response, including reactive elements, is analyzed to calculate the behavior of the circuit as a
function of time.

1.1.2 Matrix solvers

Since version 42 ngspice offers two matrix solvers. Spice3f5 originally has used the solver
Sparse 1.3, which has proven to be robust for all simulation tasks [26]. It is especially suited
for simulating behavioral models. Optionally, to speed up the simulation of large circuits with
thousands of transistors, the KLU matrix solver [27, 28] may be selected (see chapter 11.1.1).

1.1. SIMULATION ALGORITHMS 37

1.1.3 Device Models for Analog Simulation

There are three models for bipolar junction transistors, all based on the integral-charge model
of Gummel and Poon; however, if the Gummel-Poon parameters are not specified, the basic
model (BJT) reduces to the simpler Ebers-Moll model. In either case and in either model,
charge storage effects, ohmic resistances, and a current-dependent output conductance may be
included. The second bipolar model BJT2 adds dc current computation in the substrate diode.
The third model (VBIC) contains further enhancements for advanced bipolar devices.

The semiconductor diode model can be used for either junction diodes or Schottky barrier
diodes. There are two models for JFET: the first (JFET) is based on the model of Shichman
and Hodges, the second (JFET2) is based on the Parker-Skellern model. All the original six
MOSFET models are implemented: MOS1 is described by a square-law I-V characteristic,
MOS2 [28] is an analytical model, while MOS3 [28] is a semi-empirical model; MOS6 [2] is a
simple analytic model accurate in the short channel region; MOS9, is a slightly modified Level
3 MOSFET model - not to confuse with Philips level 9; BSIM 1 [3, 4]; BSIM2 [5] are the
old BSIM (Berkeley Short-channel IGFET Model) models. MOS2, MOS3, and BSIM include
second-order effects such as channel-length modulation, subthreshold conduction, scattering-
limited velocity saturation, small-size effects, and charge controlled capacitances. The recent
MOS models for submicron devices are the BSIM3 (Berkeley BSIM3 web page) and BSIM4
(Berkeley BSIM4 web page) models. Silicon-on-insulator MOS transistors are described by
the SOI models from the BSIMSOI family (Berkeley BSIMSOI web page) and the STAG [18]
model. There is some support for a couple of HFET models and one model for MESA devices.
Verilog-A models are made available via the OpenVAF/OSDI interface (see chapter 9).

1.1.4 Digital Simulation

Digital circuit simulation differs from analog circuit simulation in several respects. A primary
difference is that a solution of Kirchhoff’s laws is not required. Instead, the simulator must only
determine whether a change in the logic state of a node has occurred and propagate this change
to connected elements. Such a change is called an ‘event’.

When an event occurs, the simulator examines only those circuit elements that are affected by
the event. As a result, matrix analysis is not required in digital simulators. By comparison,
analog simulators must iteratively solve for the behavior of the entire circuit because of the
forward and reverse transmission properties of analog components. This difference results in
a considerable computational advantage for digital circuit simulators, which is reflected in the
significantly greater speed of digital simulations.

1.1.5 Mixed-Signal Simulation

Modern circuits often contain a mix of analog and digital circuits. To simulate such circuits
efficiently and accurately, a mix of analog and digital simulation techniques is required. When
analog simulation algorithms are combined with digital simulation algorithms, the result is
termed ‘mixed-mode simulation’.

Two basic methods of implementing mixed-mode simulation used in practice are the ‘native
mode’ and ‘glued mode’ approaches. Native mode simulators implement both an analog algo-
rithm and a digital algorithm in the same executable. Glued mode simulators actually use two

http://bsim.berkeley.edu/models/bsim3/
http://bsim.berkeley.edu/models/bsim4/
http://bsim.berkeley.edu/models/bsimsoi/

38 CHAPTER 1. INTRODUCTION

simulators, one of which is analog and the other digital. This type of simulator must define an
input/output protocol so that the two executables can communicate with each other effectively.
The communication constraints tend to reduce the speed, and sometimes the accuracy, of the
complete simulator. On the other hand, the use of a glued mode simulator allows the component
models developed for the separate executables to be used without modification.

Ngspice is a native mode simulator providing both analog and event-based simulation in the
same executable. The underlying algorithms of ngspice (coming from XSPICE and its Code
Model Subsystem) allow use of all the standard SPICE models, provide a pre-defined collection
of the most common analog and digital functions, and provide an extensible base on which to
build additional models.

1.1.5.1 User-Defined Nodes

Ngspice supports creation of ‘User-Defined Node’ types. User-Defined Node types allow you
to specify nodes that propagate data other than voltages, currents, and digital states. Like digital
nodes, User-Defined Nodes use event-driven simulation, but the state value may be an arbitrary
data type. A simple example application of User-Defined Nodes is the simulation of a digital
signal processing filter algorithm. In this application, each node could assume a real or integer
value. More complex applications may define types that involve complex data such as digital
data vectors or even non-electronic data.

Ngspice digital simulation is actually implemented as a special case of this User-Defined Node
capability where the digital state is defined by a data structure that holds a Boolean logic state
and a strength value.

1.1.6 Mixed-Level Simulation (Electronic and TCAD)

Ngspice implements mixed-level simulation through the merging of its code with CIDER (de-
tails see Chapt. 26).

CIDER is a mixed-level circuit and device simulator that provides a direct link between tech-
nology parameters and circuit performance. A mixed-level circuit and device simulator can
provide greater simulation accuracy than a stand-alone circuit or device simulator by numer-
ically modeling the critical devices in a circuit. Compact models can be used for noncritical
devices.

CIDER couples ngspice to a internal C-based device simulator, thus providing circuit analyses,
compact models for semiconductor devices, and an interactive user interface. CIDER provides
accurate, one- and two-dimensional numerical device models based on the solution of Poisson’s
equation, and the electron and hole current-continuity equations. CIDER incorporates many of
the same basic physical models found in the the Stanford two-dimensional device simulator
PISCES [PINT85]. Input to CIDER consists of a SPICE-like description of the circuit and
its compact models, and PISCES-like descriptions of the structures of numerically modeled
devices. As a result, CIDER should seem familiar to designers already accustomed to these two
tools.

The CIDER input format has great flexibility and allows increased access to physical model pa-
rameters. New physical models have been added to allow simulation of state-of-the-art devices.
These include transverse field mobility degradation [GATE90] that is important in scaled-down

1.2. SUPPORTED ANALYSES 39

MOSFETs and a polysilicon model for poly-emitter bipolar transistors. Temperature depen-
dence has been included for most physical models over the range from -50°C to 150°C. The
numerical models can be used to simulate all the basic types of semiconductor devices: resis-
tors, MOS capacitors, diodes, BJTs, JFETs and MOSFETs. BJTs and JFETs can be modeled
with or without a substrate contact. Support has been added for the management of device
internal states. Post-processing of device states can be performed using the control language
user interface of ngspice. Previously computed states can be loaded into the program to provide
accurate initial guesses for subsequent analyses.

Details of the basic semiconductor equations and the physical models used by CIDER are not
provided in this manual. Unfortunately, no other single source exists that describes all of the
relevant background material. Comprehensive reviews of device simulation can be found in
[PINT90] and the book [SELB84]. CODECS (predecessor to CIDER) and its inversion-layer
mobility model are described in [MAYA88] and [LGATE90], respectively. PISCES and its
models are described in [PINT85]. Temperature dependencies for the PISCES models used by
CIDER are available in [SOLL90].

For Linux users the cooperation of the TCAD software GSS with ngspice might be of interest,
see https://ngspice.sourceforge.io/gss.html. This project is no longer maintained however, but
has moved into the Genius simulator, still available as open source cogenda genius.

1.2 Supported Analyses

The ngspice simulator supports the following different types of analysis:

1. DC Analysis (Operating Point and DC Sweep) (11.3.2 and 11.3.5)

2. AC Small-Signal Analysis (11.3.1)

3. Transient Analysis (11.3.10)

4. Pole-Zero Analysis (11.3.6)

5. Small-Signal Distortion Analysis (11.3.3)

6. Sensitivity Analysis (11.3.7)

7. Noise Analysis (11.3.4)

The different types of analysis are described below, the cross-references above are to the netlist
directives used to request them. Applications that are exclusively analog can make use of all
analysis modes with the exception of the Code Model subsystem that does not implement Pole-
Zero, Distortion, Sensitivity and Noise analyses. Event-driven applications that include digital
and User-Defined Node types may make use of DC (operating point and DC sweep) and Tran-
sient only.

In order to understand the relationship between the different analyses and the two underlying
simulation algorithms of ngspice, it is important to understand what is meant by each analysis
type. This is detailed below.

https://ngspice.sourceforge.io/gss.html
http://www.cogenda.com/article/download

40 CHAPTER 1. INTRODUCTION

1.2.1 DC Analysis

The DC analysis portion of ngspice determines the dc operating point of the circuit with induc-
tors shorted and capacitors opened. DC analysis options are specified on the .DC, .TF, and .OP
control lines.

DC analysis does not consider any time dependence on any of the sources within the system
description. The simulator algorithm subdivides the circuit into those portions that require the
analog simulator algorithm and those that require the event-driven algorithm. Each subsystem
block is then iterated to solution, with the interfaces between analog nodes and event-driven
nodes iterated for consistency across the entire system.

Once stable values are obtained for all nodes in the system, the analysis halts and the results
may be displayed or printed out as you request them.

A dc analysis is automatically performed prior to a transient analysis to determine the tran-
sient initial conditions, and prior to an ac small-signal analysis to determine the linearized,
small-signal models for nonlinear devices. If requested, the DC small-signal value of a transfer
function (ratio of output variable to input source), input resistance, and output resistance is also
computed as a part of the DC solution. DC analysis can also be used to generate DC transfer
curves: a specified independent voltage, current source, resistor or temperature is stepped over
a user-specified range and the DC output variables are stored for each sequential source value.

1.2.2 AC Small-Signal Analysis

AC analysis is limited to analog nodes and represents the small signal, sinusoidal solution of the
analog system described at a particular frequency or set of frequencies. This analysis is similar
to the DC analysis in that it represents the steady-state behavior of the described system with a
single input node at a given set of stimulus frequencies.

The program first computes the dc operating point of the circuit and determines linearized,
small-signal models for all of the nonlinear devices in the circuit. The resultant linear circuit
is then analyzed over a user-specified range of frequencies. The desired output of an ac small-
signal analysis is usually a transfer function (voltage gain, transimpedance, etc). If the circuit
has only one ac input, it is convenient to set that input to unity and zero phase, so that output
variables have the same value as the transfer function of the output variable with respect to the
input.

1.2.3 Transient Analysis

Transient analysis is an extension of DC analysis to the time domain. A transient analysis first
obtains a DC solution to provide a point of departure for simulating time-varying behavior.
Once the DC solution is obtained, the time-dependent aspects of the system are reintroduced,
and the two simulator algorithms incrementally solve for the time varying behavior of the entire
system. Inconsistencies in node values are resolved by the two simulation algorithms such that
the time-dependent waveforms created by the analysis are consistent across the entire simu-
lated time interval. Resulting time-varying descriptions of node behavior for the specified time
interval are accessible to you.

All sources that are not time dependent (for example, power supplies) are set to their dc value.
The transient time interval is specified on a .TRAN control line.

1.2. SUPPORTED ANALYSES 41

1.2.4 Pole-Zero Analysis

Pole-zero analysis in ngspice computes the poles and/or zeros in the small-signal ac transfer
function. Ngspice first computes the dc operating point and then determines the linearized,
small-signal models for all the nonlinear devices in the circuit. The small-signal circuit model
is then used to find the poles and zeros of the transfer function. Two types of transfer functions
are allowed: one of the form (output voltage)/(input voltage) and the other of the form (output
voltage)/(input current). These two types of transfer functions cover all the cases and one can
find the poles/zeros of functions like input/output impedance and voltage gain. The input and
output ports are specified as two pairs of nodes. The pole-zero analysis works with resistors,
capacitors, inductors, linear-controlled sources, independent sources, BJTs, MOSFETs, JFETs
and diodes. Transmission lines are not supported.

The method used in the analysis is a sub-optimal numerical search. For large circuits it may
take a considerable time or fail to find all poles and zeros. Please note, that for some circuits,
the method becomes “lost” and may find an excessive number of poles or zeros.

1.2.5 Small-Signal Distortion Analysis

Distortion analysis in ngspice computes steady-state harmonic and intermodulation products
for small input signal magnitudes. If signals of a single frequency are specified as the input to
the circuit, the complex values of the second and third harmonics are determined at every point
in the circuit. If there are signals of two frequencies input to the circuit, the analysis finds out
the complex values of the circuit variables at the sum and difference of the input frequencies,
and at the difference of the smaller frequency from the second harmonic of the larger frequency.
Distortion analysis is supported for the following nonlinear devices:

• Diodes (DIO),

• BJT,

• JFET (level 1),

• MOSFETs (levels 1, 2, 3, 9, and BSIM1),

• MESFET (level 1).

All linear devices are automatically supported by distortion analysis. If there are switches
present in the circuit, the analysis continues to be accurate provided the switches do not change
state under the small excitations used for distortion calculations.

If a device model does not support direct small signal distortion analysis, please use the Fourier
of FFT statements and evaluate the output per scripting.

1.2.6 Sensitivity Analysis

Ngspice can calculate either the DC operating-point sensitivity or the AC small-signal sen-
sitivity of an output variable with respect to all circuit variables, including model parameters.
Ngspice calculates the difference in an output variable (either a node voltage or a branch current)

42 CHAPTER 1. INTRODUCTION

by perturbing each parameter of each device independently. Since the method is a numerical
approximation, the results may demonstrate second order effects in highly sensitive parameters,
or may fail to show very low but non-zero sensitivity.

Since each variable is perturbed by a small fraction of its value, zero-valued parameters are not
analyzed, reducing what is usually a very large amount of data.

1.2.7 Noise Analysis

Noise analysis in ngspice measures the device-generated noise for a given circuit. When pro-
vided with an input source and an output port, the analysis calculates the noise contributions of
each device, and each noise generator within each device, as measured as a voltage at the output
port. Noise analysis also calculates the equivalent input noise of the circuit, based on the output
noise. This is done for every frequency point in a specified range - the calculated value of the
noise corresponds to the spectral density of the circuit variable viewed as a stationary Gaus-
sian stochastic process. After calculating the spectral densities, noise analysis integrates these
values over the specified frequency range to arrive at the total noise voltage and current over
this frequency range. The calculated values correspond to the variance of the circuit variables
viewed as stationary Gaussian processes.

1.2.8 Periodic Steady State Analysis

Experimental code.

PSS is a radio frequency periodical large-signal dedicated analysis. The implementation is
based on a time domain shooting method that make use of transient analysis. As it is in early
development stage, PSS performs analysis only on autonomous circuits, meaning that it is able
to predict fundamental frequency and (harmonic) amplitude(s) for oscillators, VCOs, etc.. The
algorithm is based on a search of the minimum error vector defined as the difference of RHS
vectors between two occurrences of an estimated period. Convergence is reached when the
mean of this error vector decreases below a given threshold parameter. Results of PSS are the
basis of periodical large-signal analyses like PAC or PNoise.

1.3 Analysis at Different Temperatures

1.3.1 Introduction

Temperature, in ngspice, is a property associated to the entire circuit, rather than an analysis op-
tion. Circuit temperature has a default (nominal) value of 27°C (300.15 K) that can be changed
using the TEMP option in an .option control line (see 11.1.1) or by the .TEMP line (see 2.14),
which has precedence over the .option TEMP line. All analyses are, thus, performed at circuit
temperature, and if you want to simulate circuit behavior at different temperatures you should
prepare a netlist for each temperature.

All input data for ngspice is assumed to have been measured at the circuit nominal tempera-
ture. This value can further be overridden for any device that models temperature effects by
specifying the TNOM parameter on the .model itself. Individual instances may further override

1.3. ANALYSIS AT DIFFERENT TEMPERATURES 43

the circuit temperature through the specification of TEMP and DTEMP parameters on the instance.
The two options are not independent even if you can specify both on the instance line, the TEMP
option overrides DTEMP. The algorithm to compute instance temperature is described below:

Algorithm 1.1 Instance temperature computation

IF TEMP is specified THEN
instance_temperature = TEMP
ELSE
instance_temperature = circuit_temperature + DTEMP
END IF

Temperature dependent support is provided for all devices except voltage and current sources
(either independent and controlled) and BSIM models. BSIM MOSFETs have an alternate
temperature dependency scheme that adjusts all of the model parameters before input to ngspice.

For details of the BSIM temperature adjustment, see [6] and [7]. Temperature appears explicitly
in the exponential terms of the BJT and diode model equations. In addition, saturation currents
have a built-in temperature dependence. The temperature dependence of the saturation current
in the BJT models is determined by:

IS (T1) = IS (T0)

(
T1

T0

)XT I

exp
(

Egq(T1 −T0)

k (T1T0)

)
(1.1)

where k is Boltzmann’s constant, q is the electronic charge, Eg is the energy gap model pa-
rameter, and XT I is the saturation current temperature exponent (also a model parameter, and
usually equal to 3).

The temperature dependence of forward and reverse beta is according to the formula:

B(T1) = B(T0)

(
T1

T0

)XT B

(1.2)

where T0 and T1 are in degrees Kelvin, and XT B is a user-supplied model parameter. Tempera-
ture effects on beta are carried out by appropriate adjustment to the values of BF , ISE , BR, and
ISC (SPICE model parameters BF, ISE, BR, and ISC, respectively).

Temperature dependence of the saturation current in the junction diode model is determined by:

IS (T1) = IS (T0)

(
T1

T0

)XT I
N

exp
(

Egq(T1 −T0)

Nk (T1T0)

)
(1.3)

where N is the emission coefficient model parameter, and the other symbols have the same
meaning as above. Note that for Schottky barrier diodes, the value of the saturation current
temperature exponent, XT I, is usually 2. Temperature appears explicitly in the value of junction
potential, U (in Ngspice PHI), for all the device models.

The temperature dependence is determined by:

U (T) =
kT
q

ln

(
NaNd

Ni (T)
2

)
(1.4)

44 CHAPTER 1. INTRODUCTION

where k is Boltzmann’s constant, q is the electronic charge, Na is the acceptor impurity den-
sity, Nd is the donor impurity density, Ni is the intrinsic carrier concentration, and Eg is the
energy gap. Temperature appears explicitly in the value of surface mobility, M0(or U0), for the
MOSFET model.

The temperature dependence is determined by:

M0 (T) =
M0 (T0)(

T
T0

)1.5 (1.5)

The effects of temperature on resistors, capacitor and inductors is modeled by the formula:

R(T) = R(T0)
[
1+TC1 (T −T0)+TC2 (T −T0)

2
]

(1.6)

where T is the circuit temperature, T0 is the nominal temperature, and TC1 and TC2 are the first
and second order temperature coefficients.

1.3.2 Controlling the temperature

The default temperature is set to 27 °C.

.temp 40

will set the overall temperature to 40 °C (2.14). The command

.options temp=60

will set the overall temperature to 60 °C (11.1.1). Both commands are equivalent, however
.temp will override .options temp.

The temperature of an individual device may be determined by the instance parameters temp or
dtemp.

M1 d g s b MOSN temp=35

will set the temperature of the specific MOS device to 35 °C.

M2 d g s b MOSN dtemp=20

will set the temperature of device M2 at a delta of 20° above the overall temperature.

The temperatures thus set are static throughout the simulation. It is possible, however, to sweep
the temperature by a command like

.dc temp 25 49 2

1.4. CONVERGENCE 45

starting at 25 °C, stopping at 49 °C with a step of 2° (see 11.3.2).

The current overall temperature may be assessed by the variable TEMPER, which can be used as
part of an equation in B sources (5.1.2) or behavioral E, G, R, L, C sources (e.g. 5.2). A typical
example may look like

Bt1 1 2 V=’5 + TEMPER*TEMPER’

The nominal temperature, a reference temperature where device model parameters have been
measured, is called tnom.

.options tnom=25

will set the nominal temperature for all devices to 25 °C (11.1.1). Tnom sometimes may be set
as a model parameter in a .model line (3.2.2), depending on the specific class of devices and
its model parameter set.

1.4 Convergence

Ngspice uses the Newton-Raphson algorithm to solve nonlinear equations arising from circuit
description. The NR algorithm is interactive and terminates when both of the following condi-
tions hold:

1. The nonlinear branch currents converge to within a tolerance of 0.1% or 1 picoamp (1.0e-
12 Amp), whichever is larger.

2. The node voltages converge to within a tolerance of 0.1% or 1 microvolt (1.0e-6 Volt),
whichever is larger.

1.4.1 Voltage convergence criterion

The algorithm has reached convergence when the difference between the last iteration k and the
current one (k+1) ∣∣∣v(k+1)

n − v(k)n

∣∣∣≤ RELTOL vnmax +VNTOL, (1.7)

where

vnmax = max
(∣∣∣v(k+1)

n

∣∣∣ , ∣∣∣v(k)n

∣∣∣) . (1.8)

The RELTOL (RELative TOLerance) parameter, which default value is 10−3, specifies how small
the solution update must be, relative to the node voltage, to consider the solution to have con-
verged. The VNTOL (absolute convergence) parameter, which has 1µV as default value, becomes
important when node voltages have near zero values. The relative parameter alone, in such case,
would need too strict tolerances, perhaps lower than computer round-off error, and thus conver-
gence would never be achieved. VNTOL forces the algorithm to consider as converged any node
whose solution update is lower than its value.

46 CHAPTER 1. INTRODUCTION

1.4.2 Current convergence criterion

Ngspice checks the convergence on the non-linear functions that describe the non-linear branches
in circuit elements. In semiconductor devices the functions defines currents through the device
and thus the name of the criterion.

Ngspice computes the difference between the value of the nonlinear function computed for the
last voltage and the linear approximation of the same current computed with the actual voltage∣∣∣∣î(k+1)

branch − i(k)branch

∣∣∣∣≤ RELTOL ibrmax +ABSTOL, (1.9)

where

ibrmax = max
(

î(k+1)
branch, i

(k)
branch

)
. (1.10)

In the two expressions above, the îbranch indicates the linear approximation of the current.

1.4.3 Convergence failure

Although the algorithm used in ngspice has been found to be very reliable, in some cases it fails
to converge to a solution. When this failure occurs, the program terminates the job. Failure
to converge in dc analysis is usually due to an error in specifying circuit connections, element
values, or model parameter values. Regenerative switching circuits or circuits with positive
feedback probably will not converge in the dc analysis unless the OFF option is used for some of
the devices in the feedback path, .nodeset control line is used to force the circuit to converge
to the desired state.

Chapter 2

Circuit Description

2.1 General Structure and Conventions

2.1.1 Input file structure

The circuit to be analyzed is described to ngspice by a set of element instance lines, which
define the circuit topology and element instance values, and a set of control lines, which define
the model parameters and the run controls. All lines are assembled in an input file to be read by
ngspice. Two lines are essential:

• The first line in the input file must be the title, which is the only comment line that does
not need any special character in the first place.

• The last line must be .end, plus a newline delimiter.

The order of the remaining lines is alomost arbitrary (except, of course, that continuation lines
must immediately follow the line being continued, .subcktends, .ifendif, or
.controlendc have to enclose their specific lines). Leading white spaces in a line are
ignored, as well as empty lines.

The lines described in sections 2.1 to 2.12 are typically used in the core of the input file, outside
of a .control section (see 12.4.3). An exception is the .include includefile line (2.8)
that may be placed anywhere in the input file. The contents of includefile will be inserted
exactly in place of the .include line.

2.1.2 Syntax check

A very preliminary syntax check has been added to the input parser.

2.1.2.1 Valid utf-8 characters

The input file will be scanned for valid utf-8 characters. If non-valid characters are found,
reading the input is stopped.

47

48 CHAPTER 2. CIRCUIT DESCRIPTION

2.1.2.2 Special characters leading a line

If the first character in a netlist or .control line is one of =[]?()&%$§\"!:, then ngspice replaces
it by ’*’ and issues a warning. Command set strict_errorhandling will force ngspice to
exit.

2.1.2.3 Dot command couple completion

Check for .controlendc, .subcktends, .ifendif.

2.1.3 Some naming conventions

2.1.3.1 Lines

Fields on a line are separated by one or more blanks, a comma, an equal (=) sign, or a left or
right parenthesis; extra spaces are ignored. A line may be continued by entering a ‘+’ (plus) in
column 1 of the following line; ngspice continues reading beginning with column 2. Lines may
also be continued in Unix shell style, when the final two characters are backslashes. A device
name field must begin with a letter (A through Z) and cannot contain any delimiters.

2.1.3.2 Numbers

A number field may be an integer field (12, -44), a floating point field (3.14159), either an
integer or floating point number followed by an integer exponent (1e-14, 2.65e3), or either an
integer or a floating point number followed by one of the following scale factors:

Suffix Name Factor
T Tera 1012

G Giga 109

Meg Mega 106

K Kilo 103

mil Mil 25.4×10−6

m milli 10−3

u micro 10−6

n nano 10−9

p pico 10−12

f femto 10−15

a atto 10−18

Table 2.1: Ngspice scale factors

2.1.3.3 Letters following a number

Letters immediately following a number that are not scale factors are ignored, and letters im-
mediately following a scale factor are ignored. Hence, 10, 10V, 10Volts, and 10Hz all represent
the same number, and M, MA, MSec, and MMhos all represent the same scale factor. Note

2.2. DOT COMMANDS 49

that 1000, 1000.0, 1000Hz, 1e3, 1.0e3, 1kHz, and 1k all represent the same number. Note that
‘M’ or ‘m’ denote ‘milli’, i.e. 10−3. Suffix meg has to be used for 106. If compatibility mode
LT (12.14.6) is set, ngspice will accept the RKM notation for entering resistance or capacitance
values, e.g. 2K7 or 100R.

2.1.3.4 Node names

Node names may be arbitrary character strings (exceptions see below) and are case insensitive,
if ngspice is used in batch mode (12.4.1). If in interactive (12.4.2) or control (12.4.3) mode,
node names may either be plain numbers or arbitrary character strings, not starting with a
number. The following characters = % () , [] < > ~ are not allowed in a node name, especially
when XSPICE code models are used (they have their special meanings then and act as string
delimiters).

2.1.3.5 Ground node

The ground node must be named ‘0’ (zero). For compatibility reason gnd is accepted as ground
node, and will internally be treated as a global node and be converted to ‘0’. If this is not
feasible, you may switch the conversion off by setting set no_auto_gnd in one of the con-
figuration files spinit or .spiceinit. Each circuit has to have a ground node (gnd or 0)! Note
the difference in ngspice where the nodes are treated as character strings and not evaluated as
numbers, thus ‘0’ and 00 are distinct nodes in ngspice but not in SPICE2.

2.1.4 Topological constraints

Ngspice requires that the following topological constraints are satisfied:

• The circuit cannot contain a loop of voltage sources and/or inductors and cannot contain
a cut-set of current sources and/or capacitors.

• Each node in the circuit must have a dc path to ground.

• Every node must have at least two connections except for transmission line nodes (to
permit unterminated transmission lines) and MOSFET substrate nodes (which have two
internal connections anyway).

2.2 Dot commands

This section summarizes all dot commands available in ngspice, with links to their detailed
presentation, in alphabetical order. Control section (or interactive) commands are listed and
explained in chapter 13.5.

.AC start an ac simulation (11.3.1).

.CONTROL start a .control section (12.4.3).

50 CHAPTER 2. CIRCUIT DESCRIPTION

.CSPARAM define parameter(s) made available in a control section (2.13).

.DC start a dc simulation (11.3.2).

.DISTO start a distortion analysis simulation (11.3.3).

.ELSE conditional branching in the netlist (2.15).

.ELSEIF conditional branching in the netlist (2.15).

.END end of the netlist (2.4.2).

.ENDC end of the .control section (12.4.3).

.ENDIF conditional branching in the netlist (2.15).

.ENDS end of subcircuit definition (2.6.2).

.FOUR Fourier analysis of transient simulation output (11.6.4).

.FUNC define a function (2.12).

.GLOBAL define global nodes (2.7).

.IC set initial conditions (11.2.2).

.IF conditional branching in the netlist (2.15).

.INCLUDE include part of the netlist (2.8).

.INCPSLT include part of the netlist with compatibility mode ’pslt’ (2.9, 12.14.4.2).

.LIB include a library (2.10).

.MEAS measurements during the simulation (11.4).

.MODEL list of device model parameters (2.5).

.NODESET set initial conditions (11.2.1).

.NOISE start a noise simulation (11.3.4).

.OP start an operating point simulation (11.3.5).

.OPTIONS set simulator options (11.1).

.PARAM define parameter(s) (2.11).

.PLOT printer plot during batch simulation (11.6.3).

.PRINT tabular listing during batch simulation (11.6.2).

.PROBE save device currents, voltages and differential voltages (11.6.5).

.PSS start a periodic steady state analysis (11.3.12).

.PZ start a pole-zero analysis simulation (11.3.6).

2.3. CIRCUIT ELEMENTS (DEVICE INSTANCES) 51

.SAVE name simulation result vectors to be saved (11.6.1).

.SENS start a sensitivity analysis (11.3.7).

.SP S parameter analysis (11.3.8).

.SUBCKT start of subcircuit definitions (2.6).

.TEMP set the ciruit temperature (2.14).

.TF start a transfer function analysis (11.3.9).

.TITLE title of the netlist (2.4.1).

.TRAN start a transient simulation (11.3.10).

.WIDTH width of printer plot (11.6.7).

2.3 Circuit elements (device instances)

Each element in the circuit is a device instance specified by an instance line that contains:

• the element instance name,

• the circuit nodes to which the element is connected,

• and the values of the parameters that determine the electrical characteristics of the ele-
ment.

The first letter of the element instance name specifies the element type. The format for the
ngspice element types is given in the following manual chapters, e.g. BZZZZ. The tokens
XXXXXXX, YYYYYYY, and ZZZZZZZ denote arbitrary alphanumeric strings.

For example, a resistor instance name must begin with the letter R and can contain one or more
characters. Hence, R, R1, RSE, ROUT, and R3AC2ZY are valid resistor names. Details of each
type of device are supplied in a following section 3. Table 2.2 lists the element types available
in ngspice, sorted by their first letter.

52 CHAPTER 2. CIRCUIT DESCRIPTION

First letter Element description Comments, links

A XSPICE code model

8
analog (8.2)
digital (8.4)

mixed signal (8.3)
B Behavioral (arbitrary) source 5.1
C Capacitor 3.3.6
D 7

E Voltage-controlled voltage source (VCVS)
linear (4.2.2),

non-linear (5.2)
F Current-controlled current source (CCCs) linear (4.2.3)

G Voltage-controlled current source (VCCS)
linear (4.2.1),

non-linear (5.3)
H Current-controlled voltage source (CCVS) linear (4.2.4)
I Current source 4.1
J Junction field effect transistor (JFET) 7.4
K Coupled (Mutual) Inductors 3.3.12
L Inductor 3.3.10

M Metal oxide field effect transistor (MOSFET)
7.6

BSIM3 (7.6.3.3)
BSIM4 (7.6.3.4)

N Verilog-A Compact Device Models 9
O Lossy transmission line 6.2
P Coupled multiconductor line (CPL) 6.4.2
Q Bipolar junction transistor (BJT) 7.3
R Resistor 3.3.1
S Switch (voltage-controlled) 3.3.15
T Lossless transmission line 6.1
U Uniformly distributed RC line 6.3*
U Basic digital building blocks using XSPICE 10*
V Voltage source 4.1
W Switch (current-controlled) 3.3.15
X Subcircuit 2.6.3
Y Single lossy transmission line (TXL) 6.4.1
Z Metal semiconductor field effect transistor (MESFET) 7.5

Table 2.2: ngspice element types

*) For a disambiguation see chapter 10.1.3.

2.4. BASIC LINES 53

2.4 Basic lines

2.4.1 .TITLE line

Examples:

POWER AMPLIFIER CIRCUIT

* additional lines following

*...

Test of CAM cell

* additional lines following

*...

The title line must be the first in the input file. Its contents are printed verbatim as the heading
for each section of output.

As an alternative, you may place a .TITLE <any title> line anywhere in your input deck.
The first line of your input deck will be overridden by the contents of this line following the
.TITLE statement.

.TITLE line example:

* additional lines following

*...
.TITLE Test of CAM cell

* additional lines following

*...

will internally be replaced by

Internal input deck:

Test of CAM cell

* additional lines following

*...

*TITLE Test of CAM cell

* additional lines following

*...

2.4.2 .END Line

Examples:

.end

The .end line must always be the last in the input file. Note that the period is an integral part
of the name.

54 CHAPTER 2. CIRCUIT DESCRIPTION

2.4.3 Comments

General Form:

* <any comment>

Examples:

* RF=1K Gain should be 100

* Check open-loop gain and phase margin

The asterisk in the first column indicates that this line is a comment line. Comment lines may
be placed anywhere in the circuit description.

2.4.4 End-of-line comments

General Form:

<any command> $ <any comment>
<any command> ; <any comment>

Examples:

RF2=1K $ Gain should be 100
C1=10p ; Check open-loop gain and phase margin
.param n1=1 //new value

ngspice supports comments that begin with double characters ‘$ ’ (dollar plus space) or ‘//’.
For readability you should precede each comment character with a space. ngspice will accept
the single character ‘$’.

Please note that the ‘$’ character is not a valid end-of-line comment delimiter, if the PSPICE
compatibility mode (12.14.5) has been chosen. Then ’$’ becomes an ordinary character.

2.4.5 Continuation lines

General Form:

<any command>
+ <continuation of any command> ; some comment
+ <further continuation of any command>

If input lines get overly long, they may be split into two or more lines (e.g. for better readability).
Internally they will be merged into a single line. Each follow-up line starts with character
’+’ plus additional space. Follow-up lines have to follow immediately after each other. End-
of-line comments will be ignored. Lines may also be continued by ending the line with two
backslashes, as used in Unix shells. The following lines do not allow using continuation lines:
.title, .lib, and .include.

2.5. .MODEL DEVICE MODELS 55

2.5 .MODEL Device Models

General form:

.model mname type(pname1=pval1 pname2=pval2 ...)

Examples:

.model MOD1 npn (bf=50 is=1e-13 vbf=50)

Most simple circuit elements typically require only a few parameter values. However, some de-
vices (semiconductor devices in particular) that are included in ngspice require many parameter
values. Often, many devices in a circuit are defined by the same set of device model parameters.
For these reasons, a set of device model parameters is defined on a separate .model line and
assigned a unique model name. The device element lines in ngspice then refer to the model
name.

For these more complex device types, each device element line contains the device name, the
nodes the device is connected to, and the device model name. In addition, other optional pa-
rameters may be specified for some devices: geometric factors and an initial condition (see the
following section on Transistors (7.3 to 7.6) and Diodes (7) for more details). mname in the
above is the model name, and type is one of the following fifteen types:

Code Model Type
R Semiconductor resistor model
C Semiconductor capacitor model
L Inductor model

SW Voltage controlled switch
CSW Current controlled switch
URC Uniform distributed RC model
LTRA Lossy transmission line model

D Diode model
NPN NPN BJT model
PNP PNP BJT model
NJF N-channel JFET model
PJF P-channel JFET model

NMOS N-channel MOSFET model
PMOS P-channel MOSFET model
NMF N-channel MESFET model
PMF P-channel MESFET model

VDMOS Power MOS model

Table 2.3: Ngspice model types

Parameter values are defined by appending the parameter name followed by an equal sign and
the parameter value. Model parameters that are not given a value are assigned the default values
given below for each model type. Models are listed in the section on each device along with
the description of device element lines. Model parameters and their default values are given in
Chapt. 27.

56 CHAPTER 2. CIRCUIT DESCRIPTION

2.6 .SUBCKT Subcircuits

Subcircuits consisting of ngspice elements can be defined and used similarly to device models.
Subcircuits are the way ngspice implements hierarchical modeling and make circuits with re-
peated sections easier to represent. During parsing of a SPICE deck, each subcircuit instance
is replaced by its definition using text expansion and the hierarchy is not present after input
processing.

The subcircuit is defined in the input deck by a grouping of element cards delimited by the
.subckt and the .ends cards (or the keywords defined by the substart and subend options
(see 13.7)); the program then automatically inserts the defined group of elements wherever the
subcircuit is referenced. Instances of subcircuits within a larger circuit are defined through the
use of an instance card that begins with the letter ‘X’. A complete example of all three of these
cards follows:

Example:

* The following is the instance card:

*
xdiv1 10 7 0 vdivide

* The following are the subcircuit definition cards:

*
.subckt vdivide 1 2 3
r1 1 2 10K
r2 2 3 5K
.ends

The above specifies a subcircuit with ports numbered ‘1’, ‘2’ and ‘3’:

• Resistor ‘R1’ is connected from port ‘1’ to port ‘2’, and has value 10 kOhms.

• Resistor ‘R2’ is connected from port ‘2’ to port ‘3’, and has value 5 kOhms.

The instance card, when placed in an ngspice deck, will cause subcircuit port ‘1’ to be equated
to circuit node ‘10’, while port ‘2’ will be equated to node ‘7’ and port ‘3’ will equated to node
‘0’.

There is no limit on the size or complexity of subcircuits, and subcircuits may contain other
subcircuits. An example of subcircuit usage is given in Chapt. 17.6.

2.6.1 .SUBCKT Line

General form:

.SUBCKT subnam N1 <N2 N3 ...>

Examples:

.SUBCKT OPAMP 1 2 3 4

2.6. .SUBCKT SUBCIRCUITS 57

A circuit definition is begun with a .SUBCKT line. subnam is the subcircuit name, and N1, N2,
... are the external nodes, which cannot be zero. The group of element lines that immediately
follow the .SUBCKT line define the subcircuit. The last line in a subcircuit definition is the
.ENDS line (see below). Control lines may not appear within a subcircuit definition; however,
subcircuit definitions may contain anything else, including other subcircuit definitions, device
models, and subcircuit calls (see below). Note that any device models or subcircuit definitions
included as part of a subcircuit definition are strictly local (i.e., such models and definitions
are not known outside the subcircuit definition). Also, any element nodes not included on the
.SUBCKT line are strictly local, with the exception of 0 (ground) that is always global. If you
use parameters, the .SUBCKT line will be extended (see 2.11.3).

2.6.2 .ENDS Line

General form:

.ENDS <SUBNAM>

Examples:

.ENDS OPAMP

The .ENDS line must be the last one for any subcircuit definition. The subcircuit name, if
included, indicates which subcircuit definition is being terminated; if omitted, all subcircuits
being defined are terminated. The name is needed only when nested subcircuit definitions are
being made.

2.6.3 Subcircuit Calls

General form:

XYYYYYYY N1 <N2 N3 ...> SUBNAM

Examples:

X1 2 4 17 3 1 MULTI

Subcircuits are used in ngspice by specifying pseudo-elements beginning with the letter X,
followed by the circuit nodes to be used in expanding the subcircuit. If you use parameters, the
subcircuit call will be modified (see 2.11.3).

58 CHAPTER 2. CIRCUIT DESCRIPTION

2.7 .GLOBAL

General form:

.GLOBAL nodename1 [nodename2 ...]

Examples:

.GLOBAL gnd vcc

Nodes defined in the .GLOBAL statement are available to all circuit and subcircuit blocks inde-
pendently from any circuit hierarchy. After parsing the circuit, these nodes are accessible from
top level.

2.8 .INCLUDE

General form:

.INCLUDE filename

Examples:

.INCLUDE /users/spice/common/bsim3-param.mod

Frequently, portions of circuit descriptions will be reused in several input files, particularly with
common models and subcircuits. In any ngspice input file, the .INCLUDE line may be used to
copy some other file as if that second file appeared in place of the .INCLUDE line in the original
file.

If the filename is a relative path and the file is not found, it is searched for in the locations
given by variable sourcepath (13.7). There is no restriction on the file name imposed by ngspice
beyond those imposed by the local operating system.

2.9 .INCPSLT

General form:

.INCPSLT filename

Examples:

.INCPSLT /users/spice/models/OPA1641.lib

2.10. .LIB 59

A special form of including a portion of a netlist: The included part is treated as if its compati-
bility mode had been set to ’pslt’, even if the main netlist has a different compatibility mode.
See also chapter 12.14.4.2.

If the filename is a relative path and the file is not found, it is searched for in the locations
given by variable sourcepath (13.7). There is no restriction on the file name imposed by ngspice
beyond those imposed by the local operating system.

2.10 .LIB

General form:

.LIB filename libname

Examples:

.LIB /users/spice/common/mosfets.lib mos1

The .LIB statement allows including library descriptions into the input file. Inside the *.lib
file a library libname will be selected. The statements of each library inside the *.lib file are
enclosed in .LIB libname <...> .ENDL statements. The file is searched for in the same way
as for .include.

If the compatibility mode (12.14) is set to ’ps’ by set ngbehavior=ps (13.7) in spinit (12.5)
or .spiceinit (12.6), then a simplified syntax .LIB filename is available: a warning is issued
and filename is simply included as described in Chapt. 2.8.

2.11 .PARAM Parametric netlists

Ngspice allows for the definition of parametric attributes in the netlists. This is an enhancement
of the ngspice front-end that adds arithmetic functionality to the circuit description language.

2.11.1 .param line

General form:

.param <ident> = <expr> <ident> = <expr> ...

Examples:

.param pippo=5

.param po=6 pp=7.8 pap={AGAUSS(pippo, 1, 1.67)}

.param pippp={pippo + pp}

.param p={pp}

.param pop=’pp+p’

60 CHAPTER 2. CIRCUIT DESCRIPTION

This line assigns numerical values to identifiers. More than one assignment per line is possible
using a separating space. Parameter identifier names must begin with an alphabetic character.
The other characters must be either alphabetic, a number, or ! # $ % [] _ as special char-
acters. The variables time, temper, and hertz (see 5.1.1) are not valid identifier names. Other
restrictions on naming conventions apply as well, see 2.11.6.

The .param lines inside subcircuits are copied per call, like any other line. All assignments
are executed sequentially through the expanded circuit. Before its first use, a parameter name
must have been assigned a value. Expressions defining a parameter should be put within braces
{p+p2}, or alternatively within single quotes ’AGAUSS(pippo, 1, 1.67)’. An assignment
cannot be self-referential, something like .param pip = ’pip+3’ will not work.

The current ngspice version does not always need quotes or braces in expressions, especially
when spaces are used sparingly. However, it is recommended to do so, as the following exam-
ples demonstrate.

.param a = 123 * 3 b = sqrt(9) $ doesn’t work, a <= 123

.param a = ’123 * 3’ b = sqrt(9) $ ok.

.param c = a + 123 $ won’t work

.param c = ’a + 123’ $ ok.

.param c = a+123 $ ok.

Parameters may also have string values, but support is limited. String-valued parameters can be
defined by .param and used in the same ways as numeric parameters. The only operation on
string values is concatenation and that is possible only in top-level .param assignments.

.param str1="first" str2="second"

.param both={str1}" and "str2

2.11.2 Brace expressions in circuit elements:

General form:

{ <expr> }

Examples:

These are allowed in .model lines and in device lines. A SPICE number is a floating point
number with an optional scaling suffix, immediately glued to the numeric tokens (see Chapt.
2.11.5). Brace expressions ({..}) cannot be used to parameterize node names or parts of names.
All identifiers used within an <expr> must have known values at the time when the line is
evaluated, else an error is flagged.

2.11. .PARAM PARAMETRIC NETLISTS 61

2.11.3 Subcircuit parameters

General form:

.subckt <identn> node node ... <ident>=<value> <ident>=<value> ...

Examples:

.subckt myfilter in out rval=100k cval=100nF

<identn> is the name of the subcircuit given by the user. node is an integer number or an
identifier, for one of the external nodes. The first <ident>=<value> introduces an optional
section of the line. Each <ident> is a formal parameter, and each <value> is either a SPICE
number or a brace expression. Inside the .subcktends context, each formal parameter
may be used like any identifier that was defined on a .param control line. The <value> parts
are default values of the parameters.

The syntax of a subcircuit call (invocation) is:

General form:

X<name> node node ... <identn> <ident>=<value> <ident>=<value> ...

Examples:

X1 input output myfilter rval=1k

Here <name> is the symbolic name given to that instance of the subcircuit, <identn> is the
name of a subcircuit defined beforehand. node node ... is the list of actual nodes where the
subcircuit is connected. <value> is either a SPICE number or a brace expression { <expr> }
.

Subcircuit example with parameters:

* Param-example
.param amplitude= 1V

*
.subckt myfilter in out rval=100k cval=100nF
Ra in p1 {2*rval}
Rb p1 out {2*rval}
C1 p1 0 {2*cval}
Ca in p2 {cval}
Cb p2 out {cval}
R1 p2 0 {rval}
.ends myfilter

*
X1 input output myfilter rval=1k cval=1n
V1 input 0 AC {amplitude}
.end

62 CHAPTER 2. CIRCUIT DESCRIPTION

2.11.4 Symbol scope

All subcircuit and model names are considered global and must be unique. The .param symbols
that are defined outside of any .subcktends section are global. Inside such a section, the
pertaining params: symbols and any .param assignments are considered local: they mask any
global identical names, until the .ends line is encountered. You cannot reassign to a global
number inside a .subckt, a local copy is created instead. Scope nesting works up to a level of
10. For example, if the main circuit calls A that has a formal parameter xx, A calls B that has a
param. xx, and B calls C that also has a formal param. xx, there will be three versions of ‘xx’
in the symbol table but only the most local one - belonging to C - is visible.

2.11.5 Syntax of expressions
<expr> (optional parts within [...])

An expression may be one of:

<atom> where <atom> is either a spice number or an identifier
<unary-operator> <atom>
<function-name> (<expr> [, <expr> ...])
<atom> <binary-operator> <expr>
(<expr>)

As expected, atoms, built-in function calls and stuff within parentheses are evaluated before
the other operators. The operators are evaluated following a list of precedence close to the one
of the C language. For equal precedence binary ops, evaluation goes left to right. Functions
operate on real values only!

Operator Alias Precedence Description
- 1 unary -
! 1 unary not
** ^ 2 power, like pwr
* 3 multiply
/ 3 divide
% 3 modulo
\ 3 integer divide
+ 4 add
- 4 subtract
== 5 equality
!= <> 5 non-equal
<= 5 less or equal
>= 5 greater or equal
< 5 less than
> 5 greater than
&& 6 boolean and
|| 7 boolean or

c?x:y 8 ternary operator

2.11. .PARAM PARAMETRIC NETLISTS 63

The evaluation of the power functions ** or ^ depends on the compatibility mode (12.14.1)
chosen.

Power function source code implementation:

compatmode hs: x>0 pow(x, y); x<0 pow(x, round(y)); X=0 0
compatmode lt: x>0 pow(x, y); x<0 pow(x, y)

if y is close to integer; else 0

The number zero is used to represent boolean False. Any other number represents boolean True.
The result of logical operators is 1 or 0. An example input file is shown below:

Example input file with logical operators:

* Logical operators

v1or 1 0 {1 || 0}
v1and 2 0 {1 && 0}
v1not 3 0 {! 1}
v1mod 4 0 {5 % 3}
v1div 5 0 {5 \ 3}
v0not 6 0 {! 0}

.control
op
print allv
.endc

.end

64 CHAPTER 2. CIRCUIT DESCRIPTION

Built-in function Notes
sqrt(x) y = sqrt(x)

sin(x), cos(x), tan(x)
sinh(x), cosh(x), tanh(x)
asin(x), acos(x), atan(x)

asinh(x), acosh(x), atanh(x)
arctan(x) atan(x), kept for compatibility

exp(x)
ln(x), log(x)

abs(x)
nint(x) Nearest integer, half integers towards even
int(x) Nearest integer rounded towards 0

floor(x) Nearest integer rounded towards -∞

ceil(x) Nearest integer rounded towards +∞

pow(x,y) x raised to the power of y (pow from C runtime library)
pwr(x,y) pow(fabs(x), y)

min(x, y)
max(x, y)

sgn(x) 1.0 for x > 0, 0.0 for x == 0, -1.0 for x < 0

ternary_fcn(x, y, z) x ? y : z

gauss(nom, rvar, sigma) nominal value plus variation drawn from Gaussian
distribution with mean 0 and standard deviation rvar

(relative to nominal), divided by sigma
agauss(nom, avar, sigma) nominal value plus variation drawn from Gaussian

distribution with mean 0 and standard deviation avar
(absolute), divided by sigma

unif(nom, rvar) nominal value plus relative variation (to nominal)
uniformly distributed between +/-rvar

aunif(nom, avar) nominal value plus absolute variation uniformly distributed
between +/-avar

limit(nom, avar) nominal value +/-avar, depending on random number in
[-1, 1[being > 0 or < 0

The scaling suffixes (any decorative alphanumeric string may follow):

suffix value
g 1e9

meg 1e6
k 1e3
m 1e-3
u 1e-6
n 1e-9
p 1e-12
f 1e-15

Note: there are intentional redundancies in expression syntax, e.g. x^y , x**y and pwr(x,y)
all have nearly the same result.

2.12. .FUNC 65

2.11.6 Reserved words

In addition to the above function names and to the verbose operators (not and or div mod
), other words are reserved and cannot be used as parameter names: or, defined, sqr, sqrt,
sin, cos, exp, ln, log, log10, arctan, abs, pwr, time, temper, hertz.

2.11.7 A word of caution on the three ngspice expression parsers

The historical parameter notation using & as the first character of a line as equivalence to
.param. is deprecated and will be removed in a coming release.

Confusion may arise in ngspice because of its multiple numerical expression features. The
.param lines and the brace expressions (see 2.11.1 and 2.11.2) are evaluated in the front-end,
that is, just after the subcircuit expansion. (Technically, the X lines are kept as comments in the
expanded circuit so that the actual parameters can be correctly substituted). Therefore, after the
netlist expansion and before the internal data setup, all number attributes in the circuit are known
constants. However, there are circuit elements in Spice that accept arithmetic expressions not
evaluated at this point, but only later during circuit analysis. These are the arbitrary current
and voltage sources (B-sources, 5), as well as E- and G-sources and R-, L-, or C-devices.
The syntactic difference is that ‘compile-time’ expressions are within braces, but ‘run-time’
expressions have no braces. To make things more complicated, the back-end ngspice scripting
language accepts arithmetic/logic expressions that operate only on its own scalar or vector data
sets (13.2). Please see Chapt. 2.16.

It would be desirable to have the same expression syntax, operator and function set, and prece-
dence rules, for the three contexts mentioned above. In the current Numparam implementation,
that goal is not achieved.

2.12 .FUNC

This keyword defines a function. The syntax of the expression is the same as for a .param
(2.11.5).

General form:

.func <ident> { <expr> }

.func <ident> = { <expr> }

Examples:

.func icos(x) {cos(x) - 1}

.func f(x,y) {x*y}

.func foo(a,b) = {a + b}

.func will initiate a replacement operation. After reading the input files, and before parameters
are evaluated, all occurrences of the icos(x) function will be replaced by cos(x)-1. All
occurrences of f(x,y) will be replaced by x*y. Function statements may be nested to a depth
of t.b.d..

66 CHAPTER 2. CIRCUIT DESCRIPTION

2.13 .CSPARAM

Create a constant vector (see 13.8.2) from a parameter in plot (13.3) const.

General form:

.csparam <ident> = <expr>

Examples:

.param pippo=5

.param pp=6

.csparam pippp={pippo + pp}

.param p={pp}

.csparam pap=’pp+p’

In the example shown, vectors pippp, and pap are added to the constants that already reside
in plot const, having length one and real values. These vectors are generated during circuit
parsing and thus cannot be changed later (same as with ordinary parameters). They may be used
in ngspice scripts and .control sections (see Chapt. 13).

The use of .csparam is still experimental and has to be tested. A simple usage is shown below.

* test csparam
.param TEMPS = 27
.csparam newt = {3*TEMPS}
.csparam mytemp = ’2 + TEMPS’
.control
echo $&newt $&mytemp
.endc
.end

2.14 .TEMP

Sets the circuit temperature in degrees Celsius.

General form:

.temp value

Examples:

.temp 27

This card overrides the circuit temperature given in an .option line (11.1.1).

2.15. .IF CONDITION-CONTROLLED NETLIST 67

2.15 .IF Condition-Controlled Netlist

A simple .IF-.ELSE(IF) block allows condition-controlling of the netlist. boolean expression
is any expression according to Chapt. 2.11.5 that evaluates parameters and returns a boolean 1
or 0. The netlist block in between the .ifendif statements may contain device instances or
.model cards that are selected according to the logic condition.

General form:

.if(boolean expression)

...

.elseif(boolean expression)

...

.else

...

.endif

Example 1:

* device instance in IF-ELSE block
.param ok=0 ok2=1

v1 1 0 1
R1 1 0 2

.if (ok && ok2)
R11 1 0 2
.else
R11 1 0 0.5 $ <-- selected
.endif

Example 2:

* .model in IF-ELSE block
.param m0=0 m1=1

M1 1 2 3 4 N1 W=1 L=0.5

.if(m0==1)

.model N1 NMOS level=49 Version=3.1

.elseif(m1==1)

.model N1 NMOS level=49 Version=3.2.4 $ <-- selected

.else

.model N1 NMOS level=49 Version=3.3.0

.endif

Nesting of .IF-.ELSE(IF)-.ENDIF blocks is possible. Several .elseif (but of course only
one .else)are allowed per block (please see example ngspice/tests/regression/misc/if-elseif.cir).

68 CHAPTER 2. CIRCUIT DESCRIPTION

However some restrictions apply, as the following netlist components are not supported within
the .IF-.ENDIF block: .SUBCKT, .INC, .LIB, and .PARAM.

2.16 Parameters, functions, expressions, and command scripts

In ngspice there are several ways to describe functional dependencies. In fact there are three
independent function parsers, being active before, during, and after the simulation. So it might
be due to have a few words on their interdependence.

2.16.1 Parameters

Parameters (Chapt. 2.11.1) and functions, either defined within the .param statement or with
the .func statement (Chapt. 2.12) are evaluated before any simulation is started, that is during
the setup of the input and the circuit. Therefore these statements may not contain any simu-
lation output (voltage or current vectors), because it is simply not yet available. The syntax is
described in Chapt. 2.11.5. During the circuit setup all functions are evaluated, all parameters
are replaced by their resulting numerical values. Thus it will not be possible to get feedback
from a later stage (during or after simulation) to change any of the parameters.

2.16.2 Nonlinear sources

During the simulation, the B source (Chapt. 5) and their associated E and G sources, as well
as some devices (R, C, L) may contain expressions. These expressions may contain parameters
from above (evaluated immediately upon ngspice start up), numerical data, predefined func-
tions, but also node voltages and branch currents resulting from the simulation. The source
or device values are continuously updated during the simulation. Therefore the sources are
powerful tools to define non-linear behavior, you may even create new ‘devices’ by yourself.
Unfortunately the expression syntax (see Chapt. 5.1) and the predefined functions may deviate
from the ones for parameters listed in 2.11.1.

2.16.3 Control commands, Command scripts

Commands, as described in detail in Chapt. 13.5, may be used interactively, but also as a
command script enclosed in .controlendc lines. The scripts may contain expressions
(see Chapt. 13.2). The expressions may work upon simulation output vectors (of node voltages,
branch currents), as well as upon predefined or user defined vectors and variables, and are
invoked after the simulation. Parameters from 2.11.1 defined by the .param statement are not
allowed in these expressions. However you may define such parameters with .csparam (2.13).
Again the expression syntax (see Chapt. 13.2) will deviate from the one for parameters or B
sources listed in 2.11.1 and 5.1.

If you want to use parameters from 2.11.1 inside your control script, you may use .csparam
(2.13) or apply a trick by defining a voltage source with the parameter as its value, and then
have it available as a vector (e.g. after a transient simulation) with a then constant output (the
parameter). A feedback from here back into parameters (2.16.1) is never possible. Also you

2.16. PARAMETERS, FUNCTIONS, EXPRESSIONS, AND COMMAND SCRIPTS 69

cannot access non-linear sources of the preceding simulation. However you may start a first
simulation inside your control script, then evaluate its output using expressions, change some of
the element or model parameters with the alter and altermod statements (see Chapt. 13.5.3)
and then automatically start a new simulation.

Expressions and scripting are powerful tools within ngspice, and we will enhance the examples
given in Chapt. 17 continuously to describe these features.

70 CHAPTER 2. CIRCUIT DESCRIPTION

Chapter 3

Circuit Elements and Models

Data fields that are enclosed in less-than and greater-than signs (‘< >’) are optional. All indi-
cated punctuation (parentheses, equal signs, etc.) is optional but indicate the presence of any
delimiter. Further, future implementations may require the punctuation as stated. A consis-
tent style adhering to the punctuation shown here makes the input easier to understand. With
respect to branch voltages and currents, ngspice uniformly uses the associated reference con-
vention (current flows in the direction of voltage drop).

3.1 About netlists, device instances, models and model pa-
rameters

The input to ngspice is a netlist, which lists all circuit elements, their interconnects and model
parameters.

71

72 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

Netlist example of a simple bipolar amplifier:

bipolar amplifier

R3 vcc intc 10k
R1 vcc intb 68k
R2 intb 0 10k
Cout out intc 10u
Cin intb in 10u
RLoad out 0 100k
Q1 intc intb 0 BC546B

VCC vcc 0 5
Vin in 0 dc 0 ac 1 sin(0 1m 500)

.model BC546B npn (IS=7.59E-15 VAF=73.4 BF=480 IKF=0.0962
+ NE=1.2665 ISE=3.278E-15 IKR=0.03 ISC=2.00E-13 NC=1.2 NR=1
+ BR=5 RC=0.25 CJC=6.33E-12 FC=0.5 MJC=0.33 VJC=0.65
+ CJE=1.25E-11 MJE=0.55 VJE=0.65 TF=4.26E-10 ITF=0.6 VTF=3
+ XTF=20 RB=100 IRB=0.0001 RBM=10 RE=0.5 TR=1.50E-07)
.end

After the first line, which is always a title line only, the netlist starts. Each line here is a device
instance (except for lines starting with a dot ’.’). We have simple circuit elements that consist of
a single line only, e.g. resistors like R3. In its simplest implementation, the resistor model does
not need any model parameters except for the resistance value (same for capacitors like Cout).
Netlist lines like R3 vcc intc 10k are called instance lines, as each line is the representation
of an instance of a generic model hard-coded into the ngspice simulator (here: resistor). R3
denotes the device name. Its first character R denotes a resistor. The next two tokens vcc intc
are the two nodes of the resistor, 10k is the resistance value. Equal node names on different
devices denote a connection between these nodes.

A more complex device is described by the instance line Q1 intc intb 0 BC546B. Q denotes
a bipolar transistor, intc intb 0 are the three nodes collector, base, and emitter. BC546B is the
name of a model parameter set, named after a real transistor and describing (together with the
implemented bipolar transistor model) its electrical behavior. The associated model parameters
are given in the line .model BC546B npn (IS=7.59E-15 ...). This is not an instance line,
because starting with a dot. It contains the model parameters as supplied by the device manu-
facturer or by people having them extracted from the electrical behavior and data sheet (to be
found e.g. on his or her web pages). BC546B is the name of the model parameter set and
relates it to the device instance. npn is the type of the device. The parameters (name=value)
are given in brackets.

The instance Q1... requires model parameters. For a quick test one may do without device
maker’s model parameters.

Simplified bipolar transistor instance and model parameter set:

Q1 intc intb 0 defaultmod
.model defaultmod npn

3.2. GENERAL OPTIONS 73

If you enter the bipolar transistor instance as shown above, you make use of a default model
parameter set supplied by ngspice. defaultmod is an arbitrary name. This procedure models a
generic bipolar transistor, not resembling any commercial device. The default parameter values
may be assessed by the command showmod Q1.

You will get more information on devices, instances and models in the following chapters 3.3
to 12.

3.2 General options

3.2.1 Paralleling devices with multiplier m

When it is needed to simulate several devices of the same kind in parallel, use the ‘m’ (parallel
multiplier) instance parameter available for the devices listed in Table 3.1. This multiplies the
value of the element’s matrix stamp with m’s value. The netlist below shows how to correctly
use the parallel multiplier:

Multiple device example:

d1 2 0 mydiode m=10
d01 1 0 mydiode
d02 1 0 mydiode
d03 1 0 mydiode
d04 1 0 mydiode
d05 1 0 mydiode
d06 1 0 mydiode
d07 1 0 mydiode
d08 1 0 mydiode
d09 1 0 mydiode
d10 1 0 mydiode
...

The d1 instance connected between nodes 2 and 0 is equivalent to the 10 parallel devices
d01-d10 connected between nodes 1 and 0.

The following devices support the multiplier m:

74 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

First letter Element description
C Capacitor
D
F Current-controlled current source (CCCs)
G Voltage-controlled current source (VCCS)
I Current source
J Junction field effect transistor (JFET)
L Inductor
M Metal oxide field effect transistor (MOSFET)
Q Bipolar junction transistor (BJT)
R Resistor
X Subcircuit (for details see below)
Z Metal semiconductor field effect transistor (MESFET)

Table 3.1: ngspice elements supporting multiplier ’m’

When the X line (e.g. x1 a b sub1 m=5) contains the token m=value (as shown) or m=expression,
subcircuit invocation is done in a special way. If an instance line of the subcircuit sub1 contains
any of the elements shown in table 3.1, then these elements are instantiated with the additional
parameter m (in this example having the value 5). If such an element already has an m multiplier
parameter, the element m is multiplied with the m derived from the X line. This works recur-
sively, meaning that if a subcircuit contains another subcircuit (a nested X line), then the latter
m parameter will be multiplied by the former one, and so on.

Example 1:

.param madd = 6
X1 a b sub1 m=5
.subckt sub1 a1 b1

Cs1 a1 b1 C=5p m=’madd-2’
.ends

In example 1, the capacitance between nodes a and b will be C = 5pF*(madd-2)*5 = 100pF.

Example 2:

.param madd = 4
X1 a b sub1 m=3
.subckt sub1 a1 b1

X2 a1 b1 sub2 m=’madd-2’
.ends
.subckt sub2 a2 b2

Cs2 a2 b2 3p m=2
.ends

In example 2, the capacitance between nodes a and b is C = 3pF*2*(madd-2)*3 = 36pF.

Using m may fail to correctly describe geometrical properties for real devices like MOS transis-
tors.

3.2. GENERAL OPTIONS 75

M1 d g s nmos W=0.3u L=0.18u m=20

is probably not be the same as

M1 d g s nmos W=6u L=0.18u

because the former may suffer from small width (or edge) effects, whereas the latter is simply
a wide transistor.

3.2.2 Instance and model parameters

The simple device example below consists of two lines: The device is defined on the instance
line, starting with Lload ...: The first letter determines the device type (an inductor in this
example). Following the device name are two nodes 1 and 2, then the inductance value 1u
is set. The model name ind1 is a connection to the respective model line. Finally we have a
parameter on the instance line, together with its value dtemp=5. Parameters on an instance line
are called instance parameters.

The model line starts with the token .model, followed by the model name, the model type and
at least one model parameter, here tc1=0.001. There are complex models with more than 100
model parameters.

Lload 1 2 1u ind1 dtemp=5
.MODEL ind1 L tc1=0.001

Instance parameters are listed in each of the following device descriptions. Model parameters
sometimes are given below as well, for complex models like the BSIM transistor models, they
are available in the model makers documentation. Instance parameters may also be placed in
the .model line. Thus they are recognized by each device instance referring to that model. Their
values may be overridden for a specific instance of a device by placing them additionally onto
its instance line.

3.2.3 Model binning

Binning is a kind of range partitioning for geometry dependent models like MOSFET’s. The
purpose is to cover larger geometry ranges (Width and Length) with higher accuracy than the
model built-in geometry formulas. Each size range described by the additional model parame-
ters LMIN, LMAX, WMIN and WMAX has its own model parameter set. These model cards
are defined by a number extension, like ‘nch.1’. ngspice has an algorithm to choose the right
model card by the requested W and L.

This is implemented for BSIM3 (7.6.3.3) and BSIM4 (7.6.3.4) models.

3.2.4 Initial conditions

Two different forms of initial conditions may be specified for some devices. The first form
is included to improve the dc convergence for circuits that contain more than one stable state.
If a device is specified OFF, the dc operating point is determined with the terminal voltages
for that device set to zero. After convergence is obtained, the program continues to iterate to

http://ngspice.sourceforge.net/literature.html

76 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

obtain the exact value for the terminal voltages. If a circuit has more than one dc stable state,
the OFF option can be used to force the solution to correspond to a desired state. If a device
is specified OFF when in reality the device is conducting, the program still obtains the correct
solution (assuming the solutions converge) but more iterations are required since the program
must independently converge to two separate solutions.

The .NODESET control line (see Chapt. 11.2.1) serves a similar purpose as the OFF option. The
.NODESET option is easier to apply and is the preferred means to aid convergence. The second
form of initial conditions are specified for use with the transient analysis. These are true ‘initial
conditions’ as opposed to the convergence aids above. See the description of the .IC control
line (Chapt. 11.2.2) and the .TRAN control line (Chapt. 11.3.10) for a detailed explanation of
initial conditions.

3.3 Elementary Devices

3.3.1 Resistors

General form:

RXXXXXXX n+ n- <resistance|r=>value <ac=val> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <tc1=val> <tc2=val>
+ <noisy=0|1>

Examples:

R1 1 2 100
RC1 12 17 1K
R2 5 7 1K ac=2K
RL 1 4 2K m=2

Ngspice has a fairly complex model for resistors. It can simulate both discrete and semicon-
ductor resistors. Semiconductor resistors in ngspice means: resistors described by geometrical
parameters. So, do not expect detailed modeling of semiconductor effects.

n+ and n- are the two element nodes, value is the resistance (in ohms) and may be positive or
negative1 but not zero. If value resistance 0 is given, it will be automatically set to 1e-12.

Simulating small valued resistors: If you need to simulate very small resis-
tors (0.001 Ohm or less), you should use CCVS (transresistance). It is less
efficient but improves overall numerical accuracy. Consider a small resis-
tance as a large conductance.

Ngspice can assign a resistor instance a different value for AC analysis, specified using the
ac keyword. This value must not be zero as described above. The AC resistance is used in
AC analysis only (neither Pole-Zero nor Noise). If you do not specify the ac parameter, it is
defaulted to value.

Ngspice calculates the nominal resistance as
1A negative resistor modeling an active element can cause convergence problems, please avoid it.

3.3. ELEMENTARY DEVICES 77

Rnom = VALUE scale
m

Racnom = ac scale
m .

(3.1)

If you want to simulate temperature dependence of a resistor, you need to specify its temperature
coefficients, using a .model line or as instance parameters, like in the examples below:

Examples:

RE1 1 2 800 newres dtemp=5
.MODEL newres R tc1=0.001

RE2 a b 1.4k tc1=2m tc2=1.4u

RE3 n1 n2 1Meg tce=700m

The temperature coefficients tc1 and tc2 describe a quadratic temperature dependence (see
equation 1.6) of the resistance. If given in the instance line (the R... line) their values will
override the tc1 and tc2 of the .model line (3.3.3). Ngspice has an additional temperature
model equation 3.2 parameterized by tce given in model or instance line. If all parameters are
given (quadratic and exponential) the exponential temperature model is chosen.

R(T) = R(T0)
[
1.01TCE·(T−T0)

]
(3.2)

where T is the circuit temperature, T0 is the nominal temperature, and TCE is the exponential
temperature coefficients.

Instance temperature is useful even if resistance does not vary with it, since the thermal noise
generated by a resistor depends on its absolute temperature. Resistors in ngspice generates two
different noises: thermal and flicker. While thermal noise is always generated in the resistor, to
add a flicker noise2 source you have to add a .model card defining the flicker noise parameters.
It is possible to simulate resistors that do not generate any kind of noise using the noisy (or
noise) keyword and assigning zero to it, as in the following example:

Example:

Rmd 134 57 1.5k noisy=0

If you are interested in temperature effects or noise equations, read the next section on semi-
conductor resistors.

2Flicker noise can be used to model carbon resistors.

78 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3.2 Semiconductor Resistors

General form:

RXXXXXXX n+ n- <value> <mname> <l=length> <w=width>
+ <temp=val> <dtemp=val> <m=val> <ac=val> <scale=val>
+ <noisy = 0|1>

Examples:

RLOAD 2 10 10K
RMOD 3 7 RMODEL L=10u W=1u

This is the more general form of the resistor presented before (3.3.1) and allows the modeling of
temperature effects and for the calculation of the actual resistance value from strictly geometric
information and the specifications of the process. If value is specified, it overrides the geo-
metric information and defines the resistance. If mname is specified, then the resistance may be
calculated from the process information in the model mname and the given length and width.
If value is not specified, then mname and length must be specified. If width is not specified,
then it is taken from the default width given in the model.

The (optional) temp value is the temperature at which this device is to operate, and overrides
the temperature specification on the .option control line and the value specified in dtemp.

3.3.3 Semiconductor Resistor Model (R)

The resistor model consists of process-related device data that allow the resistance to be calcu-
lated from geometric information and to be corrected for temperature. The parameters available
are as follows:

Name Parameter Units Default Example
TC1 first order temperature coeff. Ω/◦C 0.0 -
TC2 second order temperature coeff. Ω/◦C2 0.0 -
RSH sheet resistance Ω/□ - 50

DEFW default width m 1e-6 2e-6
NARROW narrowing due to side etching m 0.0 1e-7

SHORT shortening due to side etching m 0.0 1e-7
TNOM parameter measurement temperature ◦C 27 50

KF flicker noise coefficient 0.0 1e-25
AF flicker noise exponent 0.0 1.0
WF flicker noise width exponent 1.0
LF flicker noise length exponent 1.0
EF flicker noise frequency exponent 1.0

R (RES) default value if element value not given Ω - 1000

The sheet resistance is used with the narrowing parameter and l and w from the resistor device
to determine the nominal resistance by the formula:

3.3. ELEMENTARY DEVICES 79

Rnom = rsh
l −SHORT

w−NARROW
(3.3)

DEFW is used to supply a default value for w if one is not specified for the device. If either rsh or
l is not specified, then the standard default resistance value of 1 mOhm is used. TNOM is used to
override the circuit-wide value given on the .options control line where the parameters of this
model have been measured at a different temperature. After the nominal resistance is calculated,
it is adjusted for temperature by the formula:

R(T) = R(TNOM)
(

1+TC1(T −TNOM)+TC2(T −TNOM)2
)

(3.4)

where R(TNOM) =Rnom|Racnom. In the above formula, ‘T ’ represents the instance temperature,
which can be explicitly set using the temp keyword or calculated using the circuit temperature
and dtemp, if present. If both temp and dtemp are specified, the latter is ignored. Ngspice
improves SPICE’s resistors noise model, adding flicker noise (1/f) to it and the noisy (or
noise) keyword to simulate noiseless resistors. The thermal noise in resistors is modeled
according to the equation:

ī2R =
4kT

R
∆ f (3.5)

where ‘k’ is the Boltzmann’s constant, and ‘T ’ the instance temperature.

Flicker noise model is:

¯i2R f n =
KFIAF

R
WWFLLF f EF ∆ f (3.6)

A small list of sheet resistances (in Ω/□) for conductors is shown below. The table represents
typical values for MOS processes in the 0.5 - 1 um

range. The table is taken from: N. Weste, K. Eshraghian - Principles of CMOS VLSI Design
2nd Edition, Addison Wesley.

Material Min. Typ. Max.
Inter-metal (metal1 - metal2) 0.005 0.007 0.1

Top-metal (metal3) 0.003 0.004 0.05
Polysilicon (poly) 15 20 30

Silicide 2 3 6
Diffusion (n+, p+) 10 25 100
Silicided diffusion 2 4 10

n-well 1000 2000 5000

80 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3.4 Resistors, dependent on expressions (behavioral resistor)

General form:

RXXXXXXX n+ n- R = ’expression’ <tc1=value> <tc2=value> <noisy=0>
RXXXXXXX n+ n- ’expression’ <tc1=value> <tc2=value> <noisy=0>

Examples:

R1 rr 0 r = ’V(rr) < {Vt} ? {R0} : {2*R0}’ tc1=2e-03 tc2=3.3e-06
R2 r2 rr r = {5k + 50*TEMPER}
.param rp1 = 20
R3 no1 no2 r = ’5k * rp1’ noisy=1

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt. 5.1.
It may contain parameters (2.11.1) and the special variables time, temper, and hertz (5.1.2).
An example file is given below. Small signal noise in the resistor (11.3.4) may be evaluated as
white noise, depending on resistance, temperature and tc1, tc2. To enable noise calculation, add
the flag noisy=1 to the instance line. As a default the behavioral resistor is noiseless.

Example input file for non-linear resistor:

Non-linear resistor
.param R0=1k Vi=1 Vt=0.5

* resistor depending on control voltage V(rr)
R1 rr 0 r = ’V(rr) < {Vt} ? {R0} : {2*R0}’

* control voltage
V1 rr 0 PWL(0 0 100u {Vi})
.control
unset askquit
tran 100n 100u uic
plot i(V1)
.endc
.end

3.3.5 Resistor with nonlinear r2_cmc or r3_cmc models

2-terminal resistor models developed by the resistor subcommittee of the CMC are made avail-
able via the OSDI interface by loading OpenVAF-compiled Verilog-A models (see chapter 9.2
for details). The goal was to have a standard 2-terminal resistor model with standard parameter
names and a standard, numerically well behaved nonlinearity model.

3.3. ELEMENTARY DEVICES 81

3.3.6 Capacitors

General form:

CXXXXXXX n+ n- <value> <mname> <m=val> <scale=val> <temp=val>
+ <dtemp=val> <tc1=val> <tc2=val> <ic=init_condition>

Examples:

CBYP 13 0 1UF
COSC 17 23 10U IC=3V

Ngspice provides a detailed model for capacitors. Capacitors in the netlist can be specified
giving their capacitance or their geometrical and physical characteristics. Following the original
SPICE3 ‘convention’, capacitors specified by their geometrical or physical characteristics are
called ‘semiconductor capacitors’ and are described in the next section.

In this first form n+ and n- are the positive and negative element nodes, respectively and value
is the capacitance in Farads.

Capacitance can be specified in the instance line as in the examples above or in a .model line,
as in the example below:

C1 15 5 cstd
C2 2 7 cstd
.model cstd C cap=3n

Both capacitors have a capacitance of 3nF.

If you want to simulate temperature dependence of a capacitor, you need to specify its temper-
ature coefficients, using a .model line, like in the example below:

CEB 1 2 1u cap1 dtemp=5
.MODEL cap1 C tc1=0.001

The (optional) initial condition is the initial (time zero) value of capacitor voltage (in Volts).
Note that the initial conditions (if any) apply only if the uic option is specified on the .tran
control line.

Ngspice calculates the nominal capacitance as described below:

Cnom = value · scale ·m (3.7)

The temperature coefficients tc1 and tc2 describe a quadratic temperature dependence (see
equation13.14) of the capacitance. If given in the instance line (the C... line) their values will
override the tc1 and tc2 of the .model line (3.3.8).

82 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3.7 Semiconductor Capacitors

General form:

CXXXXXXX n+ n- <value> <mname> <l=length> <w=width> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <ic=init_condition>

Examples:

CLOAD 2 10 10P
CMOD 3 7 CMODEL L=10u W=1u

This is the more general form of the Capacitor presented in section (3.3.6), and allows for the
calculation of the actual capacitance value from strictly geometric information and the speci-
fications of the process. If value is specified, it defines the capacitance and both process and
geometrical information are discarded. If value is not specified, the capacitance is calculated
from information contained model mname and the given length and width (l, w keywords, re-
spectively).

It is possible to specify mname only, without geometrical dimensions and set the capacitance in
the .model line (3.3.6).

3.3.8 Semiconductor Capacitor Model (C)

The capacitor model contains process information that may be used to compute the capacitance
from strictly geometric information.

Name Parameter Units Default Example
CAP model capacitance F 0.0 1e-6
CJ junction bottom capacitance F/m2 - 5e-5

CJSW junction sidewall capacitance F/m - 2e-11
DEFW default device width m 1e-6 2e-6
DEFL default device length m 0.0 1e-6

NARROW narrowing due to side etching m 0.0 1e-7
SHORT shortening due to side etching m 0.0 1e-7

TC1 first order temperature coeff. F/◦C 0.0 0.001
TC2 second order temperature coeff. F/◦C2 0.0 0.0001

TNOM parameter measurement temperature ◦C 27 50
DI relative dielectric constant F/m - 1

THICK insulator thickness m 0.0 1e-9

The capacitor has a capacitance computed as:

If value is specified on the instance line then

Cnom = value · scale ·m (3.8)

If model capacitance is specified then

3.3. ELEMENTARY DEVICES 83

Cnom = CAP · scale ·m (3.9)

If neither value nor CAP are specified, then geometrical and physical parameters are take into
account:

C0 = CJ(l −SHORT)(w−NARROW)+2CJSW(l −SHORT+w−NARROW) (3.10)

CJ can be explicitly given on the .model line or calculated by physical parameters. When CJ is
not given, is calculated as:

If THICK is not zero:

CJ = DI ε0
THICK if DI is specified,

CJ =
εSiO2

THICK otherwise.
(3.11)

If the relative dielectric constant is not specified the one for SiO2 is used. The values of the
constants are ε0 = 8.854214871e− 12 F

m and εSiO2 = 3.4531479969e− 11 F
m . The nominal ca-

pacitance is then computed as:

Cnom =C0 scale m (3.12)

After the nominal capacitance is calculated, it is adjusted for temperature by the formula:

C(T) =C(TNOM)
(

1+TC1(T −TNOM)+TC2(T −TNOM)2
)

(3.13)

where C(TNOM) =Cnom.

In the above formula, ‘T ’ represents the instance temperature, which can be explicitly set using
the temp keyword or calculated using the circuit temperature and dtemp, if present.

3.3.9 Capacitors, dependent on expressions (behavioral capacitor)

There are two forms for behavioral capacitors allowed:

1. Capacitance formulated expressions C = ’expression’

2. Charge formulated expressions Q = ’expression’

84 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

General form:

CXXXXXXX n+ n- C = ’expression’ <tc1=value> <tc2=value>
CXXXXXXX n+ n- ’expression’ <tc1=value> <tc2=value>

CXXXXXXX n+ n- Q = ’expression’ <tc1=value> <tc2=value>

Examples:

C1 cc 0 c = ’V(cc) < {Vt} ? {C1} : {Ch}’ tc1=-1e-03 tc2=1.3e-05
C1 a b q = ’1u*(4*atan(V(a,b)/4)*2+V(a,b))/3’

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt. 5.1.
It may contain parameters (2.11.1) and the special variables time, temper, and hertz (5.1.2).

Example input file:

Behavioral Capacitor
.param Cl=5n Ch=1n Vt=1m Il=100n
.ic v(cc) = 0 v(cc2) = 0

* capacitor depending on control voltage V(cc)
C1 cc 0 c = ’V(cc) < {Vt} ? {Cl} : {Ch}’
I1 0 1 {Il}
Exxx n1-copy n2 n2 cc2 1
Cxxx n1-copy n2 1
Bxxx cc2 n2 I = ’(V(cc2) < {Vt} ? {Cl} : {Ch})’ * i(Exxx)
I2 n2 22 {Il}
vn2 n2 0 DC 0

* measure charge by integrating current
aint1 %id(1 cc) 2 time_count
aint2 %id(22 cc2) 3 time_count
.model time_count int(in_offset=0.0 gain=1.0
+ out_lower_limit=-1e12 out_upper_limit=1e12
+ limit_range=1e-9 out_ic=0.0)
.control
unset askquit
tran 100n 100u
plot v(2)
plot v(cc) v(cc2)
.endc
.end

3.3. ELEMENTARY DEVICES 85

3.3.10 Inductors

General form:

LYYYYYYY n+ n- <value> <mname> <nt=val> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <tc1=val>
+ <tc2=val> <ic=init_condition>

Examples:

LLINK 42 69 1UH
LSHUNT 23 51 10U IC=15.7MA

The inductor device implemented into ngspice has many enhancements over the original one.n+
and n- are the positive and negative element nodes, respectively. value is the inductance in
Henry. The initial condition (a curremt through L) becomes effective when the uic parameter
is set on the .tran line. Inductance can be specified in the instance line as in the examples
above or in a .model line, as in the example below:

L1 15 5 indmod1
L2 2 7 indmod1
.model indmod1 L ind=3n

Both inductors have an inductance of 3nH.
The nt is used in conjunction with a .model line, and is used to specify the number of turns
of the inductor. If you want to simulate temperature dependence of an inductor, you need to
specify its temperature coefficients, using a .model line, like in the example below:

Lload 1 2 1u ind1 dtemp=5
.MODEL ind1 L tc1=0.001

The (optional) initial condition is the initial (time zero) value of inductor current (in Amps) that
flows from n+, through the inductor, to n-. Note that the initial conditions (if any) apply only if
the UIC option is specified on the .tran analysis line.

Ngspice calculates the nominal inductance as described below:

Lnom =
value scale

m
(3.14)

3.3.11 Inductor model

The inductor model contains physical and geometrical information that may be used to compute
the inductance of some common topologies like solenoids and toroids, wound in air or other
material with constant magnetic permeability.

86 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

Name Parameter Units Default Example
IND model inductance H 0.0 1e-3

CSECT cross section m2 0.0 1e-6
DIA coil diameter m 0.0 1e-3

LENGTH length m 0.0 1e-2
TC1 first order temperature coeff. H/◦C 0.0 0.001
TC2 second order temperature coeff. H/◦C2 0.0 0.0001

TNOM parameter measurement temperature ◦C 27 50
NT number of turns - 0.0 10
MU relative magnetic permeability - 1.0 -

The inductor’s inductance is computed as follows:

If value is specified on the instance line then

Lnom =
value scale

m
(3.15)

If model inductance is specified then

Lnom =
IND scale

m
(3.16)

If neither value nor IND are specified, then geometrical and physical parameters are taken into
account. In the following formulas

NT refers to both instance and model parameter (instance parameter overrides model parameter):

If LENGTH is not zero:

{
Lnom = MU µ0 NT2 π DIA2

4 LENGTH if DIA is specified,

Lnom = MU µ0 NT2 CSECT
LENGTH otherwise.

(3.17)

with µ0 = 1.25663706143592 µH
m . DIA takes preference over CSECT. kl is the geometry cor-

rection factor according to Lundin (see D. W. Knight, pp. 35-36), which is important when
inductor length and diameter have the same order of magnitude. After the nominal inductance
is calculated, it is adjusted for temperature by the formula

L(T) = L(TNOM)
(

1+TC1(T −TNOM)+TC2(T −TNOM)2
)
, (3.18)

where L(TNOM) = Lnom. In the above formula, ‘T ’ represents the instance temperature, which
can be explicitly set using the temp keyword or calculated using the circuit temperature and
dtemp, if present.

https://g3ynh.info/zdocs/magnetics/Solenoids.pdf

3.3. ELEMENTARY DEVICES 87

3.3.12 Coupled (Mutual) Inductors

General form:

KXXXXXXX LYYYYYYY LZZZZZZZ value

Examples:

K43 LAA LBB 0.999
KXFRMR L1 L2 0.87

LYYYYYYY and LZZZZZZZ are the names of the two coupled inductors, and value is the
coefficient of coupling, K, which must be greater than 0 and less than or equal to 1. Using
the ‘dot’ convention for drawing the coupled inductors, place a ‘dot’ on the first node of each
inductor. If you have more than two inductors interacting, pairwise coupling is supported.

Pairwise coupling of more than two inductors:

L1 1 0 10u
L2 2 0 11u
L3 3 0 10u

K12 L1 L2 0.99
K23 L2 L3 0.99
K13 L1 L3 0.98

When there are more than two inductors coupled for interaction, some combinations of coupling
constants are not possible physically because the magnetic fields then would violate energy
conservation. ngspice checks the coupling matrix for such conditions and issues a warning.

Coupling of more than two inductors in a single K statement is supported as well. All coupling
constants are then equal.

Coupling of more than two inductors in a single statement:

L1 1 0 10u
L2 2 0 11u
L3 3 0 10u

K123 L1 L2 L3 0.97

88 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3.13 Inductors, dependent on expressions (behavioral inductor)

General form:

LXXXXXXX n+ n- L = ’expression’ <tc1=value> <tc2=value>
LXXXXXXX n+ n- ’expression’ <tc1=value> <tc2=value>

Examples:

L1 l2 lll L = ’i(Vm) < {It} ? {Ll} : {Lh}’ tc1=-4e-03 tc2=6e-05

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt. 5.1.
It may contain parameters (2.11.1) and the special variables time, temper, and hertz (5.1.2).

3.3. ELEMENTARY DEVICES 89

Example input file:

Variable inductor
.param Ll=0.5m Lh=5m It=50u Vi=2m
.ic v(int21) = 0

* variable inductor depending on control current i(Vm)
L1 l2 lll L = ’i(Vm) < {It} ? {Ll} : {Lh}’

* measure current through inductor
vm lll 0 dc 0

* voltage on inductor
V1 l2 0 {Vi}

* fixed inductor
L3 33 331 {Ll}

* measure current through inductor
vm33 331 0 dc 0

* voltage on inductor
V3 33 0 {Vi}

* non linear inductor (discrete setup)
F21 int21 0 B21 -1
L21 int21 0 1
B21 n1 n2 V = ’(i(Vm21) < {It} ? {Ll} : {Lh})’ * v(int21)

* measure current through inductor
vm21 n2 0 dc 0
V21 n1 0 {Vi}

.control
unset askquit
tran 1u 100u uic
plot i(Vm) i(vm33)
plot i(vm21) i(vm33)
plot i(vm)-i(vm21)
.endc
.end

3.3.14 Capacitor or inductor with initial conditions

The simulator supports the specification of voltage and current initial conditions on capaci-
tor and inductor models, respectively. These models are not the standard ones supplied with
SPICE3, but are in fact code models that can be substituted for the SPICE models when re-
alistic initial conditions are required. For details please refer to Chapter 8. A XSPICE deck
example using these models is shown below:

*
* This circuit contains a capacitor and an inductor with

90 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

* initial conditions on them. Each of the components

* has a parallel resistor so that an exponential decay

* of the initial condition occurs with a time constant of

* 1 second.

*
a1 1 0 cap
.model cap capacitoric (c=1000uf ic=1)
r1 1 0 1k

*
a2 2 0 ind
.model ind inductoric (l=1H ic=1)
r2 2 0 1.0

*
.control
tran 0.01 3
plot v(1) v(2)
.endc
.end

3.3.15 Switches

Two types of switches are available: a voltage controlled switch (type SXXXXXX, model SW)
and a current controlled switch (type WXXXXXXX, model CSW). A switching hysteresis may
be defined, as well as on- and off-resistances (0 < R < ∞).

General form:

SXXXXXXX N+ N- NC+ NC- MODEL <ON><OFF>
WYYYYYYY N+ N- VNAM MODEL <ON><OFF>

Examples:

s1 1 2 3 4 switch1 ON
s2 5 6 3 0 sm2 off
Switch1 1 2 10 0 smodel1
w1 1 2 vclock switchmod1
W2 3 0 vramp sm1 ON
wreset 5 6 vclck lossyswitch OFF

Nodes 1 and 2 are the nodes between which the switch terminals are connected. The model
name is mandatory while the initial conditions are optional. For the voltage controlled switch,
nodes 3 and 4 are the positive and negative controlling nodes respectively. For the current
controlled switch, the controlling current is that through the specified voltage source. The
direction of positive controlling current flow is from the positive node, through the source, to
the negative node.

The instance parameters ON or OFF are required, when the controlling voltage (current) starts
inside the range of the hysteresis loop (different outputs during forward vs. backward voltage
or current ramp). Then ON or OFF determine the initial state of the switch.

3.3. ELEMENTARY DEVICES 91

3.3.16 Switch Model (SW/CSW)

The switch model allows an almost ideal switch to be described in ngspice. The switch is not
quite ideal, in that the resistance can not change from 0 to infinity, but must always have a finite
positive value. By proper selection of the on and off resistances, they can be effectively zero
and infinity in comparison to other circuit elements. The parameters available are shown below.

Name Parameter Units Default Switch model
VT threshold voltage V 0.0 SW
IT threshold current A 0.0 CSW

VH hysteresis voltage V 0.0 SW
IH hysteresis current A 0.0 CSW

RON on resistance Ω 1.0 SW,CSW
ROFF off resistance Ω 1.0e+12 (*) SW,CSW

(*) Or 1/GMIN, if you have set GMIN to any other value, see the .OPTIONS control line
(11.1.2) for a description of GMIN, its default value results in an off-resistance of 1.0e+12
ohms.

The use of an ideal element that is highly nonlinear such as a switch can cause large discontinu-
ities to occur in the circuit node voltages. A rapid change such as that associated with a switch
changing state can cause numerical round-off or tolerance problems leading to erroneous results
or time step difficulties. The user of switches can improve the situation by taking the following
steps:

• First, it is wise to set the ideal switch impedance just high or low enough to be negli-
gible with respect to other circuit elements. Using switch impedances that are close to
‘ideal’ in all cases aggravates the problem of discontinuities mentioned above. Of course,
when modeling real devices such as MOSFETS, the on resistance should be adjusted to a
realistic level depending on the size of the device being modeled.

• If a wide range of ON to OFF resistance must be used in the switches (ROFF/RON >
1e+12), then the tolerance on errors allowed during transient analysis should be decreased
by using the .OPTIONS control line and specifying TRTOL to be less than the default value
of 7.0.

• When switches are placed around capacitors, then the option CHGTOL should also be re-
duced. Suggested values for these two options are 1.0 and 1e-16 respectively. These
changes inform ngspice to be more careful around the switch points so that no errors are
made due to the rapid change in the circuit.

92 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

Example input file:

Switch test
.tran 2us 5ms

*switch control voltage
v1 1 0 DC 0.0 PWL(0 0 2e-3 2 4e-3 0)

*switch control voltage starting inside hysteresis window

*please note influence of instance parameters ON, OFF
v2 2 0 DC 0.0 PWL(0 0.9 2e-3 2 4e-3 0.4)

*switch control current
i3 3 0 DC 0.0 PWL(0 0 2e-3 2m 4e-3 0) $ <--- switch control current

*load voltage
v4 4 0 DC 2.0

*input load for current source i3
r3 3 33 10k
vm3 0 33 dc 0 $ <--- measure the current

* ouput load resistors
r10 4 10 10k
r20 4 20 10k
r30 4 30 10k
r40 4 40 10k

*
s1 10 0 1 0 switch1 OFF
s2 20 0 2 0 switch1 OFF
s3 30 0 2 0 switch1 ON
.model switch1 sw vt=1 vh=0.2 ron=1 roff=10k

*
w1 40 0 vm3 wswitch1 off
.model wswitch1 csw it=1m ih=0.2m ron=1 roff=10k

*
.control
run
set xbrushwidth=3
plot v(1) v(10)
plot v(10) vs v(1) retraceplot $ <-- get hysteresis loop
plot v(2) v(20) $ <--- different initial values
plot v(20) vs v(2) retraceplot $ <-- get hysteresis loop
plot v(2) v(30) $ <--- different initial values
plot v(30) vs v(2) retraceplot $ <-- get hysteresis loop
plot v(40) vs vm3#branch retraceplot $ <--- current controlled switch hysteresis
.endc
.end

Chapter 4

Voltage and Current Sources

4.1 Independent Sources for Voltage or Current

General form:

VXXXXXXX N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>

IYYYYYYY N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>

Examples:

VCC 10 0 DC 6
VIN 13 2 0.001 AC 1 SIN(0 1 1MEG)
ISRC 23 21 AC 0.333 45.0 SFFM(0 1 10K 5 1K)
VMEAS 12 9
VCARRIER 1 0 DISTOF1 0.1 -90.0
VMODULATOR 2 0 DISTOF2 0.01
IIN1 1 5 AC 1 DISTOF1 DISTOF2 0.001

n+ and n- are the positive and negative nodes, respectively. Note that voltage sources need not
be grounded. Positive current is assumed to flow from the positive node, through the source, to
the negative node. A current source of positive value forces current to flow out of the n+ node,
through the source, and into the n- node. Voltage sources, in addition to being used for circuit
excitation, are the ‘ammeters’ for ngspice, that is, zero valued voltage sources may be inserted
into the circuit for the purpose of measuring current. They of course have no effect on circuit
operation since they represent short-circuits.

DC/TRAN is the dc and transient analysis value of the source. If the source value is zero both for
dc and transient analyses, this value may be omitted. If the source value is time-invariant (e.g.,
a power supply), then the value may optionally be preceded by the letters DC.

The keyword AC together with its value ACMAG (and optional value ACPHASE) are required when
the voltage or current source is intended to become the small signal source in an ac simulation.

93

94 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

ACMAG is the ac magnitude and ACPHASE is the ac phase. The voltage or current source then
will become a reference for all nodes. All small signal node amplitude values obtained after the
simulation have been divided by the reference ACMAG. A typcal ACMAG value thus may be unity.
Any measured phase has been shifted by ACPHASE. If ACPHASE is omitted, a value of zero is
assumed. If the source is not an ac small-signal input, the keyword AC and the ac values are to
be avoided.

DISTOF1 and DISTOF2 are the keywords that specify that the independent source has distortion
inputs at the frequencies F1 and F2 respectively (see the description of the .DISTO control line).
The keywords may be followed by an optional magnitude and phase. The default values of the
magnitude and phase are 1.0 and 0.0 respectively.

Any independent source can be assigned a time-dependent value for transient analysis. If a
source is assigned a time-dependent value, the time-zero value is used for dc analysis. There
are nine independent source functions:

• pulse,

• exponential,

• sinusoidal,

• piece-wise linear,

• single-frequency FM,

• AM,

• transient noise,

• random voltages or currents,

• external data (only with ngspice shared library),

• and RF port

If parameters other than source values are omitted or set to zero, the default values shown are
assumed. TSTEP is the printing increment and TSTOP is the final time – see the .TRAN control
line for an explanation.

4.1.1 Pulse

General form:

PULSE(V1 V2 TD TR TF PW PER NP)

Examples:

VIN 3 0 PULSE(-1 1 2NS 2NS 2NS 50NS 100NS 5)

4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 95

Name Parameter Default Value Units
V1 Initial value - V , A
V2 Pulsed value - V , A
TD Delay time 0.0 sec
TR Rise time TSTEP sec
TF Fall time TSTEP sec
PW Pulse width TSTOP sec
PER Period TSTOP sec
NP Number of Pulses *) unlimited -

A single pulse, without repetition count or phase offset, is described by the following table:

Time Value
0 V1

TD V1
TD+TR V2

TD+TR+PW V2
TD+TR+PW+TF V1

TSTOP V1

Intermediate points are determined by linear interpolation.

*) NP set to 0 or omitted denotes unlimited pulses. If compatibility mode (see 12.14.1) set ng-
behavior=xs is set in .spiceinit, the 8th parameter is the phase of the pulse signal (in degrees),
which results in forward running (pos. value) or a delay (neg. value) of the pulse sequence.

4.1.2 Sinusoidal

General form:

SIN(VO VA FREQ TD THETA PHASE)

Examples:

VIN 3 0 SIN(0 1 100MEG 1NS 1E10)

Name Parameter Default Value Units
VO Offset - V , A
VA Amplitude - V , A

FREQ Frequency 1/T STOP Hz
TD Delay 0.0 sec

THETA Damping factor 0.0 1/sec

PHASE Phase 0.0 degrees

The shape of the waveform is described by the following formula:

V (t) =

{
V 0 if 0 ≤ t < T D
V 0+VA e−(t−T D)T HETA sin(2π ·FREQ · (t −T D)+PHASE) if T D ≤ t < T STOP.

(4.1)

96 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

4.1.3 Exponential

General form:

EXP(V1 V2 TD1 TAU1 TD2 TAU2)

Examples:

VIN 3 0 EXP(-4 -1 2NS 30NS 60NS 40NS)

Name Parameter Default Value Units
V1 Initial value - V , A
V2 pulsed value - V , A

TD1 rise delay time 0.0 sec
TAU1 rise time constant TSTEP sec
TD2 fall delay time TD1+TSTEP sec

TAU2 fall time constant TSTEP sec

The shape of the waveform is described by the following formula:

Let V 21 =V 2−V 1,V 12 =V 1−V 2:

V (t) =


V 1 if 0 ≤ t < T D1,

V 1+V 21
(

1− e−
(t−T D1)

TAU1

)
if T D1 ≤ t < T D2,

V 1+V 21
(

1− e−
(t−T D1)

TAU1

)
+V 12

(
1− e−

(t−T D2)
TAU2

)
if T D2 ≤ t < T STOP.

(4.2)

4.1.4 Piece-Wise Linear

General form:

PWL(T1 V1 <T2 V2 T3 V3 T4 V4 ...>) <r=value> <td=value>

Examples:

VCLOCK 7 5 PWL(0 -7 10NS -7 11NS -3 17NS -3 18NS -7 50NS -7)
+ r=0 td=15NS

Each pair of values (Ti, Vi) specifies that the value of the source is Vi (in Volts or Amps) at
time = Ti. The value of the source at intermediate values of time is determined by using linear
interpolation on the input values. The parameter r determines a repeat time point. If r is set to
-1 or is not given, the whole sequence of values (Ti, Vi) is issued once only, then the output stays
at its final value. If r = 0, the whole sequence from time 0 to time Tn is repeated forever. If r =
10ns, the sequence between 10ns and 50ns is repeated forever. The r value has to be one of the
time points T1 to T(n-1) of the PWL sequence, not the last point Tn. If td is given, the whole
PWL sequence is delayed by the value of td. Please note that for now r and td are available only
with the voltage source, not with the current source.

4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 97

4.1.5 Single-Frequency FM

General Form:

SFFM(VO VA FM MDI FC TD PHASEM PHASEC)

Examples:

V1 12 0 SFFM(0 2 20 45 1k 1m 0 0)

Name Parameter Default value Units
VO Offset - V , A
VA Amplitude - V , A
FM Modulating frequency 5/T STOP Hz
MDI Modulation index 90
FC Carrier frequency 500/T STOP Hz
TD Signal delay 0.0 s

PHASEM Modulation signal phase 0.0 degrees
PHASEC Carrier signal phase 0.0 degrees

The shape of the waveform is described by the following equation:

V (t) =VO +VA·
sin(2π ·FC · (t −T D)+MDI sin(2π ·FM · (t −T D)+PHASEM)+PHASEC) (4.3)

with t > T D, else V (t) = 0.

MDI is limited to 0 <= MDI <= FC/FM. VO and VA have to be given always.

4.1.6 Amplitude modulated source (AM)

General form:

AM(VO VMO VMA FM FC TD PHASEM PHASEC)

Examples:

V1 12 0 AM(0.5 2 1.8 20K 5MEG 1m)

98 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

Name Parameter Default value Units
VO Overall offset - V , A

VMO Modulation signal offset - V , A
VMA Modulation signal amplitude 1 V , A
FM Modulation signal frequency 5/T STOP Hz
FC Carrier signal frequency 500/T STOP Hz
TD Overall delay 0.0 s

PHASEM Modulation signal phase 0.0 degrees
PHASEC Carrier signal phase 0.0 degrees

The shape of the waveform is described by the following equation:

V (t) =VO+(V MO+V MA · sin(2π ·FM · (t −T D)+PHASEM)) ·
sin(2π ·FC · (t −T D)+PHASEC) (4.4)

with t > T D, else V (t) = 0.

VO and VMO have to be given always.

With the modulation depth, given by V MA/V MO, varied between 0 and 1, a standard amplitude
modulated signal is provided. VMO then also acts as overall multiplier to the signal. On the
other hand one may set VMO to 0, then obtaining a signal with double side band and suppressed
carrier.

4.1.7 Transient noise source

General form:

TRNOISE(NA NT NALPHA NAMP RTSAM RTSCAPT RTSEMT)

Examples:

VNoiw 1 0 DC 0 TRNOISE(20n 0.5n 0 0) $ white
VNoi1of 1 0 DC 0 TRNOISE(0 10p 1.1 12p) $ 1/f
VNoiw1of 1 0 DC 0 TRNOISE(20 10p 1.1 12p) $ white and 1/f
IALL 10 0 DC 0 trnoise(1m 1u 1.0 0.1m 15m 22u 50u)

$ white, 1/f, RTS

Transient noise is an experimental feature allowing (low frequency) transient noise injection and
analysis. See Chapt. 11.3.11 for a detailed description. NA is the Gaussian noise rms voltage
amplitude, NT is the time between sample values (breakpoints will be enforced on multiples of
this value). NALPHA (exponent to the frequency dependency), NAMP (rms voltage or current am-
plitude) are the parameters for 1/f noise, RTSAM the random telegraph signal amplitude, RTSCAPT
the mean of the exponential distribution of the trap capture time, and RTSEMT its emission time
mean. White Gaussian, 1/f, and RTS noise may be combined into a single statement.

4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 99

Name Parameter Default value Units
NA Rms noise amplitude (Gaussian) - V , A
NT Time step - sec

NALPHA 1/f exponent 0 < α < 2 -
NAMP Amplitude (1/f) - V , A

RTSAM Amplitude - V , A
RTSCAPT Trap capture time - sec
RTSEMT Trap emission time - sec

If you set NT and RTSAM to 0, the noise option TRNOISE ... is ignored. Thus you may switch off
the noise contribution of an individual voltage source VNOI by the command

alter @vnoi[trnoise] = [0 0 0 0] $ no noise

alter @vrts[trnoise] = [0 0 0 0 0 0 0] $ no noise

See Chapt. 13.5.3 for the alter command.

You may switch off all TRNOISE noise sources by setting

set notrnoise

to your .spiceinit file (for all your simulations) or into your control section in front of the next
run or tran command (for this specific and all following simulations). The command

unset notrnoise

will reinstate all noise sources.

The noise generators are implemented into the independent voltage (vsrc) and current (isrc)
sources.

4.1.8 Random voltage source

The TRRANDOM option yields statistically distributed voltage values, derived from the ngspice
random number generator. These values may be used in the transient simulation directly within
a circuit, e.g. for generating a specific noise voltage, but especially they may be used in the con-
trol of behavioral sources (B, E, G sources 5, voltage controllable A sources 8, capacitors 3.3.9,
inductors 3.3.13, or resistors 3.3.4) to simulate the circuit dependence on statistically varying
device parameters. A Monte-Carlo simulation may thus be handled in a single simulation run.

General form:

TRRANDOM(TYPE TS <TD <PARAM1 <PARAM2>>>)

Examples:

VR1 r1 0 dc 0 trrandom (2 10m 0 1) ; Gaussian with mean 0
V1 1 0 dc 0 trrandom (1 1u 0.5u 0.5 0.5) ; Uniform between 0 and 1

100 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

TYPE determines the random variates generated: 1 is uniformly distributed, 2 Gaussian, 3 expo-
nential, 4 Poisson. TS is the duration of an individual voltage value. TD is a time delay with the
output staying at the Offset or Mean value, before the random voltage values start up.

PARAM1 and PARAM2 depend on the type selected. The uniform distribution issues values in the
range of ±PARAM1 around the offset PARAM2. The Gaussian distribution issues values with the
standard deviation of PARAM1 around the mean PARAM2.

TYPE description PARAM1 default PARAM2 default
1 Uniform Range 1 Offset 0
2 Gaussian Standard Dev. 1 Mean 0
3 Exponential Mean 1 Offset 0
4 Poisson Lambda 1 Offset 0

4.1.9 External voltage or current input

General form:

EXTERNAL

Examples:

Vex 1 0 dc 0 external
Iex i1 i2 dc 0 external <m = xx>

Voltages or currents may be set from the calling process, if ngspice is compiled as a shared
library and loaded by the process. See Chapter 15 and 15.3.3.11 for an explanation.

4.1.10 Arbitrary Phase Sources

ngspice supports arbitrary phase independent sources that output at TIME=0.0 a value cor-
responding to some specified phase shift. Other versions of SPICE use the TD (delay time)
parameter to set phase-shifted sources to their time-zero value until the delay time has elapsed.
The ngspice phase parameter is specified in degrees and is included after the SPICE3 parame-
ters normally used to specify an independent source. Partial examples of usage for pulse and
sine waveforms are shown below:

* Phase shift is specified as final parameter

* on the independent source cards. Phase shift for both of the

* following is specified as +45 degrees

*
v1 1 0 0.0 sin(0 1 1k 0 0 45.0)
r1 1 0 1k

*
v2 2 0 0.0 pulse(-1 1 0 1e-5 1e-5 5e-4 1e-3 45.0)
r2 2 0 1k

*

4.2. LINEAR DEPENDENT SOURCES 101

4.1.11 RF Port

A voltage source VSRC may be defined as RF Port. To do so, there are at least two more
parameters required. The first is portnum (integer) which defines the VSRC as a RF Port.
Portnum of all VSRCs defined as RF ports must start from 1 and count up to the number of RF
ports. You cannot have duplicate portnums. Then you have Z0 (real) which defines the internal
impedance. If not provided, its default value is 50Ohm. When declaring a RF ports, the VSRC
now become a VSRC with Z0 Ohm in series. This extra resistor affects all simulations.

General form:

DC 0 AC 1 portnum n1 <z0 n2>

Examples:

V1 in 0 dc 0 ac 1 portnum 1 z0 100

At least two ports are required for the S-parameter simulation with the command .sp (11.3.8).
If portnum is not provided, the voltage source VRSC behaves as normal.

4.2 Linear Dependent Sources

Ngspice allows circuits to contain linear dependent sources characterized by any of the four
equations

i = gv v = ev i = f i v = hi

where g, e, f , and h are constants representing transconductance, voltage gain, current gain,
and transresistance, respectively. Non-linear dependent sources for voltages or currents (B, E,
G) are described in Chapt. 5.

4.2.1 Gxxxx: Linear Voltage-Controlled Current Sources (VCCS)

General form:

GXXXXXXX N+ N- NC+ NC- VALUE <m=val>

Examples:

G1 2 0 5 0 0.1

n+ and n- are the positive and negative nodes, respectively. Current flow is from the positive
node, through the source, to the negative

node. nc+ and nc- are the positive and negative controlling nodes, respectively. value is the
transconductance (in mhos). m is an optional multiplier to the output current. val may be a
numerical value or an expression according to 2.11.5 containing references to other parameters.
Instance parameters are listed in chapt. 27.3.6.

102 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

4.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS)

General form:

EXXXXXXX N+ N- NC+ NC- VALUE

Examples:

E1 2 3 14 1 2.0

n+ is the positive node, and n- is the negative node. nc+ and nc- are the positive and negative
controlling nodes, respectively. value is the voltage gain. Instance parameters are listed in
chapt. 27.3.7.

4.2.3 Fxxxx: Linear Current-Controlled Current Sources (CCCS)

General form:

FXXXXXXX N+ N- VNAM VALUE <m=val>

Examples:

F1 13 5 VSENS 5 m=2

n+ and n- are the positive and negative nodes, respectively. Current flow is from the positive
node, through the source, to the negative node. vnam is the name of a voltage source through
which the controlling current flows. The direction of positive controlling current flow is from
the positive node, through the source, to the negative node of vnam. value is the current gain.
m is an optional multiplier to the output current. Instance parameters are listed in chapt. 27.3.4.

4.2.4 Hxxxx: Linear Current-Controlled Voltage Sources (CCVS)

General form:

HXXXXXXX N+ N- VNAM VALUE

Examples:

HX 5 17 VZ 0.5K

n+ and n- are the positive and negative nodes, respectively. vnam is the name of a voltage source
through which the controlling current flows. The direction of positive controlling current flow
is from the positive node, through the source, to the negative node of vnam. value is the
transresistance (in ohms). Instance parameters are listed in chapt. 27.3.5.

4.2. LINEAR DEPENDENT SOURCES 103

4.2.5 Polynomial Source Compatibility

Dependent polynomial sources available in SPICE2G6 are fully supported in ngspice using the
XSPICE extension (21.1). The form used to specify these sources is shown in Table 4.1. For
details on its usage please see Chapt. 5.5.

Dependent Polynomial Sources
Source Type Instance Card
POLYNOMIAL VCVS EXXXXXXX N+ N- POLY(ND) NC1+ NC1- P0 (P1...)
POLYNOMIAL VCCS GXXXXXXX N+ N- POLY(ND) NC1+ NC1- P0 (P1...)
POLYNOMIAL CCCS FXXXXXXX N+ N- POLY(ND) VNAM1 !VNAM2...? P0 (P1...)
POLYNOMIAL CCVS HXXXXXXX N+ N- POLY(ND) VNAM1 !VNAM2...? P0 (P1...)

Table 4.1: Dependent Polynomial Sources

104 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

Chapter 5

Non-linear Dependent Sources (Behavioral
Sources)

The non-linear dependent sources B (see Chapt. 5.1), E (see 5.2), G see (5.3) described in this
chapter allow the generation of voltages or currents that result from evaluating a mathematical
expression. Internally E and G sources are converted to the more general B source. All three
sources may be used to introduce behavioral modeling and analysis.

5.1 Bxxxx: Nonlinear dependent source (ASRC)

5.1.1 Syntax and usage

General form:

BXXXXXXX n+ n- <i=expr> <v=expr> <tc1=value> <tc2=value>
+ <temp=value> <dtemp=value>

Examples:

B1 0 1 I=cos(v(1))+sin(v(2))
B2 0 1 V=ln(cos(log(v(1,2)^2)))-v(3)^4+v(2)^v(1)
B3 3 4 I=17
B4 3 4 V=exp(pi^i(vdd))
B5 2 0 V = V(1) < {Vlow} ? {Vlow} :
+ V(1) > {Vhigh} ? {Vhigh} : V(1)

n+ is the positive node, and n- is the negative node. The values of the V and I parameters
determine the voltages and currents across and through the device, respectively. If I is given
then the device is a current source, and if V is given the device is a voltage source. One and only
one of these parameters must be given. All instance parameters are listed in chapter 27.3.1.

A simple model is implemented for temperature behavior by the formula:

I(T) = I(TNOM)
(

1+TC1(T −TNOM)+TC2(T −TNOM)2
)

(5.1)

105

106 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

or

V (T) =V (TNOM)
(

1+TC1(T −TNOM)+TC2(T −TNOM)2
)

(5.2)

In the above formula, ‘T ’ represents the instance temperature, which can be explicitly set using
the temp keyword or calculated using the circuit temperature and dtemp, if present. If both
temp and dtemp are specified, the latter is ignored.

The small-signal AC behavior of the nonlinear source is a linear dependent source (or sources)
with a proportionality constant equal to the derivative (or derivatives) of the source at the DC
operating point. The expressions given for V and I may be any function of voltages and currents
through voltage sources in the system.

The following functions of a single real variable are defined:

Trigonometric functions: cos, sin, tan, acos, asin, atan

Hyperbolic functions: cosh, sinh, acosh, asinh, atanh

Exponential and logarithmic: exp, ln, log, log10 (ln, log with base e, log10 with base 10)

Other: abs, sqrt, u, u2, uramp, floor, ceil, i

Functions of two variables are min, max, pow, **, pwr, ^

Functions of three variables are a ? b:c

For convergence reasons the ‘exp’ function has a limit of 14 for its argument, beyond that value
it will increase linearily. The function ‘u’ is the unit step function, with a value of one for
arguments greater than zero, a value of 0.5 at zero, and a value of zero for arguments less than
zero. The function ‘u2’ returns a value of zero for arguments less than zero, one for arguments
greater than one and assumes the value of the argument between these limits. The function
‘uramp’ is the integral of the unit step: for an input x, the value is zero if x is less than zero,
or, if x is greater than or equal to zero, the value is x. These three functions are useful in
synthesizing piece-wise non-linear functions, though convergence may be adversely affected.

The function i(xyz) returns the current through the first node of device instance xyz.

The following standard operators are defined: +, -, *, /, ^, unary -

Logical operators are !=, <>, >=, <=, ==, >, <, ||, &&, ! .

A ternary function is defined as a ? b : c , which means IF a, THEN b, ELSE c. Be
sure to place a space in front of ‘?’ to allow the parser distinguishing it from other tokens.

The B source functions pow, **, ^, and pwr need some special care to avoid undefined regions
in x1, as they differ from the common mathematical usage (and from the functions depicted in
chapt. 2.11.5).

The functions y = pow(x1,x2), x1**x2, and x1^x2 , all of them describing y = x1x2, resolve
to the following:

y = pow(fabs(x1), x2)

5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 107

pow in the preceding line is the standard C math library function.

The function y = pwr(x1,x2) resolves to

if (x1 < 0.0)
y = (-pow(-x1, x2));

else
y = (pow(x1, x2));

pow here again is the standard C math library function.

Example: Ternary function

* B source test Clamped voltage source

* C. P. Basso "Switched-mode power supplies", New York, 2008
.param Vhigh = 4.6
.param Vlow = 0.4
Vin1 1 0 DC 0 PWL(0 0 1u 5)
Bcl 2 0 V = V(1) < Vlow ? Vlow : V(1) > Vhigh ? Vhigh : V(1)
.control
unset askquit
tran 5n 1u
plot V(2) vs V(1)
.endc
.end

If the argument of log, ln, or sqrt becomes less than zero, the absolute value of the argument is
used. If a divisor becomes zero or the argument of log or ln becomes zero, an error will result.
Other problems may occur when the argument for a function in a partial derivative enters a
region where that function is undefined.

Parameters may be used like {Vlow} shown in the example above. Parameters will be evaluated
upon set up of the circuit, vectors like V(1) will be evaluated during the simulation.

To get time into the expression you can integrate the current from a constant current source
with a capacitor and use the resulting voltage (don’t forget to set the initial voltage across the
capacitor).

Non-linear resistors, capacitors, and inductors may be synthesized with the nonlinear dependent
source. Nonlinear resistors, capacitors and inductors are implemented with their linear counter-
parts by a change of variables implemented with the nonlinear dependent source. The following
subcircuit will implement a nonlinear capacitor:

108 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Example: Non linear capacitor

.Subckt nlcap pos neg

* Bx: calculate f(input voltage)
Bx 1 0 v = f(v(pos,neg))

* Cx: linear capacitance
Cx 2 0 1

* Vx: Ammeter to measure current into the capacitor
Vx 2 1 DC 0Volts

* Drive the current through Cx back into the circuit
Fx pos neg Vx 1
.ends

Example for f(v(pos,neg)):

Bx 1 0 V = v(pos,neg)*v(pos,neg)

Non-linear resistors or inductors may be described in a similar manner. An example for a
nonlinear resistor using this template is shown below.

Example: Non linear resistor

* use of ’hertz’ variable in nonlinear resistor

*.param rbase=1k

* some tests
B1 1 0 V = hertz*v(33)
B2 2 0 V = v(33)*hertz
b3 3 0 V = 6.283e3/(hertz+6.283e3)*v(33)
V1 33 0 DC 0 AC 1

*** Translate R1 10 0 R=’1k/sqrt(HERTZ)’ to B source ***
.Subckt nlres pos neg rb=rbase

* Bx: calculate f(input voltage)
Bx 1 0 v = -1 / {rb} / sqrt(HERTZ) * v(pos, neg)

* Rx: linear resistance
Rx 2 0 1

5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 109

Example: Non linear resistor (continued)

* Vx: Ammeter to measure current into the resistor
Vx 2 1 DC 0Volts

* Drive the current through Rx back into the circuit
Fx pos neg Vx 1
.ends
Xres 33 10 nlres rb=1k

*Rres 33 10 1k
Vres 10 0 DC 0
.control
define check(a,b) vecmax(abs(a - b))
ac lin 10 100 1k

* some checks
print v(1) v(2) v(3)
if check(v(1), frequency) < 1e-12
echo "INFO: ok"
end
plot vres#branch
.endc
.end

5.1.2 Special B-Source Variables time, temper, hertz

The special variables time and temper are available in a transient analysis, reflecting the actual
simulation time and circuit temperature. temper returns the circuit temperature, given in degree
C (see 2.14). The variable hertz is available in an AC analysis. time is zero in the AC analysis,
hertz is zero during transient analysis. Using the variable hertz may cost some CPU time if
you have a large circuit, because for each frequency the operating point has to be determined
before calculating the AC response.

5.1.3 par(’expression’)

The B source syntax may also be used in output lines like .plot as algebraic expressions for
output (see Chapt.11.6.6).

5.1.4 Piecewise Linear Function: pwl

Both B source types may contain a piece-wise linear dependency of one network variable:

Example: pwl_current

Bdio 1 0 I = pwl(v(A), 0,0, 33,10m, 100,33m, 200,50m)

v(A) is the independent variable x. Each pair of values following describes the x,y functional
relation: In this example at node A voltage of 0V the current of 0A is generated - next pair gives
10mA flowing from ground to node 1 at 33V on node A and so forth.

110 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

The same is possible for voltage sources:

Example: pwl_voltage

Blimit b 0 V = pwl(v(1), -4,0, -2,2, 2,4, 4,5, 6,5)

Monotony of the independent variable in the pwl definition is checked - non-monotonic x entries
will stop the program execution. v(1) may be replaced by a controlling current source, or it may
be replaced by time (for transient simulations). v(1) may also be replaced by an expression,
e.g. −2∗ i(Vin). The value pairs may also be parameters, and have to be predefined by a .param
statement. An example for the pwl function using all of these options is shown below.

Figure 5.1: pwl (piece-wise linear) B source

5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 111

Example: pwl function in B source

Demonstrates usage of the pwl function in an B source (ASRC)

* Also emulates the TABLE function with limits

.param x0=-4 y0=0

.param x1=-2 y1=2

.param x2=2 y2=-2

.param x3=4 y3=1

.param xx0=x0-1

.param xx3=x3+1

Vin ctrl 0 DC=0V
R1 ctrl 0 2

* no limits outside of the tabulated x values

* (continues linearily)
Btest2 2 0 I = pwl(v(ctrl),’x0’,’y0’,’x1’,’y1’,’x2’,’y2’,
+ ’x3’,’y3’)

* like TABLE function with limits:
Btest3 3 0 I = (v(ctrl) < ’x0’) ? ’y0’ : (v(ctrl) < ’x3’)
+ ? pwl(v(1),’x0’,’y0’,’x1’,’y1’,’x2’,’y2’,’x3’,’y3’) : ’y3’

* more efficient and elegant TABLE function with limits

*(voltage controlled):
Btest4 4 0 I = pwl(v(ctrl),
+ ’xx0’,’y0’, ’x0’,’y0’,
+ ’x1’,’y1’,
+ ’x2’,’y2’,
+ ’x3’,’y3’, ’xx3’,’y3’)

*
* more efficient and elegant TABLE function with limits

* (controlled by current):
Btest5 5 0 I = pwl(-2*i(Vin),
+ ’xx0’,’y0’, ’x0’,’y0’,
+ ’x1’,’y1’,
+ ’x2’,’y2’,
+ ’x3’,’y3’, ’xx3’,’y3’)

Rint2 2 0 1
Rint3 3 0 1
Rint4 4 0 1
Rint5 5 0 1
.control
dc Vin -6 6 0.2
plot v(2) v(3) v(4)-0.5 v(5)+0.5
.endc

.end

112 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

One characteristic to note: What happens when the controlling input (V(1) or −2 ∗ i(Vin)) is
outside of the given limits, e.g. smaller than x0 or larger than x3 in the example given above?
New y values outside of the given range will be determined by adding x,y pairs calculated by
extending the slope of the output curve, e.g. with (y3− y2)/(x3− x2), as seen with v(2) from
example Btest2. If you want to limit the function, keeping the last y value, e.g. y3, you have
to add another point (x,y pair) with slightly extended x and y kept constant, e.g. x3+1,y3.

This gets important when we are for example using a behavioral resistor with pwl. In the
example below, RR1 quickly moves towards (and beyond) 0, which is unphysical and leads the
transient simulation to fail, because the current through RR1 is unbounded. RR2 with its limit
given by the 15.1ms,1 couple avoids such malfunctioning.

Example: pwl function in behavioral resistor

* pwl for behavioral R, transient sim
VU1 3 0 DC 9
RR1 3 0 R = pwl(time, 0,1, 7m,1, 8m,1.19, 14m,1.19, 15m,1)
RR2 3 0 R = pwl(time, 0,1, 7m,1, 8m,1.19, 14m,1.19, 15m,1,
+ 15.1m,1)

.tran 100u 20m 0

.probe alli

.control
option noinit
run
display
set xbrushwidth=2
plot rr1#branch rr2#branch ylimit 7 17
.endc

.end

5.2 Exxxx: non-linear voltage source

5.2.1 VOL

General form:

EXXXXXXX n+ n- vol=’expr’

Examples:

E41 4 0 vol = ’V(3)*V(3)-Offs’

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt.

5.2. EXXXX: NON-LINEAR VOLTAGE SOURCE 113

5.1. It may contain parameters (2.11.1) and the special variables time, temper, hertz (5.1.2).
’ or { } may be used to delimit the function.

5.2.2 VALUE

Optional syntax:

EXXXXXXX n+ n- value={expr}

Examples:

E41 4 0 value = {V(3)*V(3)-Offs}

The ’=’ sign is optional.

5.2.3 TABLE

Data may be entered from the listings of a data table similar to the pwl B-Source (5.1.4). Data
are grouped into x, y pairs. Expression may be an equation or an expression containing node
voltages or branch currents (in the form of i(vm)) and any other terms as given for the B source
and described in Chapt. 5.1. It may contain parameters (2.11.1). ’ or { } may be used to delimit
the function. Expression delivers the x-value, which is used to generate a corresponding y-value
according to the tabulated value pairs, using linear interpolation. If the x-value is below x0 , y0
is returned, above x2 y2 is returned (limiting function). The value pairs have to be real numbers,
parameters are not allowed.

Syntax for data entry from table:

Exxx n1 n2 TABLE {expression} = (x0, y0) (x1, y1) (x2, y2)

Example (simple comparator):

ECMP 11 0 TABLE {V(10,9)} = (-5mV, 0V) (5mV, 5V)

An ’=’ sign may follow the keyword TABLE.

5.2.4 POLY

see E-Source at Chapt. 5.5.

5.2.5 LAPLACE

Currently ngspice does not offer a direct E-Source element with the LAPLACE option. There
is however a XSPICE code model equivalent called s_xfer (see Chapt. 8.2.18), which you

114 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

may invoke manually. The XSPICE option has to be enabled (28.1). AC (11.3.1) and transient
analysis (11.3.10) is supported.

The following E-Source:

ELOPASS 4 0 LAPLACE {V(1)}
+ {5 * (s/100 + 1) / (s^2/42000 + s/60 + 1)}

may be replaced by:

AELOPASS 1 int_4 filter1
.model filter1 s_xfer(gain=5
+ num_coeff=[{1/100} 1]
+ den_coeff=[{1/42000} {1/60} 1]
+ int_ic=[0 0])
ELOPASS 4 0 int_4 0 1

where you have the voltage of node 1 as input, an intermediate output node int_4 and an E-
source as buffer to keep the name ‘ELOPASS’ available if further processing is required.

If the controlling expression is more complex than just a voltage node, you may add a B-Source
(5.1) for evaluating the expression before entering the A-device.

E-Source with complex controlling expression:

ELOPASS 4 0 LAPLACE {V(1)*v(2)} {10 / (s/6800 + 1)}

may be replaced by:

BELOPASS int_1 0 V=V(1)*v(2)
AELOPASS int_1 int_4 filter1
.model filter1 s_xfer(gain=10
+ num_coeff=[1]
+ den_coeff=[{1/6800} 1]
+ int_ic=[0])
ELOPASS 4 0 int_4 0 1

5.2.6 FREQ

Currently ngspice does not offer a direct E-Source element with the FREQ option but it is
implemented by a XSPICE code model equivalent called xfer (see 8.2.19) that is automatically
invoked by rewriting the netlist. The XSPICE option has to be enabled (28.1) and only AC
(11.3.1) analysis is supported.

5.3. GXXXX: NON-LINEAR CURRENT SOURCE 115

This E-Source:

EXFER 1 0 FREQ {V(20,21)}= DB
+(1.000000e+07Hz, 1.633257e-07, -1.859873e+01)
+(1.025641e+08Hz, -4.165672e+00, -4.076855e+02)
+(2.000000e+08Hz, -2.798303e-05, -7.519027e+02)

produces a complex voltage determined by multiplying an input differential voltage (v(20, 21))
by a complex-valued PWL function of the simulation frequency (transfer function). The DB
keyword indicates that the second column is gain in db and the third is phase in degrees. Al-
ternative keywords are MAG (linear gain), RAD (phase in radians), DEG (phase in degrees,
already the default) or R_I (real and imaginary parts).

5.2.7 AND/OR/NAND/NOR

This form of E-source provides simple behavioural implementations of basic logic gates with
analog inputs and output. It is implemented by a XSPICE code model called multi_input_pwl
(see 8.2.10) that is automatically invoked by rewriting the netlist. The XSPICE option has to be
enabled (28.1).

This E-Source:

EAND out1 out0 and(2) in1 0 in2 0 (0.5, 0) (2.8, 3.3)

produces a differential output voltage determined by selecting the smallest of any number of
differential input voltages, and applying a PWL output function. Here “and(2)” determines the
logic function and number of PWL points: output is zero for minimum input voltage less than
0.5 and 3.3 for inputs greater than 2.8, with a linear ramp between. The other three functions
are similar: “or” selects the maximum input and “nand/nor” reverse the order of PWL points.
Only two points are supported.

An example circuit can be found at examples/digital/compare/adder_esource.cir.

5.3 Gxxxx: non-linear current source

5.3.1 CUR

General form:

GXXXXXXX n+ n- cur=’expr’ <m=val>

Examples:

G51 55 225 cur = ’V(3)*V(3)-Offs’

116 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt.
5.1. It may contain parameters (2.11.1) and special variables (5.1.2). m is an optional multiplier
to the output current. val may be a numerical value or an expression according to 2.11.5
containing only references to other parameters (no node voltages or branch currents!), because
it is evaluated before the simulation commences.

5.3.2 VALUE

Optional syntax:

GXXXXXXX n+ n- value=’expr’ <m=val>

Examples:

G51 55 225 value = ’V(3)*V(3)-Offs’

The ’=’ sign is optional.

5.3.3 TABLE

A data entry by a tabulated listing is available with syntax similar to the E-Source (see Chapt.
5.2.3).

Syntax for data entry from table:

Gxxx n1 n2 TABLE {expression} =
+ (x0, y0) (x1, y1) (x2, y2) <m=val>

Example (simple comparator with current output and voltage control):

GCMP 0 11 TABLE {V(10,9)} = (-5MV, 0V) (5MV, 5V)
R 11 0 1k

m is an optional multiplier to the output current. val may be a numerical value or an expression
according to 2.11.5 containing only references to other parameters (no node voltages or branch
currents!), because it is evaluated before the simulation commences. An ’=’ sign may follow
the keyword TABLE.

5.3.4 POLY

see E-Source at Chapt. 5.5.

5.3.5 LAPLACE

See E-Source, Chapt. 5.2.5 , for an equivalent code model replacement.

5.4. DEBUGGING A BEHAVIORAL SOURCE 117

5.3.6 FREQ

See E-Source, Chapt.5.2.6 , for an equivalent code model replacement.

5.3.7 Example

An example file is given below.

Example input file:

VCCS, VCVS, non-linear dependency
.param Vi=1
.param Offs=’0.01*Vi’

* VCCS depending on V(3)
B21 int1 0 V = V(3)*V(3)
G1 21 22 int1 0 1

* measure current through VCCS
vm 22 0 dc 0
R21 21 0 1

* new VCCS depending on V(3)
G51 55 225 cur = ’V(3)*V(3)-Offs’

* measure current through VCCS
vm5 225 0 dc 0
R51 55 0 1

* VCVS depending on V(3)
B31 int2 0 V = V(3)*V(3)
E1 1 0 int2 0 1
R1 1 0 1

* new VCVS depending on V(3)
E41 4 0 vol = ’V(3)*V(3)-Offs’
R4 4 0 1

* control voltage
V1 3 0 PWL(0 0 100u {Vi})
.control
unset askquit
tran 10n 100u uic
plot i(E1) i(E41)
plot i(vm) i(vm5)
.endc
.end

5.4 Debugging a behavioral source

The B, E, G, sources and the behavioral R, C, L elements are powerful tools to set up user
defined models. Unfortunately debugging these models is not very comfortable.

118 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Example input file with bug (log(-2)):

B source debugging

V1 1 0 1
V2 2 0 -2

E41 4 0 vol = ’V(1)*log(V(2))’

.control
tran 1 1
.endc

.end

The input file given above results in an error message:

Error: -2 out of range for log

In this trivial example, the reason and location for the bug is obvious. However, if you have
several equations using behavioral sources, and several occurrences of the log function, then
debugging is nearly impossible.

However, if the variable ngdebug (see 13.7) is set (e.g. in file .spiceinit), a more distinctive
error message is issued that (after some closer investigation) will reveal the location and value
of the buggy parameter.

Detailed error message for input file with bug (log(-2)):

Error: -2 out of range for log
calling PTeval, tree =

(v0) * (log (v1))
d / d v0 : log (v1)
d / d v1 : (v0) * ((0.434294) / (v1))
values: var0 = 1

var1 = -2

If variable strict_errorhandling (see 13.7) is set, ngspice exits after this message. If not,
gmin and source stepping may be started, typically without success.

5.5 POLY Sources

Polynomial sources are only available when the XSPICE option (see Chapt. 28) is enabled.

5.5. POLY SOURCES 119

5.5.1 E voltage source, G current source

General form:

EXXXX N+ N- POLY(ND) NC1+ NC1- (NC2+ NC2-...) P0 (P1...)

Example:

ENONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005

POLY(ND) Specifies the number of dimensions of the polynomial. The number of pairs of
controlling nodes must be equal to the number of dimensions.

(N+) and (N-) nodes are output nodes. Positive current flows from the (+) node through the
source to the (-) node.

The <NC1+> and <NC1-> are in pairs and define a set of controlling voltages. A particular node
can appear more than once, and the output and controlling nodes need not be different.

The example yields a voltage output controlled by two input voltages v(3,0) and v(4,0). Four
polynomial coefficients are given. The equivalent function to generate the output is:

0 + 13.6 * v(3) + 0.2 * v(4) + 0.005 * v(3) * v(3)

Generally you will set the equation according to

POLY(1) y = p0 + p1*X1 + p2*X1*X1 + p3*X1*X1*X1 + ...
POLY(2) y = p0 + p1*X1 + p2*X2 +

+ p3*X1*X1 + p4*X2*X1 + p5*X2*X2 +
+ p6*X1*X1*X1 + p7*X2*X1*X1 + p8*X2*X2*X1 +
+ p9*X2*X2*X2 + ...

POLY(3) y = p0 + p1*X1 + p2*X2 + p3*X3 +
+ p4*X1*X1 + p5*X2*X1 + p6*X3*X1 +
+ p7*X2*X2 + p8*X2*X3 + p9*X3*X3 + ...

where X1 is the voltage difference of the first input node pair, X2 of the second pair and so on.
Keeping track of all polynomial coefficient is rather tedious for large polynomials.

5.5.2 F voltage source, H current source

General form:

FXXXX N+ N- POLY(ND) V1 (V2 V3 ...) P0 (P1...)

Example:

FNONLIN 100 101 POLY(2) VDD Vxx 0 0.0 13.6 0.2 0.005

120 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

POLY(ND) Specifies the number of dimensions of the polynomial. The number of controlling
sources must be equal to the number of dimensions.

(N+) and (N-) nodes are output nodes. Positive current flows from the (+) node through the
source to the (-) node.

V1 (V2 V3 ...) are the controlling voltage sources. Control variable is the current through these
sources.

P0 (P1...) are the coefficients, as have been described in 5.5.1.

Chapter 6

Transmission Lines

Ngspice implements both the original SPICE3f5 transmission lines models and the one intro-
duced with KSPICE. The latter provide an improved transient analysis of lossy transmission
lines. Unlike SPICE models that use the state-based approach to simulate lossy transmission
lines, KSPICE simulates lossy transmission lines and coupled multiconductor line systems us-
ing the recursive convolution method. The impulse response of an arbitrary transfer function
can be determined by deriving a recursive convolution from the Pade approximations of the
function. We use this approach for simulating each transmission line’s characteristics and each
multiconductor line’s modal functions. This method of lossy transmission line simulation has
been proved to give a speedup of one to two orders of magnitude over SPICE3f5.

6.1 Lossless Transmission Lines

General form:

TXXXXXXX N1 N2 N3 N4 Z0=VALUE <TD=VALUE>
+ <F=FREQ <NL=NRMLEN>> <IC=V1, I1, V2, I2>

Examples:

T1 1 0 2 0 Z0=50 TD=10NS

n1 and n2 are the nodes at port 1; n3 and n4 are the nodes at port 2. z0 is the characteristic
impedance. The length of the line may be expressed in either of two forms. The transmission
delay, td, may be specified directly (as td=10ns, for example). Alternatively, a frequency f may
be given, together with nl, the normalized electrical length of the transmission line with respect
to the wavelength in the line at the frequency f. The transmission delay then is calculated as
td = nl/ f .If a frequency is specified but nl is omitted, 0.25 is assumed (that is, the frequency
is assumed to be the quarter-wave frequency). Note that although both forms for expressing the
line length are indicated as optional, one of the two must be specified.

No .model line is required for this element.

Note that this element models only one propagating mode. If all four nodes are distinct in the ac-
tual circuit, then two modes may be excited. To simulate such a situation, two transmission-line

121

122 CHAPTER 6. TRANSMISSION LINES

elements are required. (see the example in Chapt. 17.7 for further clarification.) The (optional)
initial condition specification consists of the voltage and current at each of the transmission line
ports. Note that the initial conditions (if any) apply only if the UIC option is specified on the
.TRAN control line.

Note that a lossy transmission line (see below) with zero loss may be more accurate than the
lossless transmission line due to implementation details.

6.2 Lossy Transmission Lines

General form:

OXXXXXXX n1 n2 n3 n4 mname

Examples:

O23 1 0 2 0 LOSSYMOD
.model LOSSYMOD ltra rel=1 r=12.45 g=0 l=8.972e-9 c=0.468e-12
+len=16 steplimit compactrel=1.0e-3 compactabs=1.0e-14

OCONNECT 10 5 20 5 INTERCONNECT

This is a two-port convolution model for single conductor lossy transmission lines. n1 and n2
are the nodes at port 1; n3 and n4 are the nodes at port 2. Note that a lossy transmission line
with zero loss may be more accurate than the lossless transmission line due to implementation
details.

6.2.1 Lossy Transmission Line Model (LTRA)

The uniform RLC/RC/LC/RG transmission line model (referred to as the LTRA model hence-
forth) models a uniform constant-parameter distributed transmission line. The RC and LC cases
may also be modeled using the URC and TRA models; however, the newer LTRA model is usu-
ally faster and more accurate than the others. The operation of the LTRA model is based on the
convolution of the transmission line’s impulse responses with its inputs (see [8]). The LTRA
model takes a number of parameters, some of which must be given and some of which are
optional.

6.2. LOSSY TRANSMISSION LINES 123

Name Parameter Units/Type Default Example
R resistance/length Ω/unit 0.0 0.2
L inductance/length H/unit 0.0 9.13e-9
G conductance/length mhos/unit 0.0 0.0
C capacitance/length F/unit 0.0 3.65e-12

LEN length of line unit no default 1.0
REL breakpoint control arbitrary unit 1 0.5
ABS breakpoint control 1 5

NOSTEPLIMIT don’t limit time-step to less
than line delay

flag not set set

NO CONTROL don’t do complex time-step
control

flag not set set

LININTERP use linear interpolation flag not set set
MIXEDINTERP use linear when quadratic

seems bad
flag not set set

COMPACTREL special reltol for history
compaction

RELTOL 1.0e-3

COMPACTABS special abstol for history
compaction

ABSTOL 1.0e-9

TRUNCNR use Newton-Raphson method
for time-step control

flag not set set

TRUNCDONTCUT don’t limit time-step to keep
impulse-response errors low

flag not set set

The following types of lines have been implemented so far:

• RLC (uniform transmission line with series loss only),

• RC (uniform RC line),

• LC (lossless transmission line),

• RG (distributed series resistance and parallel conductance only).

Any other combination will yield erroneous results and should not be tried. The length LEN
of the line must be specified. NOSTEPLIMIT is a flag that will remove the default restriction
of limiting time-steps to less than the line delay in the RLC case. NO CONTROL is a flag that
prevents the default limiting of the time-step based on convolution error criteria in the RLC and
RC cases. This speeds up simulation but may in some cases reduce the accuracy of results.
LININTERP is a flag that, when specified, will use linear interpolation instead of the default
quadratic interpolation for calculating delayed signals. MIXEDINTERP is a flag that, when spec-
ified, uses a metric for judging whether quadratic interpolation is not applicable and if so uses
linear interpolation; otherwise it uses the default quadratic interpolation. TRUNCDONTCUT is a
flag that removes the default cutting of the time-step to limit errors in the actual calculation of
impulse-response related quantities. COMPACTREL and COMPACTABS are quantities that control
the compaction of the past history of values stored for convolution. Larger values of these lower
accuracy but usually increase simulation speed. These are to be used with the TRYTOCOMPACT
option, described in the .OPTIONS section. TRUNCNR is a flag that turns on the use of Newton-
Raphson iterations to determine an appropriate time-step in the time-step control routines. The

124 CHAPTER 6. TRANSMISSION LINES

default is a trial and error procedure by cutting the previous time-step in half. REL and ABS are
quantities that control the setting of breakpoints.

The option most worth experimenting with for increasing the speed of simulation is REL. The
default value of 1 is usually safe from the point of view of accuracy but occasionally increases
computation time. A value greater than 2 eliminates all breakpoints and may be worth trying
depending on the nature of the rest of the circuit, keeping in mind that it might not be safe from
the viewpoint of accuracy.

Breakpoints may usually be entirely eliminated if it is expected the circuit will not display
sharp discontinuities. Values between 0 and 1 are usually not required but may be used for
setting many breakpoints.

COMPACTREL may also be experimented with when the option TRYTOCOMPACT is specified in
a .OPTIONS card. The legal range is between 0 and 1. Larger values usually decrease the
accuracy of the simulation but in some cases improve speed. If TRYTOCOMPACT is not specified
on a .OPTIONS card, history compaction is not attempted and accuracy is high.

NO CONTROL, TRUNCDONTCUT and NOSTEPLIMIT also tend to increase speed at the expense of
accuracy.

6.3 Uniform Distributed RC Lines

General form:

UXXXXXXX n1 n2 n3 mname l=len <n=lumps>

Examples:

U1 1 2 0 URCMOD L=50U
.model URCMOD URC CPERL=100p RPERL=100k FMAX=10G

URC2 1 12 2 UMODL l=1MIL N=6

n1 and n2 are the two element nodes the RC line connects, while n3 is the node the capacitances
are connected to. mname is the model name, len is the length of the RC line in meters. lumps,
if specified, is the number of lumped segments to use in modeling the RC line (see the model
description for the action taken if this parameter is omitted).

6.3.1 Uniform Distributed RC Model (URC)

The URC model is derived from a model proposed by L. Gertzberg in 1974. The model is
accomplished by a subcircuit type expansion of the URC line into a network of lumped RC
segments with internally generated nodes. The RC segments are in a geometric progression,
increasing toward the middle of the URC line, with K as a proportionality constant. The num-
ber of lumped segments used, if not specified for the URC line device, is determined by the
following formula:

6.4. KSPICE LOSSY TRANSMISSION LINES 125

N =

log
∣∣∣∣Fmax

R
L

C
L 2πL2

∣∣∣ (K−1)
K

∣∣∣2∣∣∣∣
logK

(6.1)

The URC line is made up strictly of resistor and capacitor segments unless the ISPERL parame-
ter is given a nonzero value, in which case the capacitors are replaced with reverse biased diodes
with a zero-bias junction capacitance equivalent to the capacitance replaced, and with a satu-
ration current of ISPERL amps per meter of transmission line and an optional series resistance
equivalent to RSPERL ohms per meter.

Name Parameter Units Default Example Area
K Propagation Constant - 1.5 1.2 -

FMAX Maximum Frequency of interest Hz 1.0 G 6.5 Meg -
RPERL Resistance per unit length Ω/m 1000 10 -
CPERL Capacitance per unit length F/m 10e-15 1 p -
ISPERL Saturation Current per unit length A/m 0 - -
RSPERL Resistance per unit length Ω/m 0 - -

6.4 KSPICE Lossy Transmission Lines

Unlike SPICE3, which uses the state-based approach to simulate lossy transmission lines,
KSPICE simulates lossy transmission lines and coupled multiconductor line systems using the
recursive convolution method. The impulse response of an arbitrary transfer function can be
determined by deriving a recursive convolution from the Pade approximations of the function.
ngspice is using this approach for simulating each transmission line’s characteristics and each
multiconductor line’s modal functions. This method of lossy transmission line simulation has
shown to give a sigificant speedup. Please note that the following two models will support only
transient simulation, no ac.

Additional Documentation Available:

• S. Lin and E. S. Kuh, ‘Pade Approximation Applied to Transient Simulation of Lossy
Coupled Transmission Lines,’ Proc. IEEE Multi-Chip Module Conference, 1992, pp.
52-55.

• S. Lin, M. Marek-Sadowska, and E. S. Kuh, ‘SWEC: A StepWise Equivalent Conduc-
tance Timing Simulator for CMOS VLSI Circuits,’ European Design Automation Conf.,
February 1991, pp. 142-148.

• S. Lin and E. S. Kuh, ‘Transient Simulation of Lossy Interconnect,’ Proc. Design Au-
tomation Conference, Anaheim, CA, June 1992, pp. 81-86.

126 CHAPTER 6. TRANSMISSION LINES

6.4.1 Single Lossy Transmission Line (TXL)

General form:

YXXXXXXX N1 0 N2 0 mname <LEN=LENGTH>

Example:

Y1 1 0 2 0 ymod LEN=2
.MODEL ymod txl R=12.45 L=8.972e-9 G=0 C=0.468e-12 length=16

n1 and n2 are the nodes of the two ports. The optional instance parameter len is the length of
the line and may be expressed in multiples of [unit]. Typically unit is given in meters. len will
override the model parameter length for the specific instance only.

The TXL model takes a number of parameters:

Name Parameter Units/Type Default Example
R resistance/length Ω/unit 0.0 0.2
L inductance/length H/unit 0.0 9.13e-9
G conductance/length mhos/unit 0.0 0.0
C capacitance/length F/unit 0.0 3.65e-12

LENGTH length of line unit no default 1.0

Model parameter length must be specified as a multiple of unit. Typically unit is given in [m].
For transient simulation only.

6.4.2 Coupled Multiconductor Line (CPL)

The CPL multiconductor line model is in theory similar to the RLGC model, but without fre-
quency dependent loss (neither skin effect nor frequency-dependent dielectric loss). Up to 8
coupled lines are supported in ngspice.

General form:

PXXXXXXX NI1 NI2...NIX GND1 NO1 NO2...NOX GND2 mname <LEN=LENGTH>

Example:

P1 in1 in2 0 b1 b2 0 PLINE
.model PLINE CPL length={Len}
+R=1 0 1
+L={L11} {L12} {L22}
+G=0 0 0
+C={C11} {C12} {C22}
.param Len=1 Rs=0
+ C11=9.143579E-11 C12=-9.78265E-12 C22=9.143578E-11
+ L11=3.83572E-7 L12=8.26253E-8 L22=3.83572E-7

6.4. KSPICE LOSSY TRANSMISSION LINES 127

ni1 ... nix are the nodes at port 1 with gnd1; no1 ... nox are the nodes at port 2 with gnd2. The
optional instance parameter len is the length of the line and may be expressed in multiples of
[unit]. Typically unit is given in meters. len will override the model parameter length for the
specific instance only.

The CPL model takes a number of parameters:

Name Parameter Units/Type Default Example
R resistance/length Ω/unit 0.0 0.2
L inductance/length H/unit 0.0 9.13e-9
G conductance/length mhos/unit 0.0 0.0
C capacitance/length F/unit 0.0 3.65e-12

LENGTH length of line unit no default 1.0

All RLGC parameters are given in Maxwell matrix form. For the R and G matrices the diagonal
elements must be specified, for L and C matrices the lower or upper triangular elements must
specified. The parameter LENGTH is a scalar and is mandatory. For transient simulation only.

128 CHAPTER 6. TRANSMISSION LINES

Chapter 7

Device Models

7.1 Instance lines and .model lines

Adding a device to the ngspice netlist as described in this chapter will require two lines: the
instance line and a .model line.

Instance line:

QXXXXXXX node1 node2 node3 modelname <instpar1=val> <instpar2=val> <off>

.model line:

.model modelname modeltype mpar1=val mpar2=val ...

The first letter of the instance line (e.g. Q for bipolar) will select the device (see 2.2), QXXXXXXX
denotes a unique name. Next there are the device nodes. modelname is a user-given reference
to a specific .model line. Instance parameters (specific to the device, often optional) may
follow.

The .model line adds a set of model parameters. After the .model token the modelname sets
the link to the devices calling this model parameter set. modeltype links the parameter set to
a specific model type, e.g. NPN or PNP for bipolar transistors (see 2.3 for model types available
in ngspice). Model parameters may follow.Their number may differ. If no parameters is given,
default parameters hardcoded into ngspice are selected. Complex device models may require
several hundred parameters. level and version parameters allow to access sub-categories of
a specific device model.

Example (integrated NMOS transistor, BSIM3):

M1 dnode1 gnode1 snode1 bnode1 mosnb3 L=0.35u W=2u
.model mosnb3 NMOS level=8 version=3.3.0 tox=6.5n nch=2.4e17 nsub=5e16 vth0=0.3

129

130 CHAPTER 7. DEVICE MODELS

7.2 Junction Diodes

General form:

DXXXXXXX n+ n- mname <area=val> <m=val> <pj=val> <off>
+ <ic=vd> <temp=val> <dtemp=val>
+ <lm=val> <wm=val> <lp=val> <wp=val>

Examples:

DBRIDGE 2 10 DIODE1
DCLMP aa cc DMOD AREA=3.0 IC=0.2

The pn junction (diode) implemented in ngspice expands the one found in SPICE3f5. Perimeter
effects and high injection level have been introduced into the original model and temperature
dependence of some parameters has been added. n+ and n- are the positive (anode) and negative
(cathode) nodes, respectively. mname is the model name. Instance parameters may follow,
dedicated to only the diode described on the respective line. area is the area scale factor,
which may scale the saturation current given by the model parameters (and others, see table
below). pj (perim) is the perimeter scale factor, scaling the sidewall saturation current and its
associated capacitance. m is a multiplier of area and perimeter, and off indicates an (optional)
starting condition on the device for dc analysis. If the area factor is omitted, a value of 1.0 is
assumed. The (optional) initial condition specification using ic is intended for use with the uic
option on the .tran control line, when a transient analysis is desired starting from other than
the quiescent operating point. You should supply the initial voltage across the diode there. The
(optional) temp value is the temperature at which this device is to operate, and overrides the
temperature specification on the .option control line. The temperature of each instance can be
specified as an offset to the circuit temperature with the dtemp option.

To fulfill requirements of modern process design kits (PDK) the basic spice3 model was ex-
tended with the capability of modeling parasitic effects like sidewall junction currents and ca-
pacitances, tunnel currents and metal and polysilicon overlap capacitances. Latter effect can be
activated by LEVEL=3 model parameter or by setting element parameters lm, wm, lp and wp. If
both are given, element parameters have priority.

With the (new in ngspice-39) OpenVAF/OSDI approach (see 9), all modern diode models, writ-
ten in Verilog-A, become available, like JUNCAP etc..

7.2.1 Diode Model (D)

Diode models may be described in the netlist input file (or an file included by .inc) according to
the following example:

7.2. JUNCTION DIODES 131

General form:

.model mname type(pname1=pval1 pname2=pval2 ...)

Examples:

.model DIODE1 D (bv=50 is=1e-13 n=1.05)

with a user defined model name mname, and the model type D.

A basic model statement using only the internal default model parameters is

Basic model statement:

.model DMOD D

The dc characteristics of the diode are determined by the parameters IS and N. An ohmic resis-
tance, RS, is included. Charge storage effects are modeled by a transit time, TT, and a nonlinear
depletion layer capacitance that is determined by the parameters CJO, VJ, and M. The tempera-
ture dependence of the saturation current is defined by the parameters EG, the energy, and XTI,
the saturation current temperature exponent. The nominal temperature where these parameters
were measured is TNOM, which defaults to the circuit-wide value specified on the .options con-
trol line. Reverse breakdown is modeled by an exponential increase in the reverse diode current
and is determined by the parameters BV and IBV (both of which are positive numbers).

132 CHAPTER 7. DEVICE MODELS

Junction DC parameters

Name Parameter Units Default Example Scale factor
IS (JS) Saturation current A 1.0e-14 1.0e-16 area
JSW (ISW) Sidewall saturation current A 0.0 1.0e-15 perimeter
N Emission coefficient - 1 1.5
RS Ohmic resistance Ω 0.0 100 1/area

BV (VB,VRB,VAR) Reverse breakdown voltage V ∞ 40
IBV (IB) Current at breakdown voltage A 1.0e-3 1.0e-4
NBV (NZ) Breakdown Emission

Coefficient
- N 1.2

IKF (IK) Forward knee current A 0.0 1.0e-3
IKR Reverse knee current A 0.0 1.0e-3
JTUN Tunneling saturation current A 0.0 area
JTUNSW Tunneling sidewall saturation

current
A 0.0 perimeter

NTUN Tunneling emission
coefficient

- 30

XTITUN Tunneling saturation current
exponential

- 3

KEG EG correction factor for
tunneling

- 1.0

ISR Recombination saturation
current

A 1e-14 1pA area

NR Recombination current
emission coefficient

- 2 1.5

Junction capacitance parameters

Name Parameter Units Default Example Scale factor
CJO (CJ0) Zero-bias junction

bottom-wall capacitance
F 0.0 2pF area

CJP (CJSW) Zero-bias junction sidewall
capacitance

F 0.0 .1pF perimeter

FC Coefficient for forward-bias
depletion bottom-wall
capacitance formula

- 0.5 -

FCS Coefficient for forward-bias
depletion sidewall
capacitance formula

- 0.5 -

M (MJ) Area junction grading
coefficient

- 0.5 0.5

MJSW Periphery junction grading
coefficient

- 0.33 0.5

VJ (PB) Junction potential V 1 0.6
PHP Periphery junction potential V 1 0.6
TT Transit-time sec 0 0.1ns

7.2. JUNCTION DIODES 133

Metal and Polysilicon Overlap Capacitances (level=3)

Name Parameter Units Default Example Scale factor
LM Length of metal capacitor m 0.0 4um SCALE
LP Length of polysilicon

capacitor
m 0.0 5um SCALE

WM Width of metal capacitor m 0.0 2um SCALE
WP Width of polysilicon

capacitor
m 0.0 4um SCALE

XOM Thickness of the metal to
bulk oxide

m 1e-06 -

XOI Thickness of the polysilicon
to bulk oxide

m 1e-06 -

XM Masking and etching effects
in metal

m 0.0 -

XP Masking and etching effects
in polysilicon

m 0.0 -

XW Masking and etching effects m 0.0 -

134 CHAPTER 7. DEVICE MODELS

Temperature effects

Name Parameter Units Default Example

EG Activation energy eV 1.11
1.11 Si
0.69 Sbd
0.67 Ge

GAP1 First bandgap correction
factor (TLEV=2)

eV 7.02e-4

GAP2 Secnd bandgap correction
factor (TLEV=2)

- 1108

TNOM (TREF) Parameter measurement
temperature

◦C 27 50

TRS1 (TRS) 1st order tempco for RS 1/◦C 0.0 -
TRS2 2nd order tempco for RS 1/◦C2 0.0 -
TM1 1st order tempco for MJ 1/◦C 0.0 -
TM2 2nd order tempco for MJ 1/◦C2 0.0 -
TTT1 1st order tempco for TT 1/◦C 0.0 -
TTT2 2nd order tempco for TT 1/◦C2 0.0 -

XTI Saturation current
temperature exponent

- 3.0
3.0 pn
2.0 Sbd

TLEV Diode temperature equation
selector (0,1,2)

- 0

TLEVC Diode capac. temperature
equation selector

- 0

CTA (CTC) Area junct. cap. temperature
coefficient

1/◦C 0.0 -

CTP Perimeter junct. cap.
temperature coefficient

1/◦C 0.0 -

TCV (TBV1) Breakdown voltage
temperature coefficient

1/◦C 0.0 -

Noise modeling

Name Parameter Units Default Example Scale factor
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1

7.2.2 Diode Equations

The junction diode is the basic semiconductor device and the simplest one in ngspice, but its
model is quite complex, even when not all the physical phenomena affecting a pn junction are
handled. The diode is modeled in three different regions:

• Forward bias: the anode is more positive than the cathode, the diode is ‘on’ and can
conduct large currents. To avoid convergence problems and unrealistic high current, it is
prudent to specify a series resistance to limit current with the RS model parameter.

7.2. JUNCTION DIODES 135

• Reverse bias: the cathode is more positive than the anode and the diode is ‘off’. A reverse
bias diode conducts a small leakage current.

• Breakdown: the breakdown region is modeled only if the BV model parameter is given.
When a diode enters breakdown the current increases exponentially (remember to limit
it); BV is a positive value.

Parameters Scaling

Model parameters are scaled using the unit-less parameters area and pj and the multiplier m as
depicted below:

AREAe f f = AREA m

PJe f f = PJ m

ISe f f = IS AREAe f f + JSW PJe f f

IBVe f f = IBV AREAe f f

IKe f f = IK AREAe f f

IKRe f f = IKR AREAe f f

CJe f f = CJ0 AREAe f f

CJPe f f = CJP PJe f f

Diode DC, Transient and AC model equations

The diode model has certain dc currents for bottom and sidewall components. Exemplary here
is the equation for the bottom part:

ID =


ISe f f (e

qVD
NkT −1)+VD ·GMIN, if VD ≥−3NkT

q

−ISe f f [1+(3NkT
qVDe)

3]+VD ·GMIN, if −BVe f f <VD <−3NkT
q

−ISe f f (e
−q(BVe f f +VD)

NkT)+VD ·GMIN, if VD ≤−BVe f f

(7.1)

Two secondary effects are modeled if the appropriate parameters (see table Junction DC param-
eters) are given: Recombination current and bottom and sidewall tunnel current.

The breakdown region must be described with more depth since the breakdown is not modeled
physically. As written before, the breakdown modeling is based on two model parameters: the
‘nominal breakdown voltage’ BV and the current at the onset of breakdown IBV. For the diode
model to be consistent, the current value cannot be arbitrarily chosen, since the reverse bias and
breakdown regions must match. When the diode enters breakdown region from reverse bias,
the current is calculated using the formula1:

Ibdwn =−ISe f f (e
−qBV
NkT −1) (7.2)

The computed current is necessary to adjust the breakdown voltage making the two regions
match. The algorithm is a little bit convoluted and only a brief description is given here:

1if you look at the source code in file diotemp.c you will discover that the exponential relation is replaced
with a first order Taylor series expansion.

136 CHAPTER 7. DEVICE MODELS

Algorithm 7.1 Diode breakdown current calculation

if IBVe f f < Ibdwn then
IBVe f f = Ibdwn

BVe f f = BV
else
BVe f f = BV−NVt ln(IBVe f f

Ibdwn
)

Most real diodes shows a current increase that, at high current levels, does not follow the expo-
nential relationship given above. This behavior is due to high level of carriers injected into the
junction. High injection effects (as they are called) are modeled with IK and IKR.

IDe f f =


ID

1+
√

ID
IKe f f

, if VD ≥−3NkT
q

ID

1+
√

ID
IKRe f f

, otherwise.
(7.3)

Diode capacitance is divided into two different terms:

• Depletion capacitance

• Diffusion capacitance

Depletion capacitance is composed by two different contributes, one associated to the bottom
of the junction (bottom-wall depletion capacitance) and the other to the periphery (sidewall
depletion capacitance). The basic equations are

CDiode =Cdi f f usion +Cdepletion

Where the depletion capacitance is defined as:

Cdepletion =Cdeplbw +Cdeplsw

The diffusion capacitance, due to the injected minority carriers, is modeled with the transit time
TT:

Cdi f f usion = TT
∂ IDe f f

∂VD

The depletion capacitance is more complex to model, since the function used to approximate it
diverges when the diode voltage become greater than the junction built-in potential. To avoid
function divergence, the capacitance function is approximated with a linear extrapolation for
applied voltage greater than a fraction of the junction built-in potential.

Cdeplbw =

CJe f f (1− VD
VJ)

−MJ, if VD < FC ·VJ

CJe f f
1−FC(1+MJ)+MJVD

VJ
(1−FC)(1+MJ) , otherwise.

(7.4)

7.2. JUNCTION DIODES 137

Cdeplsw =

CJPe f f (1− VD
PHP)

−MJSW, if VD < FCS ·PHP

CJPe f f
1−FCS(1+MJSW)+MJSW· VD

PHP
(1−FCS)(1+MJSW) , otherwise.

(7.5)

Temperature dependence

The temperature affects many of the parameters in the equations above, and the following equa-
tions show how. One of the most significant parameters that varies with the temperature for a
semiconductor is the band-gap energy:

EGnom = 1.16−7.02e−4 TNOM2

TNOM+1108.0
(7.6)

EG(T) = 1.16−7.02e−4 T 2

TNOM+1108.0
(7.7)

The leakage current temperature’s dependence is:

IS(T) = IS e
log f actor

N (7.8)

JSW (T) = JSW e
log f actor

N (7.9)

where ‘logfactor’ is defined as

log f actor =
EG

Vt(TNOM)
− EG

Vt(T)
+XTI ln(

T
TNOM

) (7.10)

The contact potentials (bottom-wall an sidewall) temperature dependence is:

V J(T) = VJ(
T

TNOM
)−Vt(T)

[
3 · ln(T

TNOM
)+

EGnom

Vt(TNOM)
− EG(T)

Vt(T)

]
(7.11)

PHP(T) = PHP(
T

TNOM
)−Vt(T)

[
3 · ln(T

TNOM
)+

EGnom

Vt(TNOM)
− EG(T)

Vt(T)

]
(7.12)

The depletion capacitances temperature dependence is:

CJ(T) = CJ
[

1+MJ(4.0e−4(T −TNOM)− V J(T)
VJ

+1)
]

(7.13)

CJSW (T) = CJSW
[

1+MJSW(4.0e−4(T −TNOM)− PHP(T)
PHP

+1)
]

(7.14)

The transit time temperature dependence is:

T T (T) = TT(1+TTT1(T −TNOM)+TTT2(T −TNOM)2) (7.15)

138 CHAPTER 7. DEVICE MODELS

The junction grading coefficient temperature dependence is:

MJ(T) = MJ(1+TM1(T −TNOM)+TM2(T −TNOM)2) (7.16)

The series resistance temperature dependence is:

RS(T) = RS(1+TRS(T −TNOM)+TRS2(T −TNOM)2) (7.17)

Noise model

The diode has three noise contribution, one due to the presence of the parasitic resistance RS
and the other two (shot and flicker) due to the pn junction.

The thermal noise due to the parasitic resistance is:

i2RS =
4kT ∆ f

RS
(7.18)

The shot and flicker noise contributions with model parameters KF and AF are

i2d = 2qID∆ f +
KF · IAF

D
f

∆ f (7.19)

Self Heating model

Ngspice diode model has implemented a simple self heating approach. A current equivalent
to the dissipated power is conducted to a RC parallel circuit. The connection node voltage is
so a thermal equivalent to the junction overtemperature. This temperature follows in a electro-
thermal feedback with appropriate change of the diode current and capacitance.

Compared to the standard diode we have a third node tj and a flag thermal on element line.
In the model description we have to set RTH0 and CTH0 model parameter.

General form element usage:

DXXXXXXX n+ n- tj mname <off> <ic=vd> thermal

Example model:

.model DPWR D (bv=16 is=1e-10 n=1.03 rth0=50 cth0=1u)

7.2.3 Diode models available via OpenVAF/OSDI

With its integrated OSDI interface and the OpenVAF compiler (see chapter 9 for details),
ngspice makes available more Verilog-A compact diode models:

https://semimod.de/projects/
https://openvaf.semimod.de/

7.3. BJT 139

7.2.3.1 JUNCAP2 model

Initially developed by Philips research. A widely used diode model in integrated circuit design.
Works together with MOS models like PSP and as an alternative diode model for source/drain
junctions of BSIM4 models.

7.2.3.2 DIODE_CMC

The DIODE_CMC model includes following enhancement beyond JUNCAP2:

1. Series resistor

2. Diffusion cap with soft recovery

3. Breakdown voltage temperature coefficient

4. Noise

5. Min-max parameters for warning purposes

7.3 BJT

7.3.1 Bipolar Junction Transistors (BJTs)

General form:

QXXXXXXX nc nb ne <ns> <tj> mname <area=val> <areac=val>
+ <areab=val> <m=val> <off> <ic=vbe,vce> <temp=val>
+ <dtemp=val>

Examples:

Q23 10 24 13 QMOD IC=0.6, 5.0
Q50A 11 26 4 20 MOD1

nc, nb, and ne are the collector, base, and emitter nodes, respectively. ns is the (optional)
substrate node. When unspecified, ground is used. tj is the (optional) junction temperature
node, available in the VBIC model (see 7.3.4). mname is the model name, area, areab, areac
are the area factors (emitter, base and collector respectively), and off indicates an (optional)
initial condition on the device for the dc analysis. If the area factor is omitted, a value of 1.0 is
assumed.

The (optional) initial condition specification using ic=vbe,vce is intended for use with the
uic option on a .tran control line, when a transient analysis is desired to start from other
than the quiescent operating point. See the .ic control line description for a better way to set
transient initial conditions. The (optional) temp value is the temperature where this device is
to operate, and overrides the temperature specification on the .option control line. Using the
dtemp option one can specify the instance’s temperature relative to the circuit temperature.

140 CHAPTER 7. DEVICE MODELS

7.3.2 BJT Models (NPN/PNP)

Ngspice provides three different BJT device models, which are selected by the .model card.

.model QMOD1 PNP

.model QMOD3 NPN level=4

These are the minimal versions, using default parameters supplied by ngspice. Further optional
parameters listed in the table below may replace the ngspice default parameters. The LEVEL
keyword specifies the model to be used:

• LEVEL=1: This is the original SPICE BJT model, and it is the default model if the LEVEL
keyword is not specified on the .model line. By activating certain parameter a modified
version of the original SPICE BJT that models both vertical and lateral devices, includes
temperature corrections of collector, emitter and base resistors and allow modeling of
quasi-saturation effects.

• LEVEL=4: Advanced VBIC model (see 7.3.4 and http://www.designers-guide.org/VBIC/
for details)

• LEVEL=8: HICUM/L2 model (see 7.3.5 and the official website for details)

With the (new in ngspice-39) OpenVAF/OSDI approach (see 9), all modern bipolar models,
written in Verilog-A, become available, like VBIC, Mextram and HICUM.

7.3.3 Gummel-Poon Models

The bipolar junction transistor model in ngspice is an adaptation of the integral charge control
model of Gummel and Poon. This modified Gummel-Poon model extends the original model
to include several effects at high bias levels. The model automatically simplifies to the simpler
Ebers-Moll model when certain parameters are not specified. The parameter names used in the
modified Gummel-Poon model have been chosen to be more easily understood by the user, and
to reflect better both physical and circuit design thinking.

The dc model is defined by the parameters IS, BF, NF, ISE, IKF, and NE, which determine
the forward current gain characteristics, IS, BR, NR, ISC, IKR, and NC, which determine the
reverse current gain characteristics, and VAF and VAR, which determine the output conductance
for forward and reverse regions.

A more accurate model for transport current components is possible by specification of model
parameter IBE and IBC instead of IS.

Parameter NKF(NK)was introduced for more accurate high current beta rolloff modelling.

The BJT model has among the standard temperature parameters an extension compatible with
most foundry provided process design kits (see parameter table below TLEV).

The BJT model includes the substrate saturation current ISS. Three ohmic resistances RB, RC,
and RE are included, where RB can be high current dependent. Base charge storage is modeled
by forward and reverse transit times, TF and TR, where the forward transit time TF can be bias
dependent if desired. Nonlinear depletion layer capacitances are defined with CJE, VJE, and

http://www.designers-guide.org/VBIC/
https://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html

7.3. BJT 141

NJE for the B-E junction, CJC, VJC, and NJC for the B-C junction and CJS, VJS, and MJS for the
C-S (collector-substrate) junction.

The BJT model support a substrate capacitance that is connected to the device’s base or col-
lector, to model lateral or vertical devices dependent on the parameter SUBS. The temperature
dependence of the saturation currents, IS and ISS, is determined by the energy-gap, EG, and the
saturation current temperature exponent, XTI.

In the new model, additional base current temperature dependence is modeled by the beta tem-
perature exponent XTB. The values specified are assumed to have been measured at the tempera-
ture TNOM, which can be specified on the .options control line or overridden by a specification
on the .model line.

The BJT parameters used in the modified Gummel-Poon model are listed below. The parameter
names used in earlier versions of SPICE2 are still accepted.

Gummel-Poon BJT Parameters (incl. model extensions)

Name Parameters Units Default Example Scale factor
SUBS Substrate connection: 1 for vertical

geometry, -1 for lateral geometry
1

IS Transport saturation current A 1.0e-16 1.0e-15 area
IBE Base-Emitter saturation current A 0.0 1.0e-16 area
IBC Base-Collector saturation current A 0.0 1.0e-16 areab,areac
ISS Reverse saturation current,

substrate-to-collector for vertical
device or substrate-to-base for
lateral

A 0.0 1.0e-15 area

BF Ideal maximum forward beta. - 100 100
NF Forward current emission

coefficient
- 1.0 1

VAF (VA) Forward Early voltage V ∞ 200
IKF Corner for forward beta current

roll-off
A ∞ 0.01 area

NKF(NK) High current Beta rolloff exponent - 0.5 0.9
ISE B-E leakage saturation current. A 0.0 1e-13 area
NE B-E leakage emission coefficient - 1.5 2
BR Ideal maximum reverse beta - 1 0.1
NR Reverse current emission

coefficient
- 1 1

VAR (VB) Reverse Early voltage V ∞ 200
IKR Corner for reverse beta high

current roll-off
A ∞ 0.01 area

ISC B-C leakage saturation current
(scale is ‘areab’ for vertical devices
and ‘areac’ for lateral)

A 0.0 1e-13 areab,areac

NC B-C leakage emission coefficient - 2 1.5
RB Zero bias base resistance Ω 0 100 1/area

142 CHAPTER 7. DEVICE MODELS

IRB Current where base resistance falls
halfway to its min value

A ∞ 0.1 area

RBM Minimum base resistance at high
currents

Ω RB 10 1/area

RE Emitter resistance Ω 0 1 1/area
RC Collector resistance Ω 0 10 1/area
CJE B-E zero-bias depletion

capacitance
F 0 2pF area

VJE (PE) B-E built-in potential V 0.75 0.6
MJE (ME) B-E junction exponential factor - 0.33 0.33

TF Ideal forward transit time sec 0 0.1ns
XTF Coefficient for bias dependence of

TF
- 0

VTF Voltage describing VBC
dependence of TF

V ∞

ITF High-current parameter for effect
on TF

A 0 - area

PTF Excess phase at freq=
1

2πT F
Hz deg 0

CJC B-C zero-bias depletion
capacitance (scale is ‘areab’ for
vertical devices and ‘areac’ for
lateral)

F 0 2pF areab,areac

VJC (PC) B-C built-in potential V 0.75 0.5
MJC B-C junction exponential factor - 0.33 0.5
XCJC Fraction of B-C depletion

capacitance connected to internal
base node

- 1

TR Ideal reverse transit time sec 0 10ns
CJS Zero-bias collector-substrate

capacitance (scale is ‘areac’ for
vertical devices and ‘areab’ for
lateral)

F 0 2pF areab,areac

VJS (PS) Substrate junction built-in potential V 0.75
MJS (MS) Substrate junction exponential

factor
- 0 0.5

XTB Forward and reverse beta
temperature exponent

- 0

EG Energy gap for temperature effect
on IS

eV 1.11

XTI Temperature exponent for effect on
IS

- 3

KF Flicker-noise coefficient - 0
AF Flicker-noise exponent - 1
FC Coefficient for forward-bias

depletion capacitance formula
- 0.5 0

7.3. BJT 143

TNOM (TREF) Parameter measurement
temperature

◦C 27 50

TLEV BJT temperature equation selector - 0
TLEVC BJT capac. temperature equation

selector
- 0

TRE1 1st order temperature coefficient
for RE

1/◦C 0.0 1e-3

TRE2 2nd order temperature coefficient
for RE

1/◦C2 0.0 1e-5

TRC1 1st order temperature coefficient
for RC

1/◦C 0.0 1e-3

TRC2 2nd order temperature coefficient
for RC

1/◦C2 0.0 1e-5

TRB1 1st order temperature coefficient
for RB

1/◦C 0.0 1e-3

TRB2 2nd order temperature coefficient
for RB

1/◦C2 0.0 1e-5

TRBM1 1st order temperature coefficient
for RBM

1/◦C 0.0 1e-3

TRBM2 2nd order temperature coefficient
for RBM

1/◦C2 0.0 1e-5

TBF1 1st order temperature coefficient
for BF

1/◦C 0.0 1e-3

TBF2 2nd order temperature coefficient
for BF

1/◦C2 0.0 1e-5

TBR1 1st order temperature coefficient
for BR

1/◦C 0.0 1e-3

TBR2 2nd order temperature coefficient
for BR

1/◦C2 0.0 1e-5

TIKF1 1st order temperature coefficient
for IKF

1/◦C 0.0 1e-3

TIKF2 2nd order temperature coefficient
for IKF

1/◦C2 0.0 1e-5

TIKR1 1st order temperature coefficient
for IKR

1/◦C 0.0 1e-3

TIKR2 2nd order temperature coefficient
for IKR

1/◦C2 0.0 1e-5

TIRB1 1st order temperature coefficient
for IRB

1/◦C 0.0 1e-3

TIRB2 2nd order temperature coefficient
for IRB

1/◦C2 0.0 1e-5

TNC1 1st order temperature coefficient
for NC

1/◦C 0.0 1e-3

TNC2 2nd order temperature coefficient
for NC

1/◦C2 0.0 1e-5

144 CHAPTER 7. DEVICE MODELS

TNE1 1st order temperature coefficient
for NE

1/◦C 0.0 1e-3

TNE2 2nd order temperature coefficient
for NE

1/◦C2 0.0 1e-5

TNF1 1st order temperature coefficient
for NF

1/◦C 0.0 1e-3

TNF2 2nd order temperature coefficient
for NF

1/◦C2 0.0 1e-5

TNR1 1st order temperature coefficient
for IKF

1/◦C 0.0 1e-3

TNR2 2nd order temperature coefficient
for IKF

1/◦C2 0.0 1e-5

TVAF1 1st order temperature coefficient
for VAF

1/◦C 0.0 1e-3

TVAF2 2nd order temperature coefficient
for VAF

1/◦C2 0.0 1e-5

TVAR1 1st order temperature coefficient
for VAR

1/◦C 0.0 1e-3

TVAR2 2nd order temperature coefficient
for VAR

1/◦C2 0.0 1e-5

CTC 1st order temperature coefficient
for CJC

1/◦C 0.0 1e-3

CTE 1st order temperature coefficient
for CJE

1/◦C 0.0 1e-3

CTS 1st order temperature coefficient
for CJS

1/◦C 0.0 1e-3

TVJC 1st order temperature coefficient
for VJC

1/◦C2 0.0 1e-5

TVJE 1st order temperature coefficient
for VJE

1/◦C 0.0 1e-3

TITF1 1st order temperature coefficient
for ITF

1/◦C 0.0 1e-3

TITF2 2nd order temperature coefficient
for ITF

1/◦C2 0.0 1e-5

TTF1 1st order temperature coefficient
for TF

1/◦C 0.0 1e-3

TTF2 2nd order temperature coefficient
for TF

1/◦C2 0.0 1e-5

TTR1 1st order temperature coefficient
for TR

1/◦C 0.0 1e-3

TTR2 2nd order temperature coefficient
for TR

1/◦C2 0.0 1e-5

TMJE1 1st order temperature coefficient
for MJE

1/◦C 0.0 1e-3

TMJE2 2nd order temperature coefficient
for MJE

1/◦C2 0.0 1e-5

7.3. BJT 145

TMJC1 1st order temperature coefficient
for MJC

1/◦C 0.0 1e-3

TMJC2 2nd order temperature coefficient
for MJC

1/◦C2 0.0 1e-5

Quasi-Saturation Model extension

By defining parameter RCO, VO, GAMMA and QCO an extension of the Gummel-Poon model will
be switched on to model bipolar junction transistors that exhibit quasi-saturation effects. A
description can be found in [24].

Name Parameters Units Default Example Scale factor
RCO Epitaxial region resistance Ω 0 0.45 1/area
VO Carrier mobility knee voltage V 10 4.16

GAMMA Epitaxial region doping factor − 1e-11 1.0e-15
QCO Epitaxial region charge factor C 0.0 3.4E-11
VG Energy gap QS temp. depend. V 1.206 1.2
CN Temperature exponent of RCI 2.42 NPN 2.2 PNP
D Temperature exponent of VO .87 NPN .52 PNP

The Collector current output characteristic shows a special moderate transition in the BJT satu-
ration region, see figure 7.1. Furthermore DC current gain and the unity gain frequency fT falls
sharply.

Figure 7.1: Output characteristic with and w/o Quasi-Saturation

146 CHAPTER 7. DEVICE MODELS

7.3.4 VBIC Model

The VBIC model is an extended development of the Standard Gummel-Poon (SGP) model with
the focus of integrated bipolar transistors in today’s modern semiconductor technologies. With
the implemented modified Quasi-Saturation model from Kull and Nagel it is also possible to
model the special output characteristic of discrete switching and RF transistors. It is a improved
alternative to the SGP model for silicon, SiGe and III-V HBT devices.

VBIC Capabilities compared to Standard Gummel-Poon Model:

• Integrated substrate transistor for parasitic devices in integrated processes

• Weak avalanche and base-emitter breakdown model

• Improved Early effect modeling

• Physical separation of Ic and Ib

• Improved depletion capacitance model

• Improved temperature modeling

• Self-heating modeling

VBIC self-heating model

This model has implemented a simple 1-pole thermal network to cover self-heating effects.
That means that the power dissipation is gathered in all branches of the device model and is
conducted as an equivalent current Ith into one model node dt. This node has a resistor Rth
and capacitor Cth parallel connection to ground. Because the resistor plays the role of the
thermal resistance from junction to case the arising voltage at node dt is equivalent the BJT
junctions temperature. The model realisizes that this temperature rise leads to deviations for
internal resistors, currents and capacitors values, calculated by temperature update equations.
This process is included into the ngspice iteration schema for all analyses and is controlled by
the model parameter SELFT (SELFT=0: self heating calculation is off (default value), SELFT=1:
self-heating is on). In addition the model parameter RTH has to be given.

The simple thermal network of the VBIC model is shown in Fig. 7.2.

Figure 7.2: VBIC thermal network

7.3. BJT 147

How to instantiate the bipolar VBIC model (only minimal version) with self-heating:

vc c 0 0
vb b 0 1
ve e 0 0
vs s 0 0
Q1 c b e s dt mod1 area=1
.model mod1 npn Level=4 selft=1 rth=100

Of course it is possible to connect an more accurate thermal network to the node dt. The
following example is showing a simplified thermal network covering the thermal resistances
and capacitances of junction-case and case-ambient transitions induced by a heat-sink.

Q1 c b e s dt mod2
.model mod2 npn Level=9 selft=1 rth=20
X1 dt tamb junction-ambient
VTamb tamb 0 30
.subckt junction-ambient jct amb
rjc jct 1 0.4
ccs 1 0 5m
rcs 1 2 0.1
csa 2 0 30m
rsa 2 amb 1.3
.ends

7.3.5 HICUM level 2 Model

The physics-based HIgh-CUrrent Model (HICUM) Level2 (L2) has been a standard compact
model for bipolar junction transistors and heterojunction bipolar transistors (HBTs) for many
years. The model has been shown to be applicable to many process generations of SiGe HBTs
and also to InP HBTs, including high-speed and high-voltage device designs. The implemented
version in Ngspice is HICUML2/2.4 and can be activated by BJT model parameter level=8.

HICUML2 captures most to all known physical effects relevant in HBTs, in example:

• substrate transistor

• avalanche effect

• physics based transfer current model

• self-heating

• accurate modeling of the temperature dependence

• excess phase between base and collector current

148 CHAPTER 7. DEVICE MODELS

Figure 7.3: The equivalent circuit of HICUM/L2 without the self-heating, NQS and noise cor-
relation networks.

Note that the noise correlation network is not implemented in Ngspice. More information re-
garding the model and its parameters can be found on the website.

The equivalent circuit of the model is shown in fig. 7.3. The model is employed in many PDKs
for state-of-the-art SiGe and InP HBTs and is actively developed at TU Dresden.

The HICUM model exposes the following nodes to the user:

C(ollector) B(ase) E(mitter) S(ubstrate) T(emperature)

By connecting the T and S nodes of the model to other circuit elements, the thermal and sub-
strate network can be modified by the user. Note that both self-heating and the avalanche effect
may cause convergency issues if the operating region is too extreme.

The HICUM/L2 model can be initiated like this example:

vc c 0 0
vb b 0 1
ve e 0 0
vs s 0 0
Q1 c b e s dt mod1 area=1
.model mod1 npn Level=8

Self-heating is activated by model parameters FLSH, RTH and connecting T node of the device
instance. FLSH = 1 will only consider main thermal contributions of IC and IB, FLSH = 2 include
all power dissipations of the transistor.

7.3.6 BJT models available via OpenVAF/OSDI

With its integrated OSDI interface and the OpenVAF compiler (see chapter 9 for details),
ngspice makes available more Verilog-A compact BJT models:

https://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html
https://semimod.de/projects/
https://openvaf.semimod.de/

7.4. JFETS 149

7.3.6.1 HICUM level 0

HICUM/L0 is being developed to reduce the simulation and design time especially for larger
circuits. It addresses, compared to the SPICE Gummel-Poon model, modern BJT and HBT
technologies by including more accurate formulations for important physical effects such as
forward transit time, base-collector punch-through and collector impact ionization.

7.3.6.2 HICUM level 2

HICUM/L2 stands for HIgh CUrrent Model and targets the design of bipolar transistor circuits
at high-frequencies and high-current densities using a wide range of Si, SiGe or III-V based
process technologies. The compact model that contains accurate formulations of all known
physical effects, enables geometry scaling and statistical modeling, and covers a wide tempera-
ture, operating and frequency range.

7.3.6.3 MEXTRAM 504 and 505

MEXTRAM is an advanced compact model for the description of bipolar transistors. It con-
tains many features that the widely-used Gummel-Poon model lacks. Mextram can be used
for advanced processes like double-poly or even SiGe transistors and for high-voltage power
devices.

7.4 JFETs

7.4.1 Junction Field-Effect Transistors (JFETs)

General form:

JXXXXXXX nd ng ns mname <area> <off> <ic=vds,vgs> <temp=t>

Examples:

J1 7 2 3 JM1 OFF

nd, ng, and ns are the drain, gate, and source nodes, respectively. mname is the model name,
area is the area factor, and off indicates an (optional) initial condition on the device for dc
analysis. If the area factor is omitted, a value of 1.0 is assumed. The (optional) initial condition
specification, using ic=VDS,VGS is intended for use with the uic option on the .TRAN control
line, when a transient analysis is desired starting from other than the quiescent operating point.
See the .ic control line for a better way to set initial conditions. The (optional) temp value is
the temperature where this device is to operate, and overrides the temperature specification on
the .option control line.

150 CHAPTER 7. DEVICE MODELS

7.4.2 JFET Models (NJF/PJF)

7.4.3 Basic model statement

.model JM1 NJF level=1

.model JMOD2 PJF level=2

7.4.4 JFET level 1 model with Parker Skellern modification

The JFET level 1 model is derived from the FET model of Shichman and Hodges. The dc
characteristics are defined by the parameters VTO and BETA, which determine the variation of
drain current with gate voltage, LAMBDA, which determines the output conductance, and IS, the
saturation current of the two gate junctions. Two ohmic resistances, RD and RS, are included.

vgst = vgs−V TO (7.20)

βp = BETA (1+LAMBDA vds) (7.21)

b f ac =
1−B

PB−V TO
(7.22)

IDrain =


vds ·GMIN, if vgst ≤ 0
βp vds (vds (b f ac vds−B) vgst (2B+3b f ac (vgst − vds)))+ vds ·GMIN, if vgst ≥ vds
βp vgst2 (B+ vgst b f ac)+ vds ·GMIN, if vgst < vds

(7.23)

Note that in Spice3f and later, the fitting parameter B has been added by Parker and Skellern.
For details, see [9]. If parameter B is set to 1 equation above simplifies to

IDrain =


vds ·GMIN, if vgst ≤ 0
βp vds (2vgst − vds)+ vds ·GMIN, if vgst ≥ vds
βp vgst2 + vds ·GMIN, if vgst < vds

(7.24)

Charge storage is modeled by nonlinear depletion layer capacitances for both gate junctions,
which vary as the −1/2 power of junction voltage and are defined by the parameters CGS, CGD,
and PB.

7.4. JFETS 151

Name Parameter Units Default Example Scaling factor
VTO Threshold voltage VT 0 V -2.0 -2.0
BETA Transconductance parameter (β) A/V ” 1.0e-4 1.0e-3 area

LAMBDA Channel-length modulation
parameter (λ)

1/V 0 1.0e-4

RD Drain ohmic resistance Ω 0 100 1/area
RS Source ohmic resistance Ω 0 100 1/area

CGS Zero-bias G-S junction capacitance
Cgs

F 0 5pF area

CGD Zero-bias G-D junction
capacitance Cgd

F 0 1pF area

PB Gate junction potential V 1 0.6
IS Gate saturation current IS A 1.0e-14 1.0e-14 area
B Doping tail parameter - 1 1.1

KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1

NLEV Noise equation selector - 1 3
GDSNOI Channel noise coefficient for

nlev=3
1.0 2.0

FC Coefficient for forward-bias
depletion capacitance formula

0.5

TNOM Parameter measurement
temperature

◦C 27 50

TCV Threshold voltage temperature
coefficient

1/°C 0.0 0.01

VTOTC Threshold voltage temperature
coefficient (alternative model)

1/°C 0.0 -2.5m

BEX Mobility temperature exponent - 0.0 1.1
BETATCE Mobility temperature exponent

(alternative model)
%/°C 0.0 -0.5

XTI Gate saturation current temperature
coefficient

- 3.0

EG Bandgap voltage 1.11

Additional to the standard thermal and flicker noise model an alternative thermal channel noise
model is implemented and is selectable by setting NLEV parameter to 3. This leads to a correct
channel thermal noise description in the linear region.

Snoise =
2
3

4kT ·BETA ·V gst
(1+α +α2)

1+α
GDSNOI (7.25)

with

α =

{
1− vds

vgs−V TO , if vgs−V TO ≥ vds

0, else
(7.26)

JFET level 1 model has an alternative temperature model for main parameter VTO and BETA:

152 CHAPTER 7. DEVICE MODELS

• VTOTC is given:

V TO(Temp) =V TO+V TOTC ∗ (Temp−T NOM) (7.27)

• VTOTC not given:

V TO(Temp) =V TO−TCV ∗ (Temp−T NOM) (7.28)

• BETATCE is given:

BETA(Temp) = BETA∗1.01BETATCE∗(Temp−T NOM) (7.29)

• BETATCE not given:

BETA(Temp) = BETA∗
(

Temp
T NOM

)BEX

(7.30)

7.4.5 JFET level 2 Parker Skellern model

The level 2 model is an improvement to level 1. Details are available in a pdf originating from
Macquarie University. Some important items are

• The description maintains strict continuity in its high-order derivatives, which is essential
for prediction of distortion and intermodulation.

• Frequency dependence of output conductance and transconductance is described as a
function of bias.

• Both drain-gate and source-gate potentials modulate the pinch-off potential, which is con-
sistent with S-parameter and pulsed-bias measurements.

• Self-heating varies with frequency.

• Extreme operating regions - subthreshold, forward gate bias, controlled resistance, and
breakdown regions - are included.

• Parameters provide independent fitting to all operating regions. It is not necessary to
compromise one region in favor of another.

• Strict drain-source symmetry is maintained. The transition during drain-source potential
reversal is smooth and continuous.

The model equations are described in this pdf document and in [19].

https://ngspice.sourceforge.io/external-documents/models/psfet.pdf
https://ngspice.sourceforge.io/external-documents/models/psfet.pdf

7.4. JFETS 153

Name Description Units Default
ID Device IDText Text PF1

ACGAM Capacitance modulation - 0
BETA Linear-region transconductance scale - 10−4

CGD Zero-bias gate-source capacitance F 0
CGS Zero-bias gate-drain capacitance F 0

DELTA Thermal reduction coefficient 1/W 0
FC Forward bias capacitance parameter - 0.5

HFETA High-frequency VGS feedback parameter - 0
HFE1 HFGAM modulation by VGD 1/V 0
HFE2 HFGAM modulation by VGS 1/V 0

HFGAM High-frequency VGD feedback parameter - 0
HFG1 HFGAM modulation by VSG 1/V 0
HFG2 HFGAM modulation by VDG 1/V 0
IBD Gate-junction breakdown current A 0
IS Gate-junction saturation current A 10−14

LFGAM Low-frequency feedback parameter - 0
LFG1 LFGAM modulation by VSG 1/V 0
LFG2 LFGAM modulation by VDG 1/V 0
MVST Subthreshold modulation 1/V 0

N Gate-junction ideality factor - 1
P Linear-region power-law exponent - 2
Q Saturated-region power-law exponent - 2

RS Source ohmic resistance Ω 0
RD Drain ohmic resistance Ω 0

TAUD Relaxation time for thermal reduction s 0
TAUG Relaxation time for gamma feedback s 0
VBD Gate-junction breakdown potential V 1
VBI Gate-junction potential V 1
VST Subthreshold potential V 0
VTO Threshold voltage V -2.0
XC Capacitance pinch-off reduction factor - 0
XI Saturation-knee potential factor - 1000
Z Knee transition parameter - 0.5

RG Gate ohmic resistance Ω 0
LG Gate inductance H 0
LS Source inductance H 0
LD Drain inductance H 0

CDSS Fixed Drain-source capacitance F 0
AFAC Gate-width scale factor - 1

NFING Number of gate fingers scale factor - 1
TNOM Nominal Temperature (Not implemented) K 300 K
TEMP Temperature K 300 K

154 CHAPTER 7. DEVICE MODELS

7.5 MESFETs

7.5.1 MESFET devices

General form:

ZXXXXXXX ND NG NS MNAME <AREA> <OFF> <IC=VDS, VGS>

Examples:

Z1 7 2 3 ZM1 OFF

7.5.2 MESFET Models (NMF/PMF)

.model ZM1 NMF level=1

.model MZMOD PMF level=4

These model statements will use the default parameters (level 1 listed below).

7.5.3 Model by Statz e.a.

The MESFET model level 1 is derived from the GaAs FET model of Statz et al. as described in
[11]. The dc characteristics are defined by the parameters VTO, B, and BETA, which determine
the variation of drain current with gate voltage, ALPHA, which determines saturation voltage,
and LAMBDA, which determines the output conductance. The formula are given by:

Id =


β (Vgs−VTO)

2

1+B(Vgs−VTO)

[
1−
(

1−α
Vds
3

)3
]
(1+λVds) for 0 <Vds <

3
α

β (Vgs−VTO)
2

1+B(Vgs−VTO)
(1+λVds) for Vds ≥ 3

α

(7.31)

Two ohmic resistances, RD and RS, are included. Charge storage is modeled by total gate charge
as a function of gate-drain and gate-source voltages and is defined by the parameters CGS, CGD,
and PB.

7.5. MESFETS 155

Name Parameter Units Default Example Area
VTO Pinch-off voltage V -2.0 -2.0
BETA Transconductance parameter A/V 2 1.0e-4 1.0e-3 *

B Doping tail extending parameter 1/V 0.3 0.3 *
ALPHA Saturation voltage parameter 1/V 2 2 *

LAMBDA Channel-length modulation parameter 1/V 0 1.0e-4
RD Drain ohmic resistance Ω 0 100 *
RS Source ohmic resistance Ω 0 100 *

CGS Zero-bias G-S junction capacitance F 0 5pF *
CGD Zero-bias G-D junction capacitance F 0 1pF *
PB Gate junction potential V 1 0.6
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1
FC Coefficient for forward-bias depletion

capacitance formula
- 0.5

Device instance:

z1 2 3 0 mesmod area=1.4

Model:

.model mesmod nmf level=1 rd=46 rs=46 vt0=-1.3
+ lambda=0.03 alpha=3 beta=1.4e-3

7.5.4 Model by Ytterdal e.a.

level 2 (and levels 3,4) Copyright 1993: T. Ytterdal, K. Lee, M. Shur and T. A. Fjeldly

to be written

M. Shur, T.A. Fjeldly, T. Ytterdal, K. Lee, "Unified GaAs MESFET Model for Circuit Simula-
tion", Int. Journal of High Speed Electronics, vol. 3, no. 2, pp. 201-233, 1992

7.5.5 hfet1 and hfet2

hfet1 level 5

Heterostructure Field Effect Transistor model as described in section 4.6 of the book

K. Lee, M. Shur, T. A. Fjeldly and T. Ytterdal, Semiconductor Device Modeling for VLSI,
1993, Prentice Hall, New Jersey.

Model parameters, equivalent circuit diagrams and device equations are also described in the
AIM-Spice reference manual, section Device Models A.

hfet2 level6

The HFET level 2 model is a simplified version of the level 1 model. The model is optimized
for speed and is suitable for simulation of digital circuits. To increase the speed, some of the
features included in the level 1 model is not implemented for the level 2 model.

http://www.aimspice.com/downloads/aimspiceref.2020.100.pdf

156 CHAPTER 7. DEVICE MODELS

7.6 MOSFETs

Ngspice supports all the original MOSFET models present in SPICE3f5 and almost all the
newer ones that have been published and made open-source. Both bulk and SOI (Silicon on
Insulator) models are available. When compiled with the cider option, ngspice implements
the four terminals numerical model that can be used to simulate a MOSFET (please refer to
numerical modeling documentation for additional information and examples).

7.6.1 MOSFET devices

General form:

MXXXXXXX nd ng ns nb mname <m=val> <l=val> <w=val>
+ <ad=val> <as=val> <pd=val> <ps=val> <nrd=val>
+ <nrs=val> <off> <ic=vds, vgs, vbs> <temp=t>

Examples:

M1 24 2 0 20 TYPE1
M31 2 17 6 10 MOSN L=5U W=2U
M1 2 9 3 0 MOSP L=10U W=5U AD=100P AS=100P PD=40U PS=40U

Note the suffixes in the example: the suffix ‘u’ specifies microns (1e-6 m) and ‘p’ sq-microns
(1e-12 m2).

The instance card for MOS devices starts with the letter ’M’. nd, ng, ns, and nb are the drain,
gate, source, and bulk (substrate) nodes, respectively. mname is the model name and m is the
multiplicity parameter, which simulates ‘m’ paralleled devices. All MOS models support the ‘m’
multiplier parameter. Instance parameters l and w, channel length and width respectively, are
expressed in meters. The drain and source diffusion areas are ad and as, in square meters (m2).

If any of l, w, ad, or as are not specified, default values are used. The use of defaults simplifies
input file preparation, as well as the editing required if device geometries are to be changed. pd
and ps are the perimeters of the drain and source junctions, in meters. nrd and nrs designate
the equivalent number of squares of the drain and source diffusions; these values multiply the
sheet resistance rsh specified on the .model control line for an accurate representation of the
parasitic series drain and source resistance of each transistor. pd and ps default to 0.0 while nrd
and nrs to 1.0. off indicates an (optional) initial condition on the device for dc analysis. The
(optional) initial condition specification using ic=vds,vgs,vbs is intended for use with the uic
option on the .tran control line, when a transient analysis is desired starting from other than
the quiescent operating point. See the .ic control line for a better and more convenient way to
specify transient initial conditions. The (optional) temp value is the temperature at which this
device is to operate, and overrides the temperature specification on the .option control line.

The temperature specification is ONLY valid for level 1, 2, 3, and 6 MOSFETs, not for level 4
or 5 (BSIM) devices.

BSIM3 (v3.2 and v3.3.0), BSIM4 (v4.7 and v4.8) and BSIMSOI models are also supporting the
instance parameter delvto and mulu0 for local mismatch and NBTI (negative bias temperature
instability) modeling:

7.6. MOSFETS 157

Name Parameter Units Default Example
delvto (delvt0) Threshold voltage shift V 0.0 0.07

mulu0 Low-field mobility multiplier (U0) - 1.0 0.9

7.6.2 MOSFET models (NMOS/PMOS)

MOSFET models are the central part of ngspice, probably because they are the most widely
used devices in the electronics world. Ngspice provides all the MOSFETs implemented in the
original Spice3f and adds several models developed by UC Berkeley’s Device Group and other
independent groups.

Each model is invoked with a .model card. A minimal version is:

.model MOSN NMOS level=8 version=3.3.0

The model name MOSN corresponds to the model name in the instance card (see 7.6.1). Param-
eter NMOS selects an n-channel device, PMOS would point to a p-channel transistor. The LEVEL
and VERSION parameters select the specific model. Further model parameters are optional and
replace ngspice default values. Due to the large number of parameters (more than 100 for mod-
ern models), model cards may be stored in extra files and loaded into the netlist by the .include
(2.8) command. Model cards are specific for a an IC manufacturing process and are typically
provided by the IC foundry. Some generic parameter sets, not linked to a specific process, are
made available by the model developers, e.g. UC Berkeley’s Device Group for BSIM4 and
BSIMSOI.

Ngspice provides several MOSFET device models, which differ in the formulation of the I-V
characteristic, and are of varying complexity. Models available are listed in table 7.3. Current
models for IC design are BSIM3 (7.6.3.3, down to channel length of 0.25 µm), BSIM4 (7.6.3.4,
below 0.25 µm), BSIMSOI (7.6.4, silicon-on-insulator devices), HiSIM2 and HiSIM_HV (7.6.6,
surface potential models for standard and high voltage/high power MOS devices).

With the (new in ngspice-39) OpenVAF/OSDI approach (see 9), all modern MOS models,
written in Verilog-A, become available, like BSIMBULK, BSIM-CMG and BSIM-IMG, PSP,
HiSim etc..

7.6.2.1 MOS Level 1

This model is also known as the ‘Shichman-Hodges’ model. This is the first model written and
the one often described in the introductory textbooks for electronics. This model is applicable
only to long channel devices. The use of Meyer’s model for the C-V part makes it non charge
conserving.

7.6.2.2 MOS Level 2

This model tries to overcome the limitations of the Level 1 model addressing several short-
channel effects, like velocity saturation. The implementation of this model is complicated and
this leads to many convergence problems. C-V calculations can be done with the original Meyer
model (non charge conserving).

http://www-device.eecs.berkeley.edu/bsim/
http://www-device.eecs.berkeley.edu/bsim/

158 CHAPTER 7. DEVICE MODELS

L
ev

el
N

am
e

M
od

el
Ve

rs
io

n
D

ev
el

op
er

R
ef

er
en

ce
s

N
ot

es
1

M
O

S1
Sh

ic
hm

an
-H

od
ge

s
-

B
er

ke
le

y
T

hi
s

is
th

e
cl

as
si

ca
lq

ua
dr

at
ic

m
od

el
.

2
M

O
S2

G
ro

ve
-F

ro
hm

an
-

B
er

ke
le

y
D

es
cr

ib
ed

in
[2

]
3

M
O

S3
B

er
ke

le
y

A
se

m
i-

em
pi

ri
ca

lm
od

el
(s

ee
[1

])
4

B
SI

M
1

B
er

ke
le

y
D

es
cr

ib
ed

in
[3

]
5

B
SI

M
2

B
er

ke
le

y
D

es
cr

ib
ed

in
[5

]
6

M
O

S6
B

er
ke

le
y

D
es

cr
ib

ed
in

[2
]

9
M

O
S9

A
la

n
G

ill
es

pi
e

8,
49

B
SI

M
3v

0
3.

0
B

er
ke

le
y

ex
te

ns
io

ns
by

A
la

n
G

ill
es

pi
e

8,
49

B
SI

M
3v

1
3.

1
B

er
ke

le
y

ex
te

ns
io

ns
by

Se
rb

an
Po

pe
sc

u
8,

49
B

SI
M

3v
32

3.
2

-3
.2

.4
B

er
ke

le
y

M
ul

ti
ve

rs
io

n
co

de
8,

49
B

SI
M

3
3.

3.
0

B
er

ke
le

y
D

es
cr

ib
ed

in
[1

3]
10

,5
8

B
4S

O
I

4.
3.

1
B

er
ke

le
y

14
,5

4
B

SI
M

4v
5

4.
0

-4
.5

B
er

ke
le

y
M

ul
ti

ve
rs

io
n

co
de

14
,5

4
B

SI
M

4v
6

4.
6.

2
B

er
ke

le
y

14
,5

4
B

SI
M

4v
7

4.
7.

0
B

er
ke

le
y

14
,5

4
B

SI
M

4
4.

8.
3

B
er

ke
le

y
55

B
3S

O
IF

D
B

er
ke

le
y

56
B

3S
O

ID
D

B
er

ke
le

y
57

B
3S

O
IP

D
B

er
ke

le
y

60
ST

A
G

SO
I3

So
ut

ha
m

pt
on

68
H

iS
IM

2
2.

8.
0

H
ir

os
hi

m
a

73
H

iS
IM

_H
V

1.
2.

4/
2.

2.
0

H
ir

os
hi

m
a

H
ig

h
Vo

lta
ge

V
er

si
on

fo
rL

D
M

O
S

V
D

M
O

S
Po

w
er

M
O

S
ng

sp
ic

e
te

am
w

ea
k

in
ve

rs
io

n,
qu

as
is

at
ur

at
io

n,
se

lf
he

at
in

g

O
SD

I
se

e
9.

2
W

ith
its

O
SD

Ii
nt

er
fa

ce
al

lM
O

S
m

od
el

s
w

ri
tte

n
in

V
er

ilo
g-

A
an

d
co

m
pi

le
d

w
ith

O
pe

nV
A

F
ar

e
av

ai
la

bl
e

E
xa

m
pl

es
:B

SI
M

B
U

L
K

,B
SI

M
-C

M
G

,B
SI

M
-I

M
G

,P
SP

,H
iS

IM
(s

ee
VA

-M
od

el
s)

.

Table 7.3: MOSFET model summary

https://openvaf.semimod.de/
https://github.com/dwarning/VA-Models

7.6. MOSFETS 159

7.6.2.3 MOS Level 3

This is a semi-empirical model derived from the Level 2 model. In the 80s this model has often
been used for digital design and, over the years, has proved to be robust. A discontinuity in the
model with respect to the KAPPA parameter has been detected (see [10]). The supplied fix has
been implemented in Spice3f2 and later. Since this fix may affect parameter fitting, the option
badmos3 may be set to use the old implementation (see the section on simulation variables and
the .options line). Ngspice level 3 implementation takes into account length and width mask
adjustments (XL and XW) and device width narrowing due to diffusion (WD).

7.6.2.4 MOS Level 6

This model is described in [26]. The model can express the current characteristics of short-
channel MOSFETs at least down to 0.25 µm channel-length, GaAs FET, and resistance inserted
MOSFETs. The model evaluation time is about 1/3 of the evaluation time of the SPICE3 mos
level 3 model. The model also enables analytical treatments of circuits in short-channel region
and makes up for a missing link between a complicated MOSFET current characteristics and
circuit behaviors in the deep submicron region.

7.6.2.5 Notes on Level 1-6 models

The dc characteristics of the level 1 through level 3 MOSFETs are defined by the model param-
eters VTO, KP, LAMBDA, PHI and GAMMA. These parameters are computed by ngspice if process
parameters (NSUB, TOX, ...) are given, but users specified values always override. VTO is pos-
itive (negative) for enhancement mode and negative (positive) for depletion mode N-channel
(P-channel) devices.

Charge storage is modeled by three constant capacitors, CGSO, CGDO and CGBO, which represent
overlap capacitances, by the nonlinear thin-oxide capacitance that is distributed among the gate,
source, drain, and bulk regions, and by the nonlinear depletion-layer capacitances for both
substrate junctions divided into bottom and periphery, which vary as the MJ and MJSW power
of junction voltage respectively, and are determined by the parameters CBD, CBS, CJ, CJSW, MJ,
MJSW and PB.

Charge storage effects are modeled by the piecewise linear voltages-dependent capacitance
model proposed by Meyer. The thin-oxide charge-storage effects are treated slightly differ-
ent for the level 1 model. These voltage-dependent capacitances are included only if TOX is
specified in the input description and they are represented using Meyer’s formulation.

There is some overlap among the parameters describing the junctions, e.g. the reverse current
can be input either as IS (in A) or as JS (in A/m2). Whereas the first is an absolute value the
second is multiplied by ad and as to give the reverse current of the drain and source junctions
respectively.

This methodology has been chosen since there is no sense in relating always junction charac-
teristics with ad and as entered on the device line; the areas can be defaulted. The same idea
applies also to the zero-bias junction capacitances CBD and CBS (in F) on one hand, and CJ (in
F/m2) on the other.

160 CHAPTER 7. DEVICE MODELS

The parasitic drain and source series resistance can be expressed as either RD and RS (in ohms)
or RSH (in ohms/sq.), the latter being multiplied by the number of squares nrd and nrs input on
the device line.

MOS level 1, 2, 3 and 6 parameters

Name Parameter Units Default Example
LEVEL Model index - 1

VTO Zero-bias threshold voltage
(VT 0)

V 0.0 1.0

KP Transconductance
parameter

A/V 2 2.0e-5 3.1e-5

GAMMA Bulk threshold parameter
√

V 0.0 0.37
PHI Surface potential (U) V 0.6 0.65

LAMBDA Channel length modulation
(MOS1 and MOS2 only)

(λ)

1/V 0.0 0.02

RD Drain ohmic resistance Ω 0.0 1.0
RS Source ohmic resistance Ω 0.0 1.0

CBD Zero-bias B-D junction
capacitance

F 0.0 20fF

CBS Zero-bias B-S junction
capacitance

F 0.0 20fF

IS Bulk junction saturation
current (IS)

A 1.0e-14 1.0e-15

PB Bulk junction potential V 0.8 0.87
CGSO Gate-source overlap

capacitance per meter
channel width

F/m 0.0 4.0e-11

CGDO Gate-drain overlap
capacitance per meter

channel width

F/m 0.0 4.0e-11

CGBO Gate-bulk overlap
capacitance per meter

channel width

F/m 0.0 2.0e-11

RSH Drain and source diffusion
sheet resistance

Ω/□ 0.0 10

CJ Zero-bias bulk junction
bottom cap. per sq-meter of

junction area

F/m2 0.0 2.0e-4

MJ Bulk junction bottom
grading coeff.

- 0.5 0.5

CJSW Zero-bias bulk junction
sidewall cap. per meter of

junction perimeter

F/m 0.0 1.0e-9

7.6. MOSFETS 161

Name Parameter Units Default Example

MJSW Bulk junction sidewall
grading coeff.

-
0.50 (level1)
0.33 (level2,3)

JS Bulk junction saturation
current

TOX Oxide thickness m 1.0e-7 1.0e-7
NSUB Substrate doping cm−3 0.0 4.0e15
NSS Surface state density cm−2 0.0 1.0e10
NFS Fast surface state density cm−2 0.0 1.0e10
TPG Type of gate material: +1

opp. to substrate, -1 same as
substrate, 0 Al gate

- 1.0

XJ Metallurgical junction depth m 0.0 1M
LD Lateral diffusion m 0.0 0.8M
UO Surface mobility cm2/V ·sec 600 700

UCRIT Critical field for mobility
degradation (MOS2 only)

V/cm 1.0e4 1.0e4

UEXP Critical field exponent in
mobility degradation

(MOS2 only)

- 0.0 0.1

UTRA Transverse field coeff.
(mobility) (deleted for

MOS2)

- 0.0 0.3

VMAX Maximum drift velocity of
carriers

m/s 0.0 5.0e4

NEFF Total channel-charge (fixed
and mobile) coefficient

(MOS2 only)

- 1.0 5.0

KF Flicker noise coefficient - 0.0 1.0e-26
AF Flicker noise exponent - 1.0 1.2

NLEV Noise equation selector - 1 3
GDSNOI Channel noise coefficient

for nlev=3
1.0 2.0

FC Coefficient for forward-bias
depletion capacitance

formula

- 0.5

DELTA Width effect on threshold
voltage (MOS2 and MOS3)

- 0.0 1.0

THETA Mobility modulation
(MOS3 only)

1/V 0.0 0.1

ETA Static feedback (MOS3
only)

- 0.0 1.0

KAPPA Saturation field factor
(MOS3 only)

- 0.2 0.5

TNOM Parameter measurement
temperature

◦C 27 50

162 CHAPTER 7. DEVICE MODELS

7.6.2.6 MOS Level 9

Documentation is not available..

7.6.3 BSIM Models

Ngspice implements many of the BSIM models developed by Berkeley’s BSIM group. BSIM
stands for Berkeley Short-Channel IGFET Model and groups a class of models that is con-
tinuously updated. BSIM3 (7.6.3.3) and BSIM4 (7.6.3.4) are industry standards for CMOS
processes down to 0.15 µm (BSIM3) and below (BSIM4), are very stable and are supported by
model parameter sets from foundries all over the world. BSIM1 and BSIM2 are obsolete today.

In general, all parameters of BSIM models are obtained from process characterization, in par-
ticular level 4 and level 5 (BSIM1 and BSIM2) parameters can be generated automatically.
J. Pierret [4] describes a means of generating a ‘process’ file, and the program ngproc2mod
provided with ngspice converts this file into a sequence of BSIM1 .model lines suitable for
inclusion in an ngspice input file.

Parameters marked below with an * in the l/w column also have corresponding parameters with
a length and width dependency. For example, VFB is the basic parameter with units of Volts,
and LVFB and WVFB also exist and have units of Volt-meter.

The formula

P = P0 +
PL

Leffective
+

PW

Weffective
(7.32)

is used to evaluate the parameter for the actual device specified with

Leffective = Linput −DL (7.33)

Weffective =Winput −DW (7.34)

Note that unlike the other models in ngspice, the BSIM models are designed for use with a
process characterization system that provides all the parameters, thus there are no defaults for
the parameters, and leaving one out is considered an error. For an example set of parameters and
the format of a process file, see the SPICE2 implementation notes [3]. For more information on
BSIM2, see reference [5]. BSIM3 (7.6.3.3) and BSIM4 (7.6.3.4) represent state of the art for
submicron and deep submicron IC design.

7.6.3.1 BSIM1 model (level 4)

BSIM1 model (the first is a long series) is an empirical model. Developers placed less empha-
sis on device physics and based the model on parametrical polynomial equations to model the
various physical effects. This approach pays in terms of circuit simulation behavior but the ac-
curacy degrades in the submicron region. A known problem of this model is the negative output
conductance and the convergence problems, both related to poor behavior of the polynomial
equations.

http://bsim.berkeley.edu/

7.6. MOSFETS 163

BSIM1 (level 4) parameters

Name Parameter Units l/w
VFB Flat-band voltage V *
PHI Surface inversion potential V *
K1 Body effect coefficient

√
V *

K2 Drain/source depletion charge-sharing
coefficient

- *

ETA Zero-bias drain-induced barrier-lowering
coefficient

- *

MUZ Zero-bias mobility cm2/V ·sec

DL Shortening of channel µm
DW Narrowing of channel µm
U0 Zero-bias transverse-field mobility degradation

coefficient
1/V *

U1 Zero-bias velocity saturation coefficient µ/V *
X2MZ Sens. of mobility to substrate bias at v=0 cm2/V 2·sec *
X2E Sens. of drain-induced barrier lowering effect

to substrate bias
1/V *

X3E Sens. of drain-induced barrier lowering effect
to drain bias at Vds =Vdd

1/V *

X2U0 Sens. of transverse field mobility degradation
effect to substrate bias

1/V 2 *

X2U1 Sens. of velocity saturation effect to substrate
bias

µm/V 2 *

MUS Mobility at zero substrate bias and at Vds =Vdd cm2/V 2sec

X2MS Sens. of mobility to substrate bias at Vds =Vdd cm2/V 2sec *
X3MS Sens. of mobility to drain bias at Vds =Vdd cm2/V 2sec *
X3U1 Sens. of velocity saturation effect on drain bias

at Vds=Vdd
µm/V 2 *

TOX Gate oxide thickness µm
TEMP Temperature where parameters were measured ◦C
VDD Measurement bias range V

CGDO Gate-drain overlap capacitance per meter
channel width

F/m

CGSO Gate-source overlap capacitance per meter
channel width

F/m

CGBO Gate-bulk overlap capacitance per meter
channel length

F/m

XPART Gate-oxide capacitance-charge model flag -
N0 Zero-bias subthreshold slope coefficient - *
NB Sens. of subthreshold slope to substrate bias - *
ND Sens. of subthreshold slope to drain bias - *

RSH Drain and source diffusion sheet resistance Ω/□
JS Source drain junction current density A/m2

PB Built in potential of source drain junction V
MJ Grading coefficient of source drain junction -

164 CHAPTER 7. DEVICE MODELS

Name Parameter Units l/w
PBSW Built in potential of source, drain junction

sidewall
V

MJSW Grading coefficient of source drain junction
sidewall

-

CJ Source drain junction capacitance per unit area F/m2

CJSW source drain junction sidewall capacitance per
unit length

F/m

WDF Source drain junction default width m
DELL Source drain junction length reduction m

XPART=0 selects a 40/60 drain/source charge partition in saturation, while XPART=1 selects a
0/100 drain/source charge partition. nd, ng, and ns are the drain, gate, and source nodes, re-
spectively. mname is the model name, area is the area factor, and off indicates an (optional)
initial condition on the device for dc analysis. If the area factor is omitted, a value of 1.0 is
assumed. The (optional) initial condition specification, using ic=vds,vgs is intended for use
with the uic option on the .tran control line, when a transient analysis is desired starting from
other than the quiescent operating point. See the .ic control line for a better way to set initial
conditions.

7.6.3.2 BSIM2 model (level 5)

This model contains many improvements over BSIM1 and is suitable for analog simulation.
Nevertheless, even BSIM2 breaks transistor operation into several distinct regions and this leads
to discontinuities in the first derivative in C-V and I-V characteristics that can cause numerical
problems during simulation.

7.6.3.3 BSIM3 model (levels 8, 49)

BSIM3 solves the numerical problems of previous models with the introduction of smoothing
functions. It adopts a single equation to describe device characteristics in the operating regions.
This approach eliminates the discontinuities in the I-V and C-V characteristics. The origi-
nal model, BSIM3 evolved through three versions: BSIM3v1, BSIM3v2 and BSIM3v3. Both
BSIM3v1 and BSIM3v2 had suffered from many mathematical problems and were replaced by
BSIM3v3. The latter is the only surviving release and has itself a long revision history.

The following table summarizes the story of this model and their available ngspice versions:

Release Date Notes Version flag
BSIM3v3.0 10/30/1995 3.0
BSIM3v3.1 12/09/1996 3.1
BSIM3v3.2 06/16/1998 Revisions available: BSIM3v3.2.2,

BSIM3v3.2.3, and BSIM3v3.2.4
Parallel processing with OpenMP is available

for BSIM3v3.2.4.

3.2, 3.2.2,
3.2.3, 3.2.4

BSIM3v3.3 07/29/2005 Parallel processing with OpenMP is available
for this model.

3.3.0

http://bsim.berkeley.edu/models/bsim3/

7.6. MOSFETS 165

BSIM3v2 and 3v3 models have been proven for accurate use in 0.18 µm technologies. The
model is publicly available as source code form from University of California, Berkeley.

A detailed description is given in the user’s manual available from here .

We recommend that you use only the most recent BSIM3 models (version 3.3.0), because it
contains corrections to all known bugs. To achieve that, change the version parameter in your
modelcard files to

VERSION = 3.3.0.

If no version number is given in the .model card, this (newest) version is selected as the default.

A basic model card using only the intrinsic default parameters may look like

.model n1 nmos level=49 version=3.3.0

.model p1 pmos level=49 version=3.3.0

Unfortunately, due to historical reasons, these purely intrinsic parameters do not describe real-
istic devices. A better minimum model configuration, roughly describing 0.35µm transistors,
is

.model n1 nmos level=49 version=3.3.0 tox=10n nch=1e17 nsub=5e16

.model p1 pmos level=49 version=3.3.0 tox=10n nch=1e17 nsub=5e16

BSIM3v3.2.4 supports the extra model parameter LMLT on channel length scaling and is still
used by many foundries today.

The older BSIM3 models will not be supported, they are made available for reference only.

7.6.3.4 BSIM4 model (levels 14, 54)

This is the newest class of the BSIM family and introduces noise modeling and extrinsic para-
sitics. BSIM4, as the extension of BSIM3 model, addresses the MOSFET physical effects into
sub-100nm regime. It is a physics-based, accurate, scalable, robust and predictive MOSFET
SPICE model for circuit simulation and CMOS technology development. It is developed by
the BSIM Research Group in the Department of Electrical Engineering and Computer Sciences
(EECS) at the University of California, Berkeley (see BSIM4 home page). BSIM4 has a long
revision history. The models offered by ngspice are summarized below.

Release Date Notes Version flag
BSIM4.5.0 07/29/2005 ** 4.5.0
BSIM4.6.5 22/09/2009 ** 4.6.5
BSIM4.7.0 04/08/2011 ** 4.7
BSIM4.8.3 19/05/2025 ** 4.8

**) Parallel processing using OpenMP support is available for this model.

Details of any revision are to be found in the Berkeley user’s manuals, a pdf download of the
most recent edition is to be found here.

We recommend that you use only the most recent BSIM4 model (version 4.8.3), because it
contains corrections to all known bugs. To achieve that, change the version parameter in your
modelcard files to

http://bsim.berkeley.edu/BSIM4/BSIM3/ftpv330.zip
http://ngspice.sourceforge.net/external-documents/models/bsim330_manual.pdf
http://bsim.berkeley.edu/models/bsim4/
http://ngspice.sourceforge.net/external-documents/models/BSIM480_Manual.pdf

166 CHAPTER 7. DEVICE MODELS

VERSION = 4.8.3

If no version number is given in the .model card, this (newest) version is selected as the default.
The older models will typically not be supported, they are made available for reference only.
All version parameter starting with 4.8 will use the code of the recent version.

The basic model card, using only the intrinsic default parameters, already delivers reasonable
device characteristics.

.model n1 nmos level=54 version=4.8.3

.model p1 pmos level=54 version=4.8.3

7.6.4 BSIMSOI models (levels 10, 58, 55, 56, 57)

BSIMSOI is a SPICE compact model for SOI (Silicon-On-Insulator) circuit design, created by
University of California at Berkeley. This model is formulated on top of the BSIM3 framework.
It shares the same basic equations with the bulk model so that the physical nature and smooth-
ness of BSIM3v3 are retained. Four models are supported in ngspice, those based on BSIM3
and modeling fully depleted (FD, level 55), partially depleted (PD, level 57) and both (DD, level
56), as well as the modern BSIMSOI version 4 model (levels 10, 58). Detailed descriptions are
beyond the scope of this manual, but see e.g. BSIMSOIv4.4 User Manual for a very extensive
description of the recent model version. OpenMP support is available for levels 10, 58, version
4.4.

7.6.5 SOI3 model (level 60)

see literature citation [18] for a description.

7.6.6 HiSIM models of the University of Hiroshima

There are two model implementations available - see also HiSIM Research Center:

1. HiSIM2 model: Surface-Potential-Based MOSFET Model for Circuit Simulation version
2.8.0 - level 68 (see link to HiSIM2 for source code and manual).

2. HiSIM_HV model: Surface-Potential-Based HV/LD-MOSFET Model for Circuit Sim-
ulation version 1.2.4 and 2.2.0 - level 73 (see link to HiSIM_HV for source code and
manual).

7.6.7 MOS models available via OpenVAF/OSDI

With its integrated OSDI interface and the OpenVAF compiler (see chapter 9 for details),
ngspice makes available several Verilog-A compact MOS models. To obtain the sources you
may visit the github repository VA-Models which assembles most of the publicly available
Verilog-A compact models. To just name a few models:

http://bsim.berkeley.edu/models/bsimsoi/
http://ngspice.sourceforge.net/external-documents/models/BSIMSOIv4.4_UsersManual.pdf
https://www.hisim.hiroshima-u.ac.jp/index.php?id=87
http://home.hiroshima-u.ac.jp/usdl/HiSIM2/HiSIM_2.5.1_Release_20110407.zip
http://home.hiroshima-u.ac.jp/usdl/HiSIM_HV/C-Code/HiSIM_HV_1.2.2_Release_20110629.zip
https://semimod.de/projects/
https://openvaf.semimod.de/
https://github.com/dwarning/VA-Models

7.7. POWER MOSFET MODEL (VDMOS) 167

7.6.7.1 PSP model

The PSP model is a compact MOSFET model intended for digital, analog and RF-design, which
is jointly developed by NXP Semiconductors Research (formerly part of Philips), different uni-
versities and CEA-Leti.

PSP is a surface-potential based MOS Model, containing all relevant physical effects to model
present-day and upcoming deep-submicron bulk CMOS technologies:

• mobility reduction

• velocity saturation drain induced barrier lowering DIBL

• gate current

• lateral doping gradient effects

• STI stress

The source/drain junction model, c.q. the JUNCAP2 model, is fully integrated in PSP. Detailes
information and the most recent version of the model documentation are available on the the
CEA-Leti web site, see also the PSP Summary.

7.6.7.2 BSIM-BULK model

BSIM-BULK is the successor to BSIM4, with high accuracy compared to measured data in all
regions of operation. It features model symmetry valued for analog and RF applications.

7.6.7.3 BSIM-CMG model

BSIM-CMG (Common Multi-Gate) is a compact model for the class of common multi-gate
FETs, namely FinFETs, Nanowire and Gate-All-Around transistors.

7.6.7.4 EKV3

EKV3 Due to CMOS scaling, ICs operate more and more in moderate and weak inversion.
Evolution of CMOS device performance – from planar bulk to double-gate and FinFET. The
model is a charge-based compact model – close to physics and design. Modularity allows high-
frequency application with special attention to analog/RF IC design requirements.

7.7 Power MOSFET model (VDMOS)

The VDMOS model is a relativly simple power MOS model with 3 terminals drain, gate and
source. Its current equations are partly based on a modified MOS1 model. The gate-source
capacitance is set to a constant value by model parameter CGS. The drain-source capacitance
is evaluated from parameters CGDMAX, CGDMIN, and A. The drain-source capacitance is that of
a parallel pn diode and calculated by CJO, FC, and M. Leakage and breakdown are modeled by

https://www.cea.fr/cea-tech/leti/pspsupport/CurrentRelease
https://www.cea.fr/cea-tech/leti/pspsupport/Documents/psp103p8_summary.pdf
http://bsim.berkeley.edu/models/bsimbulk/
http://bsim.berkeley.edu/models/bsimcmg/
https://github.com/MatBucher/ekv3model

168 CHAPTER 7. DEVICE MODELS

the parallel pn diodes as well, using is and other parameters. A subthreshold current model is
available, using a single parameter KSUBTHRES. Quasi-saturation is modelled with parameters
RQ and VQ. MTRIODE may be used here as well.

The thermal network of the VDMOS model is shown in Fig. 7.4.

Figure 7.4: VDMOS model including thermal network

This model does not have a level parameter. It is invoked by the VDMOS token preceding the
parameters on the .model line. P-channel or n-channel are selected by the model parameter
PCHAN and NCHAN. If no flag is given, n-channel is the default. Standard MOS instance
parameters W and L are not acknowledged because they are no design parameters and are not
provided by the device manufacturers.

The following ’parameters’ in the .model line are no model parameters, but serve informa-
tion purposes for the user: mfg=..., Vds=..., Ron=..., and Qg=... They are ignored by
ngspice.

General form:

MXXXXXXX nd ng ns mname <m=val> <temp=t> <dtemp=t>
.model mname VDMOS <Pchan> <parameters>

Example:

M1 24 2 0 IXTH48P20P
.MODEL IXTH48P20P VDMOS Pchan Vds=200 VTO=-4 KP=10 Lambda=5m
+ Mtriode=0.3 Ksubthres=120m Rs=10m Rd=20m Rds=200e6
+ Cgdmax=6000p Cgdmin=100p A=0.25 Cgs=5000p Cjo=9000p
+ Is=2e-6 Rb=20m BV=200 IBV=250e-6 NBV=4 TT=260e-9

VDMOS instance parameters

7.7. POWER MOSFET MODEL (VDMOS) 169

Name Parameter Units Default Example
m device multiplier - 1 -
off Device initially off - 0

icvds Initial D-S voltage V 0.0
icvgs Initial G-S voltage V 0.0
temp device temperature ◦C 27 100

dtemp device temperature
difference

◦C 0.0 50

ic Vector of D-S, G-S voltages V 0.0
thermal Thermal model switch

on/off
- -

170 CHAPTER 7. DEVICE MODELS

VDMOS model parameters

Name Parameter Units Default Example
VDMOS select VDMOS model - must given -
NCHAN nch type transistor - default, if not given -
PCHAN pch type transistor - required, if PMOS -

VTO Zero-bias threshold voltage
(VT 0)

V 3.0 4

KP Transconductance
parameter

A/V 2 25+10*chantype 5.9

PHI Surface potential V
LAMBDA Channel length modulation

(λ)
1/V 0.0 0.001

THETA Vgs influence on mobility 1/V 0.0 0.015
RD Drain ohmic resistance Ω 0.0 61m
RS Source ohmic resistance Ω 0.0 18m
RG Gate ohmic resistance Ω 0.0 3
KF Flicker noise coefficient - 0.0
AF Flicker noise exponent - 1.0

TNOM Parameter measurement
temperature

◦C 27 25

RQ Quasi saturation resistance
fitting parameter

Ω 0.0 0.5

VQ Quasi saturation voltage
fitting parameter

V 0.0 100

MTRIODE Conductance multiplier in
triode region

− 1.0 0.8

SUBSHIFT shift along gate voltage axis
in the dual parameter
subthreshold model

V 0.0

KSUBTHRES slope in the single
parameter subthreshold

model

- 0.1 0.27

BV Vds breakdown voltage V ∞

IBV Current at Vds=bv A 1.0e-10
NBV Vds breakdown emission

coefficient
- 1.0

RDS Drain-source shunt
resistance

Ω ∞ 1e7

RB Body diode ohmic
resistance

Ω 0.0 14m

N Body diode emission
coefficient

- 1.0 1.1

TT Body diode transit time s 0.0

7.7. POWER MOSFET MODEL (VDMOS) 171

Name Parameter Units Default Example
EG Body diode activation

energy for temperature
effect on IS

eV 1.11

XTI Body diode saturation
current temperature

exponent

- 3.0 3.2

IS Body diode saturation
current

A 1e-14 60p

VJ Body diode junction
potential

V 0.8

FC Body diode coefficient for
forward-bias depletion
capacitance formula

- 0.5

CJO Zero-bias body diode
junction capacitance

F 0.5n 1.5n

M Body diode grading
coefficient

- 0.5 0.6

CGDMIN Minimum non-linear G-D
capacitance

F 20p 10p

CGDMAX Maximum non-linear G-D
capacitance

F 2n 2.45n

A Non-linear Cgd capacitance
parameter

- 1 0.3

CGS Gate-source capacitance F 1.4n 1.2n

TCVTH (VTOTC) Linear Vth0 temperature
coefficient

1/°C 0.0 0.0065

MU (BEX) Exponent of gain
temperature dependency

- -1.5 -1.27

TEXP0 Drain resistance rd0
temperature exponent

- 1.5

TEXP1 Drain resistance rd1
temperature exponent

- 0.3

TRD1 Drain resistance linear
temperature coefficient

1/°C 0.0

TRD2 Drain resistance quadratic
temperature coefficient

1/(°C)2 0.0

TRG1 Gate resistance linear
temperature coefficient

1/°C 0.0

TRG2 Gate resistance quadratic
temperature coefficient

1/(°C)2 0.0

TRS1 Source resistance linear
temperature coefficient

1/°C 0.0

172 CHAPTER 7. DEVICE MODELS

Name Parameter Units Default Example
TRS2 Source resistance quadratic

temperature coefficient
1/(°C)2 0.0

TRB1 Body resistance linear
temperature coefficient

1/°C 0.0

TRB2 Body resistance quadratic
temperature coefficient

1/(°C)2 0.0

TKSUBTHRES1 Linear temperature
coefficient of ksubthres

1/°C 0.0

TKSUBTHRES2 Quadratic temperature
coefficient of ksubthres

1/(°C)2 0.0

RTHJC Thermal resistance
junction-case

K/W 1.0 0.4

CTHJ Thermal capacitance J/K 10e-6 5e-3
RTHCA Thermal resistance

case-ambient (w/o heatsink)
K/W 1000

VDMOS electro-thermal model

Power electronic devices behavior the effect of self-heating effect. That means that the dissi-
pated power has an impact to the electrical behavior of the terminal currents. To minimize this
effect and to protect the element from thermal destruction heat sinks are supplied to this kind of
power devices.

The ngspice VDMOS model has introduced an electro-thermal approach by stamping additional
elements into the circuit matrix and by iteration the additional current control inside the spice
solver.

The transistor now has 5 nodes. Besides D, G, and S we have TJ and TCASE. The additional
nodes must be activated by the device switch THERMAL. Heat is generated in the MOS channel
and peripheral elements like resistors, its temperature is available and may be measured at node
TJ, and is fed back internally into the device equations. Within the transistor package the heat
is flowing from the channel to the metal surface of the case, at node TCASE. Here you may
connect a heat sink, to offer a flow path for the heat away from the device. The internal heat
resistance is RTHJC (junction to case), a typical data sheet value. The model also includes the
heat capacitance CTHJ of the semiconductor die and package (typically not available in the
data sheet, so to be estimated only).

The following example show the usage of ngspice electro-thermal model including a simple
heat sink:

7.7. POWER MOSFET MODEL (VDMOS) 173

General form:

MXXXXXXX nd ng ns tj tc mname thermal <m=val> <temp=t> <dtemp=t>

Example:

M1 24 2 0 tj tc IXTH48P20P thermal
rcs tc 1 0.1
csa 1 0 30m
rsa 1 amb 1.3
VTamb tamb 0 25
.MODEL IXTH48P20P VDMOS Pchan Vds=200 VTO=-4 KP=10 Lambda=5m
+ Mtriode=0.3 Ksubthres=120m Rs=10m Rd=20m Rds=200e6
+ Cgdmax=6000p Cgdmin=100p A=0.25 Cgs=5000p Cjo=9000p
+ Is=2e-6 Rb=20m BV=200 IBV=250e-6 NBV=4 TT=260e-9
+ Rthjc=0.4 Cthj=5e-3

174 CHAPTER 7. DEVICE MODELS

Chapter 8

Mixed-Mode and Behavioral Modeling
with XSPICE

Ngspice implements XSPICE extensions for behavioral and mixed-mode (analog and digital)
modeling. In the XSPICE framework this is referred to as code level modeling. Behavioral
modeling may benefit dramatically because XSPICE offers a means to add analog functionality
programmed in C. Many examples (amplifiers, oscillators, filters ...) are presented in the fol-
lowing. Even more flexibility is available because you may define your own models and use
them in addition and in combination with all the already existing ngspice functionality. Digital
and mixed mode simulation is sped up significantly by simulating the digital part in an event
driven manner, in that state equations use only a few allowed states and are evaluated only
during switching, and not continuously in time and signal as in a pure analog simulator.

This chapter describes the predefined models available in ngspice, stemming from the original
XSPICE simulator or being added to enhance the usability. The instructions for writing new
code models are given in Chapt. 24.

To make use of the XSPICE extensions, you need to compile them in. Linux, CYGWIN,
MINGW and other users may add the flag --enable-xspice to their ./configure command
and then recompile. The pre-built ngspice for Windows distribution has XSPICE already en-
abled. For detailed compiling instructions see Chapt. 28.1.

8.1 Code Model Element & .MODEL Cards

8.1.1 Syntax

Ngspice includes a library of predefined ‘Code Models’ that can be placed within any circuit
description in a manner similar to that used to place standard device models. Code model in-
stance cards always begin with the letter ‘A’, and always make use of a .MODEL card to describe
the code model desired. Section 24 of this document goes into greater detail as to how a code
model similar to the predefined models may be developed, but once any model is created and
linked into the simulator it may be placed using one instance card and one .MODEL card (note
here we conform to the SPICE custom of referring to a single logical line of information as a
‘card’). As an example, the following uses a predefined ‘gain’ code model taking as an input
some value on node 1, multiplies it by a gain of 5.0, and outputs the new value to node 2.

175

176 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Note that, by convention, input ports are specified first on code models. Output ports follow the
inputs.

Example:

a1 1 2 amp
.model amp gain(gain=5.0)

In this example the numerical values picked up from single-ended (i.e. ground referenced)
input node 1 and output to single-ended output node 2 will be voltages, since in the Interface
Specification File for this code model (i.e., gain), the default port type is specified as a voltage
(more on this later). However, if you didn’t know this, the following modifications to the
instance card could be used to insure it:

Example:

a1 %v(1) %v(2) amp
.model amp gain(gain=5.0)

The specification %v preceding the input and output node numbers of the instance card indicate
to the simulator that the inputs to the model should be single-ended voltage values. Other
possibilities exist, as described later.

Some of the other features of the instance and .MODEL cards are worth noting. Of particular in-
terest is the portion of the .MODEL card that specifies gain=5.0. This portion of the card assigns
a value to a parameter of the ‘gain’ model. There are other parameters that can be assigned val-
ues for this model, and in general code models will have several. In addition to numeric values,
code model parameters can take non-numeric values (such as TRUE and FALSE), and even
vector values. All of these topics will be discussed at length in the following pages. In general,
however, the instance and .MODEL cards that define a code model will follow the abstract form
described below. This form illustrates that the number of inputs and outputs and the number of
parameters that can be specified is relatively open-ended and can be interpreted in a variety of
ways (note that angle-brackets ‘<’ and ‘>’ enclose optional inputs):

8.1. CODE MODEL ELEMENT & .MODEL CARDS 177

Example:

AXXXXXXX <%v,%i,%vd,%id,%g,%gd,%h,%hd, or %d>
+ <[> <~><%v,%i,%vd,%id,%g,%gd,%h,%hd, or %d>
+ <NIN1 or +NIN1 -NIN1 or "null">
+ <~>...<NIN2.. <]> >
+ <%v,%i,%vd,%id,%g,%gd,%h,%hd,%d or %vnam>
+ <[> <~><%v,%i,%vd,%id,%g,%gd,%h,%hd,

or %d><NOUT1 or +NOUT1 -NOUT1>
+ <~>...<NOUT2.. <]>>
+ MODELNAME

.MODEL MODELNAME MODELTYPE
+ <(PARAMNAME1= <[> VAL1 <VAL2... <]>> PARAMNAME2..>)>

Square brackets ([]) are used to enclose vector input nodes. In addition, these brackets are used
to delineate vectors of parameters.

The literal string ‘null’, when included in a node list, is interpreted as no connection at that input
to the model. ‘Null’ is not allowed as the name of a model’s input or output if the model only
has one input or one output. Also, ‘null’ should only be used to indicate a missing connection
for a code model; use on other XSPICE component is not interpreted as a missing connection,
but will be interpreted as an actual node name.

The tilde, ‘~’, when prepended to a digital node name, specifies that the logical value of that
node be inverted prior to being passed to the code model. This allows for simple inversion of
input and output polarities of a digital model in order to handle logically equivalent cases and
others that frequently arise in digital system design. The following example defines a NAND
gate, one input of which is inverted:

a1 [~1 2] 3 nand1
.model nand1 d_nand (rise_delay=0.1 fall_delay=0.2)

The optional symbols %v, %i, %vd, etc. specify the type of port the simulator is to expect for
the subsequent port or port vector. The meaning of each symbol is given in Table 8.1.

The symbols described in Table 8.1 may be omitted if the default port type for the model is
desired. Note that non-default port types for multi-input or multi-output (vector) ports must be
specified by placing one of the symbols in front of EACH vector port. On the other hand, if all
ports of a vector port are to be declared as having the same non-default type, then a symbol may
be specified immediately prior to the opening bracket of the vector. The following examples
should make this clear:

Example 1: - Specifies two differential voltage connections, one
to nodes 1 & 2, and one to nodes 3 & 4.

178 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Port Type Modifiers
Modifier Interpretation

%v represents a single-ended voltage port - one node name or number is expected
for each port.

%i represents a single-ended current port - one node name or number is expected
for each port.

%g represents a single-ended voltage-input, current-output (VCCS) port - one
node name or number is expected for each port. This type of port is auto-
matically an input/output.

%h represents a single-ended current-input, voltage-output (CCVS) port - one
node name or number is expected for each port. This type of port is auto-
matically an input/output.

%d represents a digital port - one node name or number is expected for each port.
This type of port may be either an input or an output.

%vnam represents the name of a voltage source, the current through which is taken as
an input. This notation is provided primarily in order to allow models defined
using SPICE2G6 syntax to operate properly in XSPICE.

%vd represents a differential voltage port - two node names or numbers are ex-
pected for each port.

%id represents a differential current port - two node names or numbers are ex-
pected for each port.

%gd represents a differential VCCS port - two node names or numbers are expected
for each port.

%hd represents a differential CCVS port - two node names or numbers are expected
for each port.

Table 8.1: Port Type Modifiers

8.1. CODE MODEL ELEMENT & .MODEL CARDS 179

%vd [1 2 3 4]

Example 2: - Specifies two single-ended connections to node 1 and
at node 2, and one differential connection to
nodes 3 & 4.

%v [1 2 %vd 3 4]

Example 3: - Identical to the previous example...parenthesis
are added for additional clarity.

%v [1 2 %vd(3 4)]

Example 4: - Specifies that the node numbers are to be treated in the
default fashion for the particular model.
If this model had ‘%v” as a default for this
port, then this notation would represent four single-ended
voltage connections.

[1 2 3 4]

The parameter names listed on the .MODEL card must be identical to those named in the code
model itself. The parameters for each predefined code model are described in detail in Sec-
tions 8.2 (analog), 8.3 (Hybrid, A/D) and 8.4 (digital). The steps required in order to specify
parameters for user-defined models are described in Chapter 24.

8.1.2 Examples

The following is a list of instance card and associated .MODEL card examples showing use of
predefined models within an XSPICE deck:

a1 1 2 amp
.model amp gain(in_offset=0.1 gain=5.0 out_offset=-0.01)

a2 %i[1 2] 3 sum1
.model sum1 summer(in_offset=[0.1 -0.2] in_gain=[2.0 1.0]
+ out_gain=5.0 out_offset=-0.01)

a21 %i[1 %vd(2 5) 7 10] 3 sum2
.model sum2 summer(out_gain=10.0)

a5 1 2 limit5
.model limit5 limit(in_offset=0.1 gain=2.5
+ out_lower_limit=-5.0 out_upper_limit=5.0 limit_range=0.10
+ fraction=FALSE)

a7 2 %id(4 7) xfer_cntl1
.model xfer_cntl1 pwl(x_array=[-2.0 -1.0 2.0 4.0 5.0]
+ y_array=[-0.2 -0.2 0.1 2.0 10.0]

180 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

+ input_domain=0.05 fraction=TRUE)

a8 3 %gd(6 7) switch3
.model switch3 aswitch(cntl_off=0.0 cntl_on=5.0 r_off=1e6
+ r_on=10.0 log=TRUE)

8.1.3 Search path for file input

Several code models (filesource 8.2.9, d_source 8.4.21, d_state 8.4.18) call additional
files for supply of input data. A call to file="path/filename" (or input_file=, state_file=)
in the .model card will start a search sequence for finding the file. path may be an absolute
path. If path is omitted or is a relative path, filename is looked for according to the following
search list:

Infile_Path/<path/filename> (Infile_Path is the path of the input file *.sp containing the
netlist)

NGSPICE_INPUT_DIR/<path/filename> (where an additional path is set by the environmen-
tal variable)

<path/filename> (where the search is relative to the current directory (OS dependent))

8.1.4 Code model location and assessment

To make use of the XSPICE extensions, you have to compile ngspice accordingly (see Chapt.
28.1). ngspice then is prepared to load and use the code models. At the same time the code
models are re-made. They are, however, not linked into ngspice at compile time, but reside in
extra shared libraries or dlls, with names analog.cm, digital.cm, spice2poly.cm, xtradev.cm,
xtraevt.cm, and table.cm. At run time, with XSPICE enabled, they are loaded dynamically
into ngspice by the command codemodel (13.5.15). The sequence to load the codemodels is:
Upon start-up ngspice locates, reads, and executes spinit, the standard initialization file (12.5).
Within spinit, you will find the commands to load the codemodels, typically with a path for the
code models relative to the current working directory (the location of ngspice, in case of shared
ngspice the location of the caller).

If you don’t want to make use of spinit, you may run a script in ngspice, before loading any
circuit, which contains the codemodel commands. When using shared ngspice, one may issue
the codemodel commands directly after initialization, with absolute path or path relative to the
current working directory.

In a standard ngspice installation in MS Windows, the codemodels are located in ../lib/ngspice,
e.g. in C:\Spice64\lib\ngspice (see also 28.2.1).

In Linux, it depends on the OS invocation. In openSUSE you may find the codemodels in
/usr/local/lib64/ngspice, while ngspice resides in /usr/local/bin.

8.2. ANALOG MODELS 181

8.2 Analog Models

The following analog models are supplied with XSPICE. The descriptions included consist
of the model Interface Specification File and a description of the model’s operation. This is
followed by an example of a simulator-deck placement of the model, including the .MODEL card
and the specification of all available parameters.

8.2.1 Gain
NAME_TABLE:
C_Function_Name: cm_gain
Spice_Model_Name: gain
Description: "A simple gain block"

PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector.Bounds: - -
Null.Allowed: no no

PARAMETER_TABLE:
Parameter_Name: in_offset gain out_offset
Description: "input offset" "gain" "output offset"
Data_Type: real real real
Default_Value: 0.0 1.0 0.0
Limits: - - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Description: This function is a simple gain block with optional offsets on the input and the
output. The input offset is added to the input, the sum is then multiplied by the gain, and
the result is produced by adding the output offset. This model will operate in DC, AC,
and Transient analysis modes.

Example:

a1 1 2 amp
.model amp gain(in_offset=0.1 gain=5.0
+ out_offset=-0.01)

182 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

8.2.2 Summer
NAME_TABLE:
C_Function_Name: cm_summer
Spice_Model_Name: summer
Description: "A summer block"

PORT_TABLE:
Port Name: in out
Description: "input vector" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: yes no
Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:
Parameter_Name: in_offset in_gain
Description: "input offset vector" "input gain vector"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: yes yes
Vector_Bounds: in in
Null_Allowed: yes yes

PARAMETER_TABLE:
Parameter_Name: out_gain out_offset
Description: "output gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: This function is a summer block with 2-to-N input ports. Individual gains and
offsets can be applied to each input and to the output. Each input is added to its respective
offset and then multiplied by its gain. The results are then summed, multiplied by the
output gain and added to the output offset. This model will operate in DC, AC, and
Transient analysis modes.

Example usage:

a2 [1 2] 3 sum1
.model sum1 summer(in_offset=[0.1 -0.2] in_gain=[2.0 1.0]
+ out_gain=5.0 out_offset=-0.01)

8.2. ANALOG MODELS 183

8.2.3 Multiplier
NAME_TABLE:
C_Function_Name: cm_mult
Spice_Model_Name: mult
Description: "multiplier block"
PORT_TABLE:
Port_Name: in out
Description: "input vector" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset in_gain
Description: "input offset vector" "input gain vector"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: yes yes
Vector_Bounds: in in
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_gain out_offset
Description: "output gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: This function is a multiplier block with 2-to-N input ports. Individual gains and
offsets can be applied to each input and to the output. Each input is added to its respective
offset and then multiplied by its gain. The results are multiplied along with the output
gain and are added to the output offset. This model will operate in DC, AC, and Transient
analysis modes. However, in ac analysis it is important to remember that results are
invalid unless only one input of the multiplier is connected to a node that i connected to
an AC signal (this is exemplified by the use of a multiplier to perform a potentiometer
function: one input is DC, the other carries the AC signal).

Example SPICE Usage:

a3 [1 2 3] 4 sigmult
.model sigmult mult(in_offset=[0.1 0.1 -0.1]
+ in_gain=[10.0 10.0 10.0] out_gain=5.0 out_offset=0.05)

184 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

8.2.4 Divider

NAME_TABLE:
C_Function_Name: cm_divide
Spice_Model_Name: divide
Description: "divider block"
PORT_TABLE:
Port_Name: num den out
Description: "numerator" "denominator" "output"
Direction: in in out
Default_Type: v v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no no
PARAMETER_TABLE:
Parameter_Name: num_offset num_gain
Description: "numerator offset" "numerator gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: den_offset den_gain
Description: "denominator offset" "denominator gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: den_lower_limit
Description: "denominator lower limit"
Data_Type: real
Default_Value: 1.0e-10
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: den_domain
Description: "denominator smoothing domain"
Data_Type: real
Default_Value: 1.0e-10
Limits: -
Vector: no

8.2. ANALOG MODELS 185

Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: fraction
Description: "smoothing fraction/absolute value switch"
Data_Type: boolean
Default_Value: false
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: out_gain out_offset
Description: "output gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: This function is a two-quadrant divider. It takes two inputs; num (numerator) and
den (denominator). Divide offsets its inputs, multiplies them by their respective gains,
divides the results, multiplies the quotient by the output gain, and offsets the result. The
denominator is limited to a value above zero via a user specified lower limit. This limit is
approached through a quadratic smoothing function, the domain of which may be spec-
ified as a fraction of the lower limit value (default), or as an absolute value. This model
will operate in DC, AC and Transient analysis modes. However, in ac analysis it is impor-
tant to remember that results are invalid unless only one input of the divider is connected
to a node that is connected to an ac signal (this is exemplified by the use of the divider to
perform a potentiometer function: one input is dc, the other carries the ac signal).

Example SPICE Usage:
a4 1 2 4 divider
.model divider divide(num_offset=0.1 num_gain=2.5 den_offset=-0.1
+ den_gain=5.0 den_lower_limit=1e-5 den_domain=1e-6
+ fraction=FALSE out_gain=1.0 out_offset=0.0)

8.2.5 Limiter
NAME_TABLE:
C_Function_Name: cm_limit
Spice_Model_Name: limit
Description: "limit block"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out

186 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_lower_limit out_upper_limit
Description: "output lower limit" "output upper limit"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: limit_range
Description: "upper & lower smoothing range"
Data_Type: real
Default_Value: 1.0e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: fraction
Description: "smoothing fraction/absolute value switch"
Data_Type: boolean
Default_Value: FALSE
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The Limiter is a single input, single output function similar to the Gain Block.
However, the output of the Limiter function is restricted to the range specified by the
output lower and upper limits. This model will operate in DC, AC and Transient analysis
modes. Note that the limit range is the value below the upper limit and above the lower
limit at which smoothing of the output begins. For this model, then, the limit range
represents the delta with respect to the output level at which smoothing occurs. Thus, for

8.2. ANALOG MODELS 187

an input gain of 2.0 and output limits of 1.0 and -1.0 volts, the output will begin to smooth
out at ±0.9 volts, which occurs when the input value is at ±0.4.

Example SPICE Usage:
a5 1 2 limit5
.model limit5 limit(in_offset=0.1 gain=2.5 out_lower_limit=-5.0
+ out_upper_limit=5.0 limit_range=0.10 fraction=FALSE)

8.2.6 Controlled Limiter
NAME_TABLE:
C_Function_Name: cm_climit
Spice_Model_Name: climit
Description: "controlled limiter block"
PORT_TABLE:
Port_Name: in cntl_upper
Description: "input" "upper lim. control input"
Direction: in in
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id,vnam]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:
Port_Name: cntl_lower out
Description: "lower limit control input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: upper_delta lower_delta
Description: "output upper delta" "output lower delta"
Data_Type: real real
Default_Value: 0.0 0.0
Limits: - -
Vector: no no

188 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: limit_range fraction
Description: "upper & lower sm. range" "smoothing %/abs switch"
Data_Type: real boolean
Default_Value: 1.0e-6 FALSE
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The Controlled Limiter is a single input, single output function similar to the Gain
Block. However, the output of the Limiter function is restricted to the range specified by
the output lower and upper limits. This model will operate in DC, AC, and Transient
analysis modes. Note that the limit range is the value below the cntl_upper limit and
above the cntl_lower limit at which smoothing of the output begins (minimum positive
value of voltage must exist between the cntl_upper input and the cntl_lower input at
all times). For this model, then, the limit range represents the delta with respect to the
output level at which smoothing occurs. Thus, for an input gain of 2.0 and output limits
of 1.0 and -1.0 volts, the output will begin to smooth out at ±0.9 volts, which occurs
when the input value is at ±0.4. Note also that the Controlled Limiter code tests the
input values of cntl_upper and cntl_lower to make sure that they are spaced far enough
apart to guarantee the existence of a linear range between them. The range is calculated
as the difference between (cntl_upper−upper_delta− limit_range) and (cntl_lower+
lower_delta+ limit_range) and must be greater than or equal to zero. Note that when
the limit range is specified as a fractional value, the limit range used in the above is taken
as the calculated fraction of the difference between cntl_upper and cntl_lower. Still, the
potential exists for too great a limit range value to be specified for proper operation, in
which case the model will return an error message.

Example SPICE Usage:
a6 3 6 8 4 varlimit
.
.
.model varlimit climit(in_offset=0.1 gain=2.5 upper_delta=0.0
+ lower_delta=0.0 limit_range=0.10 fraction=FALSE)

8.2.7 PWL Controlled Source
NAME_TABLE:
C_Function_Name: cm_pwl
Spice_Model_Name: pwl
Description: "piecewise linear controlled source"
PORT_TABLE:
Port_Name: in out
Description: "input" "output"
Direction: in out

8.2. ANALOG MODELS 189

Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: x_array y_array
Description: "x-element array" "y-element array"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: input_domain fraction
Description: "input sm. domain" "smoothing %/abs switch"
Data_Type: real boolean
Default_Value: 0.01 TRUE
Limits: [1e-12 0.5] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
STATIC_VAR_TABLE:
Static_Var_Name: last_x_value
Data_Type: pointer
Description: "iteration holding variable for limiting"

Description: The Piece-Wise Linear Controlled Source is a single input, single output func-
tion similar to the Gain Block. However, the output of the PWL Source is not necessarily
linear for all values of input. Instead, it follows an I/O relationship specified by you via
the x_array and y_array coordinates. This is detailed below.
The x_array and y_array values represent vectors of coordinate points on the x and
y axes, respectively. The x_array values are progressively increasing input coordinate
points, and the associated y_array values represent the outputs at those points. There
may be as few as two (x_array[n], y_array[n]) pairs specified, or as many as memory
and simulation speed allow. This permits you to very finely approximate a non-linear
function by capturing multiple input-output coordinate points.
Two aspects of the PWL Controlled Source warrant special attention. These are the han-
dling of endpoints and the smoothing of the described transfer function near coordinate
points.
In order to fully specify outputs for values of in outside of the bounds of the PWL func-
tion (i.e., less than x_array[0] or greater than x_array[n], where n is the largest user-
specified coordinate index), the PWL Controlled Source model extends the slope found
between the lowest two coordinate pairs and the highest two coordinate pairs. This has
the effect of making the transfer function completely linear for in less than x_array[0]
and in greater than x_array[n]. It also has the potentially subtle effect of unrealistically
causing an output to reach a very large or small value for large inputs. You should thus

190 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

keep in mind that the PWL Source does not inherently provide a limiting capability.
In order to diminish the potential for non-convergence of simulations when using the
PWL block, a form of smoothing around the x_array, y_array coordinate points is nec-
essary. This is due to the iterative nature of the simulator and its reliance on smooth first
derivatives of transfer functions in order to arrive at a matrix solution. Consequently, the
input_domain and fraction parameters are included to allow you some control over
the amount and nature of the smoothing performed.
Fraction is a switch that is either TRUE or FALSE. When TRUE (the default setting),
the simulator assumes that the specified input domain value is to be interpreted as a frac-
tional figure. Otherwise, it is interpreted as an absolute value. Thus, if fraction=TRUE
and input_domain=0.10, The simulator assumes that the smoothing radius about each
coordinate point is to be set equal to 10% of the length of either the x_array segment
above each coordinate point, or the x_array segment below each coordinate point. The
specific segment length chosen will be the smallest of these two for each coordinate point.
On the other hand, if fraction=FALSE and input_domain=0.10, then the simulator will
begin smoothing the transfer function at 0.10 volts (or amperes) below each x_array co-
ordinate and will continue the smoothing process for another 0.10 volts (or amperes)
above each x_array coordinate point. Since the overlap of smoothing domains is not
allowed, checking is done by the model to ensure that the specified input domain value is
not excessive.
One subtle consequence of the use of the fraction=TRUE feature of the PWL Con-
trolled Source is that, in certain cases, you may inadvertently create extreme smoothing
of functions by choosing inappropriate coordinate value points. This can be demonstrated
by considering a function described by three coordinate pairs, such as (-1,-1), (1,1),
and (2,1). In this case, with a 10% input_domain value specified (fraction=TRUE,
input_domain=0.10), you would expect to see rounding occur between in=0.9 and
in=1.1, and nowhere else. On the other hand, if you were to specify the same function
using the coordinate pairs (-100,-100), (1,1) and (201,1), you would find that rounding
occurs between in=-19 and in=21. Clearly in the latter case the smoothing might cause
an excessive divergence from the intended linearity above and below in=1.

Example SPICE Usage:
a7 in out xfer_cntl1
.model xfer_cntl1 pwl(x_array=[-2.0 -1.0 2.0 4.0 5.0]
+ y_array=[-0.2 -0.2 0.1 2.0 10.0]
+ input_domain=0.05 fraction=TRUE)

8.2.8 PWL Time Controlled Source with optional edge smoothing
NAME_TABLE:
C_Function_Name: cm_pwlts
Spice_Model_Name: pwlts
Description: "piecwise linear controlled source, time input"
PORT_TABLE:
Port_Name: out
Description: "output"
Direction: out
Default_Type: v

8.2. ANALOG MODELS 191

Allowed_Types: [v,vd,i,id]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: x_array y_array
Description: "x-element array" "y-element array"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: input_domain fraction
Description: "input sm. domain" "smoothing %/abs switch"
Data_Type: real boolean
Default_Value: 0.01 TRUE
Limits: [1e-12 0.5] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: limit
Description: "const or linearily extrapolated output"
Data_Type: boolean
Default_Value: FALSE
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
STATIC_VAR_TABLE:
Static_Var_Name: last_x_value
Data_Type: pointer
Vector: no
Description: "iteration holding variable for limiting"
STATIC_VAR_TABLE:
Static_Var_Name: x y
Data_Type: pointer pointer
Description: "time array" "y-coefficient array"

Description: The Piece-Wise Linear Time Controlled Source is a time input, single output
function. The output follows an time/output relationship specified by you via the x_array
and y_array coordinates. This is detailed below.
The x_array and y_array values represent vectors of coordinate points on the x and y
axes, respectively. The x_array values are progressively increasing positive input coor-
dinate points (minimum is 0), and the associated y_array values represent the outputs
at those points. There may be as few as two (x_array[n], y_array[n]) pairs speci-
fied, or as many as memory and simulation speed allow. This permits you to very finely

192 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

approximate a non-linear time dependent waveform by capturing multiple input-output
coordinate points.
Two aspects of the PWLTS Controlled Source warrant special attention. These are the
handling of endpoints and the smoothing of the described transfer function near coordi-
nate points.
In order to fully specify outputs for values of in outside of the bounds of the PWLTS func-
tion (i.e., less than x_array[0] (with x_array[0] >= 0 always) or greater than x_array[n],
where n is the largest user-specified coordinate index), the PWLTS Time Controlled
Source model extends the slope found between the lowest two coordinate pairs and the
highest two coordinate pairs. This has the effect of making the transfer function com-
pletely linear for times less than x_array[0] and times greater than x_array[n]. It also
has the potentially subtle effect of unrealistically causing an output to reach a very large
or small value for large input times.
In order to diminish the potential for non-convergence of simulations when using the
PWL block, a form of smoothing around the x_array, y_array coordinate points is nec-
essary. This is due to the iterative nature of the simulator and its reliance on smooth first
derivatives of transfer functions in order to arrive at a matrix solution. Consequently, the
input_domain and fraction parameters are included to allow you some control over
the amount and nature of the smoothing performed.
Fraction is a switch that is either TRUE or FALSE. When TRUE (the default setting),
the simulator assumes that the specified input domain value is to be interpreted as a frac-
tional figure. Otherwise, it is interpreted as an absolute value. Thus, if fraction=TRUE
and input_domain=0.10, the simulator assumes that the smoothing radius about each
coordinate point is to be set equal to 10% of the length of either the x_array segment
above each coordinate point, or the x_array segment below each coordinate point. The
specific segment length chosen will be the smallest of these two for each coordinate point.
On the other hand, if fraction=FALSE and input_domain=0.10, then the simulator will
begin smoothing the transfer function at 0.10 seconds below each x_array coordinate and
will continue the smoothing process for another 0.10 seconds above each x_array coor-
dinate point. Since the overlap of smoothing domains is not allowed, checking is done by
the model to ensure that the specified input domain value is not excessive.
One subtle consequence of the use of the fraction=TRUE feature of the PWL Time
Controlled Source is that, in certain cases, you may inadvertently create extreme smooth-
ing of functions by choosing inappropriate coordinate value points. This can be demon-
strated by considering a function described by three coordinate pairs, such as (0,-1), (2,1),
and (3,1). In this case, with a 10% input_domain value specified (fraction=TRUE,
input_domain=0.10), you would expect to see rounding occur between time=1.9 and
time=2.1, and nowhere else. On the other hand, if you were to specify the same function
using the coordinate pairs (0,-100), (101,1) and (301,1), you would find that rounding
occurs between time=81 and time=121. Clearly in the latter case the smoothing might
cause an excessive divergence from the intended linearity above and below time=101.

Example SPICE Usage:
a8 out pwl_cntl1

.model pwl_cntl1 pwlts(x_array=[0 1m 1.1m 2m 2.1m]
+ y_array=[-0.2 -0.2 0.6 0.6 0.35]
+ input_domain=0.2 fraction=TRUE
+ limit=TRUE)

8.2. ANALOG MODELS 193

8.2.9 Filesource (PWL sourced from file)

NAME_TABLE:
C_Function_Name: cm_filesource
Spice_Model_Name: filesource
Description: "File Source"
PORT_TABLE:
Port_Name: out
Description: "output"
Direction: out
Default_Type: v
Allowed_Types: [v,vd,i,id]
Vector: yes
Vector_Bounds: [1 -]
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: timeoffset timescale
Description: "time offset" "timescale"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: timerelative amplstep
Description: "relative time" "step amplitude"
Data_Type: boolean boolean
Default_Value: FALSE FALSE
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: amploffset amplscale
Description: "ampl offset" "amplscale"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: yes yes
Vector_Bounds: [1 -] [1 -]
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: file
Description: "file name"
Data_Type: string
Default_Value: "filesource.txt"
Limits: -
Vector: no

194 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: -
Null_Allowed: yes

Description: The File Source is similar to the Piece-Wise Linear (PWL) Source, except that
the waveform data is read from a file instead of being taken from parameter vectors. The
file format is line oriented ASCII. ‘#’ and ‘;’ are comment characters; all characters from
a comment character until the end of the line are ignored. Each line consists of two or
more real values. The first value is the time; subsequent values correspond to the outputs.
Values are separated by spaces. Time values are absolute and must be monotonically in-
creasing, unless timerelative is set to TRUE, in which case the values specify the interval
between two samples and must be positive. Waveforms may be scaled and shifted in the
time dimension by setting timescale and timeoffset.
Amplitudes can also be scaled and shifted using amplscale and amploffset. Amplitudes
are normally interpolated between two samples, unless amplstep is set to TRUE.

Note: The file named by the parameter filename in file="filename" is sought after accord-
ing to a search list described in 8.1.3.

Example SPICE Usage:
a8 %vd([1 0 2 0]) filesrc
.
.
.model filesrc filesource (file="sine.m" amploffset=[0 0] amplscale=[1 1]
+ timeoffset=0 timescale=1
+ timerelative=false amplstep=false)

Example input file:
name: sine.m
two output ports
column 1: time
columns 2, 3: values
0 0 1
3.90625e-09 0.02454122852291229 0.9996988186962042
7.8125e-09 0.04906767432741801 0.9987954562051724
1.171875e-08 0.07356456359966743 0.9972904566786902
...

8.2.10 Multi_input_PWL_block
NAME_TABLE:
C_Function_Name: cm_multi_input_pwl
Spice_Model_Name: multi_input_pwl
Description: "multi_input_pwl block"
PORT_TABLE:
Port_Name: in out
Description: "input array" "output"

8.2. ANALOG MODELS 195

Direction: in out
Default_Type: vd vd
Allowed_Types: [vd,id] [vd,id]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: x y
Description: "x array" "y array"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: model
Description: "model type"
Data_Type: string
Default_Value: "and"
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: Multi-input gate voltage controlled voltage source that supports and or or gating.
The x’s and y’s represent the piecewise linear variation of output (y) as a function of input
(x). The type of gate is selectable by the parameter model. In case the model is and, the
smallest input determines the output value (i.e. the and function). In case the model is or,
the largest input determines the output value (i.e. the or function). The inverse of these
functions (i.e. nand and nor) is constructed by complementing the y array.

Example SPICE Usage:
a82 [1 0 2 0 3 0] 7 0 pwlm
.
.
.model pwlm multi_input_pwl((x=[-2.0 -1.0 2.0 4.0 5.0]
+ y=[-0.2 -0.2 0.1 2.0 10.0]
+ model="and")

8.2.11 Analog Switch
NAME_TABLE:
C_Function_Name: cm_aswitch
Spice_Model_Name: aswitch
Description: "analog switch"
PORT_TABLE:
Port Name: cntl_in out

196 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: "input" "resistive output"
Direction: in out
Default_Type: v gd
Allowed_Types: [v,vd,i,id] [gd]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: cntl_off cntl_on
Description: "control ‘off’ value" "control ‘on’ value"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: r_off log
Description: "off resistance" "log/linear switch"
Data_Type: real boolean
Default_Value: 1.0e12 TRUE
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: r_on limit
Description: "on resistance" "set upper and lower

limits to resistance"
Data_Type: real boolean
Default_Value: 1.0 false
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The Analog Switch is a resistor that varies either logarithmically or linearly be-
tween specified values of a controlling input voltage or current. Note that the input is not
internally limited when parameter limit is not given. Therefore, if the controlling signal
exceeds the specified OFF state or ON state value, the resistance may become excessively
large or excessively small (in the case of logarithmic dependence), or may become neg-
ative (in the case of linear dependence). For the experienced user, these excursions may
prove valuable for modeling certain devices, but in most cases you are advised to add lim-
iting of the controlling input if the possibility of excessive control value variation exists.
Alternatively you may set the parameter limit to TRUE. Then the resulting resistance is
limited to r_on or r_off if the controlling voltage exceeds the given boundaries cntl_on
or cntl_off. At these boundaries sharp edges in the R(control) characteristics will occur
which may lead to convergence problems.

8.2. ANALOG MODELS 197

Example SPICE Usage:
a8 3 %gd(6 7) switch3
.
.
.model switch3 aswitch(cntl_off=0.0 cntl_on=5.0 r_off=1e6
+ r_on=10.0 log=TRUE limit=TRUE)

8.2.12 Alternative Analog Switch
NAME_TABLE:
C_Function_Name: cm_pswitch
Spice_Model_Name: pswitch
Description: "analog switch alternative"
PORT_TABLE:
Port Name: cntl_in out
Description: "input" "resistive output"
Direction: inout inout
Default_Type: gd gd
Allowed_Types: [g,gd] [gd]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: cntl_off cntl_on
Description: "control ‘off’ value" "control ‘on’ value"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: r_off log
Description: "off resistance" "log/linear switch"
Data_Type: real boolean
Default_Value: 1.0e12 TRUE
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: r_on r_cntl_in
Description: "on resistance" "input resistance for control terminal"
Data_Type: real real
Default_Value: 1.0 1e12
Limits: - -
Vector: no no
Vector_Bounds: - -

198 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Null_Allowed: yes yes

Description: The Alternative Analog Switch is a resistor that varies either logarithmically or
linearly between specified values of a controlling input voltage or current. An input resis-
tance r_cntl_in may be specified. The output resistance is limited to r_on or r_off. At
the control boundaries cntl_on or cntl_off the R(control) characteristics are slightly
rounded. This behaviour is PSPICE-compatible and instances of this device are generated
when parsing PSPICE netlists in compatability mode.

Example SPICE Usage:
a9 %g 13 %gd(16 17) switch4
.
.
.model switch4 pswitch(cntl_off=0.0 cntl_on=5.0 r_off=1e6
+ r_on=10.0 r_cntl_in=1e11 log=TRUE)

8.2.13 Zener Diode
NAME_TABLE:
C_Function_Name: cm_zener
Spice_Model_Name: zener
Description: "zener diode"
PORT_TABLE:
Port Name: z
Description: "zener"
Direction: inout
Default_Type: gd
Allowed_Types: [gd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: v_breakdown i_breakdown
Description: "breakdown voltage" "breakdown current"
Data_Type: real real
Default_Value: - 2.0e-2
Limits: [1.0e-6 1.0e6] [1.0e-9 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no yes
PARAMETER_TABLE:
Parameter_Name: i_sat n_forward
Description: "saturation current" "forward emission coefficient"
Data_Type: real real
Default_Value: 1.0e-12 1.0
Limits: [1.0e-15 -] [0.1 10]
Vector: no no
Vector_Bounds: - -

8.2. ANALOG MODELS 199

Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: limit_switch
Description: "switch for on-board limiting (convergence aid)"
Data_Type: boolean
Default_Value: FALSE
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
STATIC_VAR_TABLE:
Static_Var_Name: previous_voltage
Data_Type: pointer
Description: "iteration holding variable for limiting"

Description: The Zener Diode models the DC characteristics of most zeners. This model
differs from the Diode/Rectifier by providing a user-defined dynamic resistance in the
reverse breakdown region. The forward characteristic is defined by only a single point,
since most data sheets for zener diodes do not give detailed characteristics in the forward
region.
The first three parameters define the DC characteristics of the zener in the breakdown
region and are usually explicitly given on the data sheet.
The saturation current refers to the relatively constant reverse current that is produced
when the voltage across the zener is negative, but breakdown has not been reached. The
reverse leakage current determines the slight increase in reverse current as the voltage
across the zener becomes more negative. It is modeled as a resistance parallel to the
zener with value v breakdown / i rev.
Note that the limit switch parameter engages an internal limiting function for the zener.
This can, in some cases, prevent the simulator from converging to an unrealistic solution
if the voltage across or current into the device is excessive. If use of this feature fails to
yield acceptable results, the convlimit option should be tried (add the following statement
to the SPICE input deck: .options convlimit)

Example SPICE Usage:
a9 3 4 vref10
.
.
.model vref10 zener(v_breakdown=10.0 i_breakdown=0.02
+ r_breakdown=1.0 i_rev=1e-6 i_sat=1e-12)

8.2.14 Current Limiter
NAME_TABLE:
C_Function_Name: cm_ilimit
Spice_Model_Name: ilimit
Description: "current limiter block"
PORT_TABLE:
Port Name: in pos_pwr

200 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: "input" "positive power supply"
Direction: in inout
Default_Type: v g
Allowed_Types: [v,vd] [g,gd]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no yes
PORT_TABLE:
Port Name: neg_pwr out
Description: "negative power supply" "output"
Direction: inout inout
Default_Type: g g
Allowed_Types: [g,gd] [g,gd]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes no
PARAMETER_TABLE:
Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: r_out_source r_out_sink
Description: "sourcing resistance" "sinking resistance"
Data_Type: real real
Default_Value: 1.0 1.0
Limits: [1.0e-9 1.0e9] [1.0e-9 1.0e9]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: i_limit_source
Description: "current sourcing limit"
Data_Type: real
Default_Value: -
Limits: [1.0e-12 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: i_limit_sink
Description: "current sinking limit"
Data_Type: real
Default_Value: -

8.2. ANALOG MODELS 201

Limits: [1.0e-12 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: v_pwr_range i_source_range
Description: "upper & lower power "sourcing current

supply smoothing range" smoothing range"
Data_Type: real real
Default_Value: 1.0e-6 1.0e-9
Limits: [1.0e-15 -] [1.0e-15 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: i_sink_range
Description: "sinking current smoothing range"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1.0e-15 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: r_out_domain
Description: "internal/external voltage delta smoothing range"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1.0e-15 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The Current Limiter models the behavior of an operational amplifier or compara-
tor device at a high level of abstraction. All of its pins act as inputs; three of the four also
act as outputs. The model takes as input a voltage value from the in connector. It then ap-
plies an offset and a gain, and derives from it an equivalent internal voltage (veq), which
it limits to fall between pos_pwr and neg_pwr. If veq is greater than the output voltage
seen on the out connector, a sourcing current will flow from the output pin. Conversely,
if the voltage is less than vout, a sinking current will flow into the output pin.
Depending on the polarity of the current flow, either a sourcing or a sinking resistance
value (r_out_source, r_out_sink) is applied to govern the vout/i_out relationship.
The chosen resistance will continue to control the output current until it reaches a max-
imum value specified by either i_limit_source or i_limit_sink. The latter mimics
the current limiting behavior of many operational amplifier output stages.
During all operation, the output current is reflected either in the pos_pwr connector cur-
rent or the neg_pwr current, depending on the polarity of i_out. Thus, realistic power
consumption as seen in the supply rails is included in the model.

202 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

The user-specified smoothing parameters relate to model operation as follows: v_pwr_range
controls the voltage below vpos_pwr and above vneg_pwr inputs beyond which veq =
gain(vin+vo f f set) is smoothed; i_source_range specifies the current below i_limit_source
at which smoothing begins, as well as specifying the current increment above i_out=0.0
at which i_pos_pwr begins to transition to zero; i_sink_range serves the same pur-
pose with respect to i_limit_sink and i_neg_pwr that i_source_range serves for
i_limit_source and i_pos_pwr; r_out_domain specifies the incremental value above
and below (veq-vout)=0.0 at which r_outwill be set to r_out_source and r_out_sink,
respectively. For values of (veq-vout) less than r_out_domain and greater than -r_out_domain,
r_out is interpolated smoothly between r_out_source and r_out_sink.

Example SPICE Usage:
a10 3 10 20 4 amp3
.
.
.model amp3 ilimit(in_offset=0.0 gain=16.0 r_out_source=1.0
+ r_out_sink=1.0 i_limit_source=1e-3
+ i_limit_sink=10e-3 v_pwr_range=0.2
+ i_source_range=1e-6 i_sink_range=1e-6
+ r_out_domain=1e-6)

8.2.15 Hysteresis Block
NAME_TABLE:
C_Function_Name: cm_hyst
Spice_Model_Name: hyst
Description: "hysteresis block"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_low in_high
Description: "input low value" "input high value"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: hyst out_lower_limit
Description: "hysteresis" "output lower limit"

8.2. ANALOG MODELS 203

Data_Type: real real
Default_Value: 0.1 0.0
Limits: [0.0 -] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_upper_limit input_domain
Description: "output upper limit" "input smoothing domain"
Data_Type: real real
Default_Value: 1.0 0.01
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: fraction
Description: "smoothing fraction/absolute value switch"
Data_Type: boolean
Default_Value: TRUE
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The Hysteresis block is a simple buffer stage that provides hysteresis of the output
with respect to the input. The in_low and in_high parameter values specify the center
voltage or current inputs about which the hysteresis effect operates. The output values
are limited to out_lower_limit and out_upper_limit. The value of hyst is added to
the in_low and in_high points in order to specify the points at which the slope of the
hysteresis function would normally change abruptly as the input transitions from a low
to a high value. Likewise, the value of hyst is subtracted from the in high and in low
values in order to specify the points at which the slope of the hysteresis function would
normally change abruptly as the input transitions from a high to a low value. In fact, the
slope of the hysteresis function is never allowed to change abruptly but is smoothly varied
whenever the input domain smoothing parameter is set greater than zero.

Example SPICE Usage:
a11 1 2 schmitt1
.
.
.model schmitt1 hyst(in_low=0.7 in_high=2.4 hyst=0.5
+ out_lower_limit=0.5 out_upper_limit=3.0
+ input_domain=0.01 fraction=TRUE)

8.2.16 Differentiator
NAME_TABLE:

204 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

C_Function_Name: cm_d_dt
Spice_Model_Name: d_dt
Description: "time-derivative block"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: gain out_offset
Description: "gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_lower_limit out_upper_limit
Description: "output lower limit" "output upper limit"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: limit_range
Description: "upper & lower limit smoothing range"
Data_Type: real
Default_Value: 1.0e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The Differentiator block is a simple derivative stage that approximates the time
derivative of an input signal by calculating the incremental slope of that signal since the
previous time point. The block also includes gain and output offset parameters to allow
for tailoring of the required signal, and output upper and lower limits to prevent conver-
gence errors resulting from excessively large output values. The incremental value of
output below the output upper limit and above the output lower limit at which smoothing
begins is specified via the limit range parameter. In AC analysis, the value returned is
equal to the radian frequency of analysis multiplied by the gain.

8.2. ANALOG MODELS 205

Note that since truncation error checking is not included in the d_dt block, it is not rec-
ommended that the model be used to provide an integration function through the use of
a feedback loop. Such an arrangement could produce erroneous results. Instead, you
should make use of the "integrate" model, which does include truncation error checking
for enhanced accuracy.

Example SPICE Usage:
a12 7 12 slope_gen
.
.
.model slope_gen d_dt(out_offset=0.0 gain=1.0
+ out_lower_limit=1e-12 out_upper_limit=1e12
+ limit_range=1e-9)

8.2.17 Integrator
NAME_TABLE:
C_Function_Name: cm_int
Spice_Model_Name: int
Description: "time-integration block"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_lower_limit out_upper_limit
Description: "output lower limit" "output upper limit"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

206 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Parameter_Name: limit_range
Description: "upper & lower limit smoothing range"
Data_Type: real
Default_Value: 1.0e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: out_ic
Description: "output initial condition"
Data_Type: real
Default_Value: 0.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The Integrator block is a simple integration stage that approximates the integral
with respect to time of an input signal. The block also includes gain and input offset
parameters to allow for tailoring of the required signal, and output upper and lower limits
to prevent convergence errors resulting from excessively large output values. Note that
these limits specify integrator behavior similar to that found in an operational amplifier-
based integration stage, in that once a limit is reached, additional storage does not occur.
Thus, the input of a negative value to an integrator that is currently driving at the out
upper limit level will immediately cause a drop in the output, regardless of how long
the integrator was previously summing positive inputs. The incremental value of output
below the output upper limit and above the output lower limit at which smoothing begins
is specified via the limit range parameter. In AC analysis, the value returned is equal to
the gain divided by the radian frequency of analysis.
Note that truncation error checking is included in the int block. This should provide
for a more accurate simulation of the time integration function, since the model will
inherently request smaller time increments between simulation points if truncation errors
would otherwise be excessive.

Example SPICE Usage:
a13 7 12 time_count
.model time_count int(in_offset=0.0 gain=1.0
+ out_lower_limit=-1e12 out_upper_limit=1e12
+ limit_range=1e-9 out_ic=0.0)

8.2.18 S-Domain Transfer Function
NAME_TABLE:
C_Function_Name: cm_s_xfer
Spice_Model_Name: s_xfer
Description: "s-domain transfer function"
PORT_TABLE:

8.2. ANALOG MODELS 207

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: num_coeff
Description: "numerator polynomial coefficients"
Data_Type: real
Default_Value: -
Limits: -
Vector: yes
Vector_Bounds: [1 -]
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: den_coeff
Description: "denominator polynomial coefficients"
Data_Type: real
Default_Value: -
Limits: -
Vector: yes
Vector_Bounds: [1 -]
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: int_ic
Description: "integrator stage initial conditions"
Data_Type: real
Default_Value: 0.0
Limits: -
Vector: yes
Vector_Bounds: den_coeff
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: denormalized_freq
Description: "denorm. corner freq.(radians) for 1 rad/s coeffs"
Data_Type: real

208 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The s-domain transfer function is a single input, single output transfer function
in the Laplace transform variable ‘s’ that allows for flexible modulation of the frequency
domain characteristics of a signal. Ac and transient simulations are supported. The code
model may be configured to produce an arbitrary s-domain transfer function with the
following restrictions:

1. The degree of the numerator polynomial cannot exceed that
of the denominator polynomial in the variable "s".

2. The coefficients for a polynomial must be stated
explicitly. That is, if a coefficient is zero, it must be
included as an input to the num coeff or den coeff vector.

The order of the coefficient parameters is from that associated with the highest-powered term
decreasing to that of the lowest. Thus, for the coefficient parameters specified below, the equa-
tion in ‘s’ is shown:

.model filter s_xfer(gain=0.139713
+ num_coeff=[1.0 0.0 0.7464102]
+ den_coeff=[1.0 0.998942 0.001170077]
+ int_ic=[0 0])

It specifies a transfer function of the form

N(s) = 0.139713 · s2+0.7464102
s2+0.998942s+0.00117077

The s-domain transfer function includes gain and in_offset (input offset) parameters to allow
for tailoring of the required signal. There are no limits on the internal signal values or on
the output value of the s-domain transfer function, so you are cautioned to specify gain and
coefficient values that will not cause the model to produce excessively large values. In AC
analysis, the value returned is equal to the real and imaginary components of the total s-domain
transfer function at each frequency of interest.

The denormalized_freq term allows you to specify coefficients for a normalized filter (i.e. one
in which the frequency of interest is 1 rad/s). Once these coefficients are included, specifying
the denormalized frequency value ‘shifts’ the corner frequency to the actual one of interest. As
an example, the following transfer function describes a Chebyshev low-pass filter with a corner
(pass-band) frequency of 1 rad/s:

N(s) = 0.139713 · 1.0
s2+1.09773s+1.10251

In order to define an s_xfer model for the above, but with the corner frequency equal to 1500
rad/s (239 Hz), the following instance and model lines would be needed:

8.2. ANALOG MODELS 209

a12 node1 node2 cheby1
.model cheby1 s_xfer(num_coeff=[1] den_coeff=[1 1.09773 1.10251]
+ int_ic=[0 0] denormalized_freq=1500)

In the above, you add the normalized coefficients and scale the filter through the use of the
denormalized freq parameter. Similar results could have been achieved by performing the de-
normalization prior to specification of the coefficients, and setting denormalized freq to the
value 1.0 (or not specifying the frequency, as the default is 1.0 rad/s) Note in the above that
frequencies are always specified as radians/second.

Truncation error checking is included in the s-domain transfer block. This should provide for
more accurate simulations, since the model will inherently request smaller time increments
between simulation points if truncation errors would otherwise be excessive.

The int_ic parameter is an array that must be of size one less as the array of values specified for
the den_coeff parameter. Even if a 0 start value is required, you have to add the specific int_ic
vector to the set of coefficients (see the examples above and below).

Example SPICE Usage:
a14 9 22 cheby_LP_3kHz
.
.
.model cheby_LP_3kHz s_xfer(in_offset=0.0 gain=1.0 int_ic=[0 0]
+ num_coeff=[1.0]
+ den_coeff=[1.0 1.42562 1.51620])

8.2.19 PWL Transfer Function
NAME_TABLE:
Spice_Model_Name: xfer
C_Function_Name: cm_xfer
Description: "AC transfer function block"
PORT_TABLE:
Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: table
Description: "PWL table: frequency/magnitude/phase"
Data_Type: real
Default_Value: 0
Limits: -
Vector: yes
Vector_Bounds: [3 -]

210 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: file
Description: "File in Touchstone format"
Data_Type: string
Default_Value: -
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: r_i
Description: "table is in real/imaginary format"
Data_Type: boolean
Default_Value: false
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: db
Description: "table is in magnitude(dB)/phase format"
Data_Type: boolean
Default_Value: true
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: rad
Description: "phase in radians, not degrees"
Data_Type: boolean
Default_Value: false
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: span offset
Description: "Length of table rows" "Offset within row"
Data_Type: int int
Default_Value: 3 1
Limits: [3 -] [1 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
/* This is used internally to store the table in compact complex form. */
STATIC_VAR_TABLE:

8.2. ANALOG MODELS 211

Static_Var_Name: table
Description: "Internal copy of data"
Data_Type: pointer
/* Only warn once about use in transient analysis. */
STATIC_VAR_TABLE:
Static_Var_Name: warned
Description: "Warning indicator"
Data_Type: int

This code model is useful only in AC analysis, where it applies a complex transfer function to its
input. The current circuit frequency is input to a PWL function defined by a table and the output
is produced by multiplying the input by the resulting complex number. The parameters supply
the PWL table and determine its format. The “table” parameter supplies the data directly, while
“file” defines a path (which must be all lower-case) to a file in Touchstone format containing
the data. Exactly one of those parameters must be specified.

The data is treated as consisting of rows, each of “span” real numbers. The first number is the
frequency of a PWL corner and a pair of numbers at the “offset” position in the row supply
the data. That allows a single Touchstone file to be shared by several instances of this code
model, as such files for an n-port device will contain logical rows of 2*n^2+1 numbers: one
frequency value and the components of an NxN complex matrix. The format of the data pairs
is determined by the “db”, “rad” and “r_i” parameters. If any of these are set, they override the
internal indicators in a Touchstone file which themselves override the parameter defaults.

Examples of using this model are in the examples/sp directory: netlist file.sp shows direct use,
while filter.sp uses the E-source wrapper (5.2.6).

8.2.20 Slew Rate Block
NAME_TABLE:
C_Function_Name: cm_slew
Spice_Model_Name: slew
Description: "A simple slew rate follower block"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: rise_slope
Description: "maximum rising slope value"
Data_Type: real
Default_Value: 1.0e9
Limits: -
Vector: no

212 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: fall_slope
Description: "maximum falling slope value"
Data_Type: real
Default_Value: 1.0e9
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: range
Description: "smoothing range"
Data_Type: real
Default_Value: 0.1
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: This function is a simple slew rate block that limits the absolute slope of the
output with respect to time to some maximum or value. The actual slew rate effects of
over-driving an amplifier circuit can thus be accurately modeled by cascading the ampli-
fier with this model. The units used to describe the maximum rising and falling slope
values are expressed in volts or amperes per second. Thus a desired slew rate of 0.5 V/µs
will be expressed as 0.5e+6, etc.
The slew rate block will continue to raise or lower its output until the difference between
the input and the output values is zero. Thereafter, it will resume following the input sig-
nal, unless the slope again exceeds its rise or fall slope limits. The range input specifies
a smoothing region above or below the input value. Whenever the model is slewing and
the output comes to within the input + or - the range value, the partial derivative of the
output with respect to the input will begin to smoothly transition from 0.0 to 1.0. When
the model is no longer slewing (output = input), dout/din will equal 1.0.

Example SPICE Usage:
a15 1 2 slew1
.model slew1 slew(rise_slope=0.5e6 fall_slope=0.5e6)

8.2.21 Inductive Coupling
NAME_TABLE:
C_Function_Name: cm_lcouple
Spice_Model_Name: lcouple
Description: "inductive coupling (for use with ’core’ model)"
PORT_TABLE:
Port_Name: l mmf_out
Description: "inductor" "mmf output (in ampere-turns)"

8.2. ANALOG MODELS 213

Direction: inout inout
Default_Type: hd hd
Allowed_Types: [h,hd] [hd]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: num_turns
Description: "number of inductor turns"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: This function is a conceptual model that is used as a building block to create a
wide variety of inductive and magnetic circuit models. This function is normally used in
conjunction with the core model, but can also be used with resistors, hysteresis blocks,
etc. to build up systems that mock the behavior of linear and nonlinear components.
The lcouple takes as an input (on the ‘l’ port), a current. This current value is multiplied
by the num_turns value, N, to produce an output value (a voltage value that appears on the
mmf_out port). The mmf_out acts similar to a magnetomotive force in a magnetic circuit;
when the lcouple is connected to the core model, or to some other resistive device, a
current will flow. This current value (which is modulated by whatever the lcouple is
connected to) is then used by the lcouple to calculate a voltage ‘seen’ at the l port. The
voltage is a function of the derivative with respect to time of the current value seen at
mmf_out.
The most common use for lcouples will be as a building block in the construction of
transformer models. To create a transformer with a single input and a single output, you
would require two lcouple models plus one core model. The process of building up
such a transformer is described under the description of the core model, below.

Example SPICE Usage:
a150 (7 0) (9 10) lcouple1
.model lcouple1 lcouple(num_turns=10.0)

8.2.22 Magnetic Core
NAME_TABLE:
C_Function_Name: cm_core
Spice_Model_Name: core
Description: "magnetic core"
PORT_TABLE:
Port_Name: mc
Description: "magnetic core"
Direction: inout
Default_Type: gd

214 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Allowed_Types: [g,gd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: H_array B_array
Description: "magnetic field array" "flux density array"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: area length
Description: "cross-sectional area" "core length"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: input_domain
Description: "input sm. domain"
Data_Type: real
Default_Value: 0.01
Limits: [1e-12 0.5]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: fraction
Description: "smoothing fraction/abs switch"
Data_Type: boolean
Default_Value: TRUE
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: mode
Description: "mode switch (1 = pwl, 2 = hyst)"
Data_Type: int
Default_Value: 1
Limits: [1 2]
Vector: no
Vector_Bounds: -

8.2. ANALOG MODELS 215

Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: in_low in_high
Description: "input low value" "input high value"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: hyst out_lower_limit
Description: "hysteresis" "output lower limit"
Data_Type: real real
Default_Value: 0.1 0.0
Limits: [0 -] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_upper_limit
Description: "output upper limit"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: This function is a conceptual model that is used as a building block to create
a wide variety of inductive and magnetic circuit models. This function is almost always
expected to be used in conjunction with the lcouple model to build up systems that mock
the behavior of linear and nonlinear magnetic components. There are two fundamental
modes of operation for the core model. These are the pwl mode (which is the default, and
which is the most likely to be of use to you) and the hysteresis mode. These are detailed
below.

PWL Mode (mode = 1)

The core model in PWL mode takes as input a voltage that it treats as a magnetomotive force
(mmf) value. This value is divided by the total effective length of the core to produce a value
for the Magnetic Field Intensity, H. This value of H is then used to find the corresponding Flux
Density, B, using the piecewise linear relationship described by you in the H array / B array
coordinate pairs. B is then multiplied by the cross-sectional area of the core to find the Flux
value, which is output as a current. The pertinent mathematical equations are listed below:

H =
mm f

L
, where L = Length

216 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Here H, the Magnetic Field Intensity, is expressed in ampere-turns/meter.

B = f (H)

The B value is derived from a piecewise linear transfer function described to the model via
the (H_array[],B_array[]) parameter coordinate pairs. This transfer function does not include
hysteretic effects; for that, you would need to substitute a HYST model for the core.

φ = BA, where A = Area

The final current allowed to flow through the core is equal to φ . This value in turn is used by
the "lcouple" code model to obtain a value for the voltage reflected back across its terminals to
the driving electrical circuit.

The following example code shows the use of two lcouple models and one core model to
produce a simple primary/secondary transformer.

Example SPICE Usage:
a1 (2 0) (3 0) primary
.model primary lcouple (num_turns = 155)
a2 (3 4) iron_core
.model iron_core core (H_array = [-1000 -500 -375 -250 -188 -125 -63 0
+ 63 125 188 250 375 500 1000]
+ B_array = [-3.13e-3 -2.63e-3 -2.33e-3 -1.93e-3
+ -1.5e-3 -6.25e-4 -2.5e-4 0 2.5e-4
+ 6.25e-4 1.5e-3 1.93e-3 2.33e-3
+ 2.63e-3 3.13e-3]
+ area = 0.01 length = 0.01)
a3 (5 0) (4 0) secondary
.model secondary lcouple (num_turns = 310)

HYSTERESIS Mode (mode = 2)

The core model in HYSTERESIS mode takes as input a voltage that it treats as a magnetomotive
force (mmf) value. This value is used as input to the equivalent of a hysteresis code model block.
The parameters defining the input low and high values, the output low and high values, and the
amount of hysteresis are as in that model. The output from this mode, as in PWL mode, is a
current value that is seen across the mc port. An example of the core model used in this fashion
is shown below:

Example SPICE Usage:
a1 (2 0) (3 0) primary
.model primary lcouple (num_turns = 155)
a2 (3 4) iron_core

8.2. ANALOG MODELS 217

.model iron_core core (mode = 2 in_low=-7.0 in_high=7.0
+ out_lower_limit=-2.5e-4 out_upper_limit=2.5e-4
+ hyst = 2.3)
a3 (5 0) (4 0) secondary
.model secondary lcouple (num_turns = 310)

One final note to be made about the two core model nodes is that certain parameters are avail-
able in one mode, but not in the other. In particular, the in_low, in_high, out_lower_limit,
out_upper_limit, and hysteresis parameters are not available in PWL mode. Likewise, the
H_array, B_array, area, and length values are unavailable in HYSTERESIS mode. The input
domain and fraction parameters are common to both modes (though their behavior is somewhat
different; for explanation of the input domain and fraction values for the HYSTERESIS mode,
you should refer to the hysteresis code model discussion).

8.2.23 Controlled Sine Wave Oscillator

NAME_TABLE:
C_Function_Name: cm_sine
Spice_Model_Name: sine
Description: "controlled sine wave oscillator"
PORT_TABLE:
Port Name: cntl_in out
Description: "control input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: cntl_array freq_array
Description: "control array" "frequency array"
Data_Type: real real
Default_Value: [0.0 1.0] [1.0e3 2.0e3]
Limits: - [0 -]
Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_low out_high
Description: "output peak low value" "output peak high value"
Data_Type: real real
Default_Value: -1.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

218 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: This function is a controlled sine wave oscillator with parametrizable values of
low and high peak output. It takes an input voltage or current value. This value is used as
the independent variable in the piecewise linear curve described by the coordinate points
of the cntl array and freq array pairs. From the curve, a frequency value is determined,
and the oscillator will output a sine wave at that frequency. From the above, it is easy
to see that array sizes of 2 for both the cntl array and the freq array will yield a linear
variation of the frequency with respect to the control input. Any sizes greater than 2 will
yield a piecewise linear transfer characteristic. For more detail, refer to the description of
the piecewise linear controlled source, which uses a similar method to derive an output
value given a control input.

Example SPICE Usage:
asine 1 2 in_sine
.model in_sine sine(cntl_array = [-1 0 5 6]
+ freq_array=[10 10 1000 1000] out_low = -5.0
+ out_high = 5.0)

8.2.24 Controlled Triangle Wave Oscillator
NAME_TABLE:
C_Function_Name: cm_triangle
Spice_Model_Name: triangle
Description: "controlled triangle wave oscillator"
PORT_TABLE:
Port Name: cntl_in out
Description: "control input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: cntl_array freq_array
Description: "control array" "frequency array"
Data_Type: real real
Default_Value: [0.0 1.0] [1.0e3 2.0e3]
Limits: - [0 -]
Vector: yes yes
Vector_Bounds: [2 -] cntl_array
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_low out_high
Description: "output peak low value" "output peak high value"
Data_Type: real real
Default_Value: -1.0 1.0
Limits: - -
Vector: no no

8.2. ANALOG MODELS 219

Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: duty_cycle
Description: "rise time duty cycle"
Data_Type: real
Default_Value: 0.5
Limits: [1e-10 0.999999999]
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: This function is a controlled triangle/ramp wave oscillator with parametrizable
values of low and high peak output and rise time duty cycle. It takes an input voltage or
current value. This value is used as the independent variable in the piecewise linear curve
described by the coordinate points of the cntl_array and freq_array pairs.
From the curve, a frequency value is determined, and the oscillator will output a triangle
wave at that frequency. From the above, it is easy to see that array sizes of 2 for both the
cntl_array and the freq_array will yield a linear variation of the frequency with respect to
the control input. Any sizes greater than 2 will yield a piecewise linear transfer charac-
teristic. For more detail, refer to the description of the piecewise linear controlled source,
which uses a similar method to derive an output value given a control input.

Example SPICE Usage:
ain 1 2 ramp1
.model ramp1 triangle(cntl_array = [-1 0 5 6]
+ freq_array=[10 10 1000 1000] out_low = -5.0
+ out_high = 5.0 duty_cycle = 0.9)

8.2.25 Controlled Square Wave Oscillator
NAME_TABLE:
C_Function_Name: cm_square
Spice_Model_Name: square
Description: "controlled square wave oscillator"
PORT_TABLE:
Port Name: cntl_in out
Description: "control input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: cntl_array freq_array
Description: "control array" "frequency array"
Data_Type: real real

220 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Default_Value: [0.0 1.0] [1.0e3 2.0e3]
Limits: - [0 -]
Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_low out_high
Description: "output peak low value" "output peak high value"
Data_Type: real real
Default_Value: -1.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER.TABLE:
Parameter_Name: duty_cycle rise_time
Description: "duty cycle" "output rise time"
Data_Type: real real
Default_Value: 0.5 1.0e-9
Limits: [1e-6 0.999999] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: fall_time
Description: "output fall time"
Data_Type: real
Default_Value: 1.0e-9
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: This function is a controlled square wave oscillator with parametrizable values
of low and high peak output, duty cycle, rise time, and fall time. It takes an input voltage
or current value. This value is used as the independent variable in the piecewise linear
curve described by the coordinate points of the cntl_array and freq_array pairs. From the
curve, a frequency value is determined, and the oscillator will output a square wave at
that frequency.
From the above, it is easy to see that array sizes of 2 for both the cntl_array and the
freq_array will yield a linear variation of the frequency with respect to the control input.
Any sizes greater than 2 will yield a piecewise linear transfer characteristic. For more
detail, refer to the description of the piecewise linear controlled source, which uses a
similar method to derive an output value given a control input.

Example SPICE Usage:
ain 1 2 pulse1
.model pulse1 square(cntl_array = [-1 0 5 6]

8.2. ANALOG MODELS 221

+ freq_array=[10 10 1000 1000] out_low = 0.0
+ out_high = 4.5 duty_cycle = 0.2
+ rise_time = 1e-6 fall_time = 2e-6)

8.2.26 Controlled One-Shot
NAME_TABLE:
C_Function_Name: cm_oneshot
Spice_Model_Name: oneshot
Description: "controlled one-shot"
PORT_TABLE:
Port Name: clk cntl_in
Description: "clock input" "control input"
Direction: in in
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no yes
PORT_TABLE:
Port Name: clear out
Description: "clear signal" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes no
PARAMETER_TABLE:
Parameter_Name: clk_trig retrig
Description: "clock trigger value" "retrigger switch"
Data_Type: real boolean
Default_Value: 0.5 FALSE
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: no yes
PARAMETER_TABLE:
Parameter_Name: pos_edge_trig
Description: "positive/negative edge trigger switch"
Data_Type: boolean
Default_Value: TRUE
Limits: -
Vector: no q
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: cntl_array pw_array

222 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: "control array" "pulse width array"
Data_Type: real real
Default_Value: [0.0 1.0] [1.0e-6 0.9999999]
Limits: - [0.00 -]
Vector: yes yes
Vector_Bounds: - cntl_array
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_low out_high
Description: "output low value" "output high value"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: fall_time rise_time
Description: "output fall time" "output rise time"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: rise_delay
Description: "output delay from trigger"
Data_Type: real
Default_Value: 1.0e-9
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: fall_delay
Description: "output delay from pw"
Data_Type: real
Default_Value: 1.0e-9
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: This function is a controlled oneshot with parametrizable values of low and high
peak output, input trigger value level, delay, and output rise and fall times. It takes an
input voltage or current value. This value is used as the independent variable in the
piecewise linear curve described by the coordinate points of the cntl_array and pw_array

8.2. ANALOG MODELS 223

pairs. From the curve, a pulse width value is determined. The one-shot will output a
pulse of that width, triggered by the clock signal (rising or falling edge), delayed by the
delay value, and with specified rise and fall times. A positive slope on the clear input will
immediately terminate the pulse, which resets with its fall time.
From the above, it is easy to see that array sizes of 2 for both the cntl_array and the
pw_array will yield a linear variation of the pulse width with respect to the control input.
Any sizes greater than 2 will yield a piecewise linear transfer characteristic. For more
detail, refer to the description of the piecewise linear controlled source, which uses a
similar method to derive an output value given a control input.

Example SPICE Usage:
ain 1 2 3 4 pulse2
.model pulse2 oneshot(cntl_array = [-1 0 10 11]
+ pw_array=[1e-6 1e-6 1e-4 1e-4]
+ clk_trig = 0.9 pos_edge_trig = FALSE
+ out_low = 0.0 out_high = 4.5
+ rise_delay = 20.0e-9 fall_delay = 35.0e-9)

8.2.27 Capacitance Meter
NAME_TABLE:
C_Function_Name: cm_cmeter
Spice_Model_Name: cmeter
Description: "capacitance meter"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: gain
Description: "gain"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The capacitance meter is a sensing device that is attached to a circuit node and
produces as an output a scaled value equal to the total capacitance seen on its input mul-
tiplied by the gain parameter. This model is primarily intended as a building block for
other models that must sense a capacitance value and alter their behavior based upon it.

224 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Example SPICE Usage:
atest1 1 2 ctest
.model ctest cmeter(gain=1.0e12)

8.2.28 Inductance Meter
NAME_TABLE:
C_Function_Name: cm_lmeter
Spice_Model_Name: lmeter
Description: "inductance meter"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: gain
Description: "gain"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The inductance meter is a sensing device that is attached to a circuit node and
produces as an output a scaled value equal to the total inductance seen on its input mul-
tiplied by the gain parameter. This model is primarily intended as a building block for
other models that must sense an inductance value and alter their behavior based upon it.

Example SPICE Usage:
atest2 1 2 ltest
.model ltest lmeter(gain=1.0e6)

8.2.29 Memristor
NAME_TABLE:
C_Function_Name: cm_memristor
Spice_Model_Name: memristor
Description: "Memristor Interface"
PORT_TABLE:
Port_Name: memris
Description: "memristor terminals"

8.2. ANALOG MODELS 225

Direction: inout
Default_Type: gd
Allowed_Types: [gd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: rmin rmax
Description: "minimum resistance" "maximum resistance"
Data_Type: real real
Default_Value: 10.0 10000.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: rinit vt
Description: "initial resistance" "threshold"
Data_Type: real real
Default_Value: 7000.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: alpha beta
Description: "model parameter 1" "model parameter 2"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The memristor is a two-terminal resistor with memory, whose resistance depends
on the time integral of the voltage across its terminals. rmin and rmax provide the lower
and upper limits of the resistance, rinit is its starting value (no voltage applied so far).
The voltage has to be above a threshold vt to become effective in changing the resistance.
alpha and beta are two model parameters. The memristor code model is derived from a
SPICE subcircuit published in [23].

Example SPICE Usage:
amen 1 2 memr
.model memr memristor (rmin=1k rmax=10k rinit=7k
+ alpha=0 beta=2e13 vt=1.6)

8.2.30 2D table model
NAME_TABLE:

226 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

C_Function_Name: cm_table2D
Spice_Model_Name: table2D
Description: "2D table model"
PORT_TABLE:
Port_Name: inx iny out
Description: "inputx" "inputy" "output"
Direction: in in out
Default_Type: v v i
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no no
PARAMETER_TABLE:
Parameter_Name: order verbose
Description: "order" "verbose"
Data_Type: int int
Default_Value: 3 0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: offset gain
Description: "offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: file
Description: "file name"
Data_Type: string
Default_Value: "2D-table-model.txt"
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The 2D table model reads a matrix from file "file name" (default 2D-table-
model.txt) which has x columns and y rows. Each x,y pair, addressed by inx and iny,
yields an output value out. Linear interpolation is used for out, eno (essentially non
oscillating) interpolation for its derivatives. Parameters offset (default 0) and gain (de-
fault 1) modify the output table values according to o f f set +gain out. Parameter order
(default 3) influences the calculation of the derivatives. Parameter verbose (default 0)
yields test outputs, if set to 1 or 2. The table format is shown below. Be careful to include
the data point inx = 0, iny = 0 into your table, because ngspice uses these during .OP com-
putations. The x horizontal and y vertical address values have to increase monotonically.

8.2. ANALOG MODELS 227

Table Example:

* table source

* number of columns (x)
8

* number of rows (y)
9

* x horizontal (column) address values (real numbers)
-1 0 1 2 3 4 5 6

* y vertical (row) address values (real numbers)
-0.6 0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

* table with output data (horizontally addressed by x, vertically by y)
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
1 1 1 1 1 1 1 1
1 1.2 1.4 1.6 1.8 2 2.2 2.4
1 1.5 2 2.5 3 3.5 4 4.5
1 2 3 4 5 6 7 8
1 2.5 4 5.5 7 8.5 10 11.5
1 3 5 7 9 11 13 15
1 3.5 6 8.5 11 13.5 16 18.5
1 4 7 10 13 16 19 22

Description: The usage example consists of two input voltages referenced to ground and a
current source output with two floating nodes.

Example SPICE Usage:
atab inx iny %id(out1 out2) tabmod
.model tabmod table2d (offset=0.0 gain=1 order=3 file="table-simple.txt")

8.2.31 3D table model
NAME_TABLE:
C_Function_Name: cm_table3D
Spice_Model_Name: table3D
Description: "3D table model"
PORT_TABLE:
Port_Name: inx iny inz
Description: "inputx" "inputy" "inputz"
Direction: in in in
Default_Type: v v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id,vnam] [v,vd,i,id,vnam]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no no
PORT_TABLE:
Port_Name: out
Description: "output"
Direction: out
Default_Type: i

228 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Allowed_Types: [v,vd,i,id]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: order verbose
Description: "order" "verbose"
Data_Type: int int
Default_Value: 3 0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: offset gain
Description: "offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: file
Description: "file name"
Data_Type: string
Default_Value: "3D-table-model.txt"
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The 3D table model reads a matrix from file "file name" (default 3D-table-
model.txt) which has x columns, y rows per table and z tables. Each x,y,z triple, ad-
dressed by inx, iny, and inz, yields an output value out. Linear interpolation is used
for out, eno (essentially non oscillating) interpolation for its derivatives. Parameters
offset (default 0) and gain (default 1) modify the output table values according to
o f f set + gain out. Parameter order (default 3) influences the calculation of the deriva-
tives. Parameter verbose (default 0) yields test outputs, if set to 1 or 2. The table format
is shown below. Be careful to include the data point inx = 0, iny = 0, inz = 0 into your
table, because ngspice needs these to for the .OP calculation. The x horizontal, y vertical,
and z table address values have to increase monotonically.

Table Example:

* 3D table for nmos bsim 4, W=10um, L=0.13um

*x
39

*y

8.2. ANALOG MODELS 229

39

*z
11

*x (drain voltage)
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 ...

*y (gate voltage)
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 ...

*z (substrate voltage)
-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

*table -1.8
-4.50688E-10 -4.50613E-10 -4.50601E-10 -4.50599E-10 ...
-4.49622E-10 -4.49267E-10 -4.4921E-10 -4.49202E-10 ...
-4.50672E-10 -4.49099E-10 -4.48838E-10 -4.48795E-10 ...
-4.55575E-10 -4.4953E-10 -4.48435E-10 -4.48217E-10 ...
...

*table -1.6
-3.10015E-10 -3.09767E-10 -3.0973E-10 -3.09724E-10 ...
-3.09748E-10 -3.08524E-10 -3.08339E-10 -3.08312E-10 ...
...

*table -1.4
-2.04848E-10 -2.04008E-10 -2.03882E-10 ...
-2.07275E-10 -2.03117E-10 -2.02491E-10 ...
...

Description:

The usage example simulates a NMOS transistor with independent drain, gate and bulk
nodes, referenced to source. Parameter gain may be used to emulate transistor width,
with respect to the table transistor.

Example SPICE Usage:
amos1 %vd(d s) %vd(g s) %vd(b s) %id(d s) mostable1
.model mostable1 table3d (offset=0.0 gain=0.5 order=3
+ verbose=1 file="table-3D-bsim4n.txt")

8.2.32 Simple Diode Model
NAME_TABLE:
C_Function_Name: cm_sidiode
Spice_Model_Name: sidiode
Description: "simple diode"
PORT_TABLE:
Port_Name: ds
Description: "diode port"
Direction: inout
Default_Type: gd
Allowed_Types: [gd]
Vector: no

230 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: ron roff
Description: "resistance on-state" "resistance off-state"
Data_Type: real real
Default_Value: 1 11

Limits: [1e-6 -] [1e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: vfwd vrev
Description: "forward voltage" "reverse breakdown voltage"
Data_Type: real real
Default_Value: 0. 1e30
Limits: [0. -] [0. -]
Vector: no no
Vector Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: ilimit revilimit
Description: "limit of on-current" "limit of breakdown current"
Data_Type: real real
Default_Value: 1e30 1e30
Limits: [1e-15 -] [1e-15 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: epsilon revepsilon
Description: "width quadrat. reg. 1" "width quadratic region 2"
Data_Type: real real
Default_Value: 0. 0.
Limits: [0. -] [0. -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: rrev
Description: "resistance in breakdown"
Data_Type: real
Default_Value: 0.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

1If roff is not given, ron is the default

8.2. ANALOG MODELS 231

This is a model for a simple diode. Three regions are modelled as linear I(V) curves: Reverse
(breakdown) current with Rrev starting at Vrev into the negative direction, Off current with
Roff between Vrev and Vfwd and an On region with Ron, staring at Vfwd. The interface
between the regions is described by a quadratic function, the width of the interface region is
determined by Revepsilon and Epsilon. Current limits in the reverse breakdown (Revilimit)
and in the forward (on) state (Ilimit) may be set. The interface is a tanh function. Thus the first
derivative of the I(V) curve is continuous. All parameter values are entered as positive numbers.
A diode capacitance is not modelled.

Example SPICE Usage:
a1 a k ds1
.model ds1 sidiode(Roff=1000 Ron=0.7 Rrev=0.2 Vfwd=1
+ Vrev=10 Revepsilon=0.2 Epsilon=0.2 Ilimit=7 Revilimit=7)

8.2.33 Analog delay
NAME_TABLE:
C_Function_Name: cm_delay
Spice_Model_Name: delay
Description: "analog delay line"
PORT_TABLE:
Port_Name: in out cntrl
Description: "input" "output" "control"
Direction: in out in
Default_Type: v v v
Allowed_Types: [v,vd,vnam] [v,vd] [v,vd,i,id]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no yes
PARAMETER_TABLE:
Parameter_Name: delay buffer_size
Description: "time delay" "size of delay buffer"
Data_Type: real int
Default_Value: 0.0 1024
Limits: - [1 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: has_delay_cnt
Description: "controlled delay"
Data_Type: boolean
Default_Value: FALSE
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:

232 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Parameter_Name: delmin delmax
Description: "min delay" "max delay"
Data_Type: real real
Default_Value: 0 0
Limits: [0 -] [0 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description:

During a transient simulation the input voltage at node in and its associated time value
are stored in a ring buffer. buffer_size allows to set the size of the buffer, the default is
1024 time steps. There are two modes to read out the buffer contents with a delay and
obtain the delayed values at port out, determined by has_delay_cnt. If
has_delay_cnt is TRUE, then you may vary the delay time between delmin and
delmax by a control voltage between 0 and 1 at the input terminal cntrl. Parameter
delay is ignored. If has_delay_cnt has been set to FALSE, then the signal is delayed
by the time value given by delay .

Example SPICE Usage:
adelay1 in out cntrl mydel1
.model mydel1 delay(delay=2m buffer_size=2048)
adelay2 in out cntrl mydel2
.model mydel2 delay(has_delay_cnt=TRUE delmin=5u delmax=8u)

Due to the fact that time steps are not constant during a transient simulation, but optimized by
the simulator, the delayed values are sometimes slightly deviating from the original, depending
on the number of steps. So in a sinusoidal wave we will see a distortion < 0.3% for 1000 steps
per sin cycle.

8.2.34 Potentiometer
NAME_TABLE:
Spice_Model_Name: potentiometer
C_Function_Name: cm_potentiometer
Description: "potentiometer"
PORT_TABLE:
Port_Name: r0 wiper
Description: "pot connection 0" "wiper contact"
Direction: inout inout
Default_Type: g g
Allowed_Types: [g] [g]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:

8.2. ANALOG MODELS 233

Port_Name: r1
Description: "pot connection 1"
Direction: inout
Default_Type: g
Allowed_Types: [g]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: position
Description: "position of wiper connection (0.0 to 1.0)"
Data_Type: real
Default_Value: 0.5
Limits: [0.0 1.0]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: log r
Description: "log-linear switch" "total resistance"
Data_Type: boolean real
Default_Value: FALSE 1.0e5
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: log_multiplier
Description: "multiplier constant for log resistance"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description:

A resistance potentiometer with three connections: r0, wiper , and r1. Parameter
position determines the lower and upper portions of the resistance. Rlower is located
between r0 and wiper, Rupper between wiper and r1. If log is set to FALSE,
Rlower = position∗ r. If log is set to TRUE, then Rlower = r ∗10−position∗log_multiplier.
For Rupper we always have Rupper = r−Rlower. position <= 0 is resolved to
position = 1e−9, position >= 1 is resolved to position = 0.999999999.

Example SPICE Usage:
Apot r0 w r1 potmod
.model potmod potentiometer(position=0.45 r=1k log=FALSE log_multiplier=1)

234 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

8.3 Hybrid Models

The following hybrid models are supplied with XSPICE. The descriptions included below con-
sist of the model Interface Specification File and a description of the model’s operation. This
is followed by an example of a simulator-deck placement of the model, including the .MODEL
card and the specification of all available parameters.

A note should be made with respect to the use of hybrid models for other than simple digital-to-
analog and analog-to-digital translations. The hybrid models represented in this section address
that specific need, but in the development of user-defined nodes you may find a need to translate
not only between digital and analog nodes, but also between real and digital, real and int, etc.
In most cases such translations will not need to be as involved or as detailed as shown in the
following.

8.3.1 Digital-to-Analog Node Bridge
NAME_TABLE:
C_Function_Name: cm_dac_bridge
Spice_Model_Name: dac_bridge
Description: "digital-to-analog node bridge"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d v
Allowed_Types: [d] [v,vd,i,id,d]
Vector: yes yes
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: out_low
Description: "0-valued analog output"
Data_Type: real
Default_Value: 0.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: out_high
Description: "1-valued analog output"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:

8.3. HYBRID MODELS 235

Parameter_Name: out_undef input_load
Description: "U-valued analog output" "input load (F)"
Data_Type: real real
Default_Value: 0.5 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: t_rise t_fall
Description: "rise time 0->1" "fall time 1->0"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The dac_bridge is the first of three node bridge devices designed to allow for
the ready transfer of digital information to analog values and back again. The second
device is the adc_bridge (which takes an analog value and maps it to a digital one).The
dac_bridge takes as input a digital value from a digital node. This value by definition
may take on only one of the values ‘0’, ‘1’ or ‘U’. The dac_bridge then outputs the value
out_low, out_high or out_undef, or ramps linearly toward one of these ‘final’ values
from its current analog output level. The speed at which this ramping occurs depends on
the values of t_rise and t_fall. These parameters are interpreted by the model such
that the rise or fall slope generated is always constant. Note that the dac_bridge includes
test code in its cfunc.mod file for determining the presence of the out_undef parameter. If
this parameter is not specified by you, and if out_high and out_low values are specified,
then out_undef is assigned the value of the arithmetic mean of out_high and out_low.
This simplifies coding of output buffers, where typically a logic family will include an
out_low and out_high voltage, but not an out_undef value. This model also posts an
input load value (in farads) based on the parameter input load.

Example SPICE Usage:
abridge1 [7] [2] dac1
.model dac1 dac_bridge(out_low = 0.7 out_high = 3.5 out_undef = 2.2
+ input_load = 5.0e-12 t_rise = 50e-9
+ t_fall = 20e-9)

8.3.2 Analog-to-Digital Node Bridge
NAME_TABLE:
C_Function_Name: cm_adc_bridge
Spice_Model_Name: adc_bridge
Description: "analog-to-digital node bridge"
PORT_TABLE:
Port Name: in out

236 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: "input" "output"
Direction: in out
Default_Type: v d
Allowed_Types: [v,vd,i,id,d] [d]
Vector: yes yes
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_low
Description: "maximum 0-valued analog input"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: in_high
Description: "minimum 1-valued analog input"
Data_Type: real
Default_Value: 2.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The adc_bridge is one of three node bridge devices designed to allow for the
ready transfer of analog information to digital values and back again. The second de-
vice is the dac_bridge (which takes a digital value and maps it to an analog one). The
adc_bridge takes as input an analog value from an analog node. This value by definition
may be in the form of a voltage, or a current. If the input value is less than or equal
to in_low, then a digital output value of ‘0’ is generated. If the input is greater than or
equal to in_high, a digital output value of ‘1’ is generated. If neither of these is true, then
a digital ‘UNKNOWN’ value is output. Note that unlike the case of the dac_bridge,
no ramping time or delay is associated with the adc_bridge. Rather, the continuous
ramping of the input value provides for any associated delays in the digitized signal.

Example SPICE Usage:
abridge2 [1] [8] adc_buff
.model adc_buff adc_bridge(in_low = 0.3 in_high = 3.5)

8.3. HYBRID MODELS 237

8.3.3 Bidirectional Analog/Digital Node Bridge

NAME_TABLE:
C_Function_Name: cm_bidi_bridge
Spice_Model_Name: bidi_bridge
Description: "bidirectional digital/analog node bridge"
PORT_TABLE:
Port_Name: a d
Description: "analog" "digital in/out"
Direction: inout inout
Default_Type: g d
Allowed_Types: [g, gd] [d]
Vector: yes yes
Vector_Bounds: [1 -] [1 -]
Null_Allowed: no no
/* The direction of the bridge ports may be controlled by digital inputs.

* with LOW selecting DAC behavior and HIGH selecting ADC.

* If null, or the value is UNKNOWN the bridge will be truly bi-directional.

*/
PORT_TABLE:
Port_Name: dir
Description: "direction"
Direction: in
Default_Type: d
Allowed_Types: [d]
Vector: yes
Vector_Bounds: -
Null_Allowed: yes
/* Alternatively, this parameter sets direction: 0-2 for DAC, ADC, ignore.

* Values 0/1 override the direction port.

*/
PARAMETER_TABLE:
Parameter_Name: direction input_load
Description: "force direction" "capacitive input load (F)"
Data_Type: int real
Default_Value: 2 1.0e-12
Limits: [0 2] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
/* Digital 0utput strength is 0 (strong, default) or 1 (resistive).

* Smooth controls use of smoothing functions, default is 0 (no smoothing).

*/
PARAMETER_TABLE:
Parameter_Name: strength smooth
Description: "output strength" "smoothing level"
Data_Type: int int
Default_Value: 0 0
Limits: [0 2] [0 2]

238 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
/* Analog thresholds, in_low may be greater than in-high, enabling hysteresis.

*/
PARAMETER_TABLE:
Parameter_Name: in_low
Description: "maximum 0-valued analog input"
Data_Type: real
Default_Value: 0.1
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: in_high
Description: "minimum 1-valued analog input"
Data_Type: real
Default_Value: 0.9
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
/* Analog maximum and minimum output voltages. */
Parameter_Name: out_low
Description: "minimum analog output voltage for ’ZERO’ digital input"
Data_Type: real
Default_Value: 0.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: out_high
Description: "maximum analog output voltage for ’ONE’ digital input"
Data_Type: real
Default_Value: 3.3
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
/* Analog maximum current. */
PARAMETER_TABLE:
Parameter_Name: drive_low drive_high
Description: "max current to ground" "max current from supply"
Data_Type: real real
Default_Value: 0.02 0.02

8.3. HYBRID MODELS 239

Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
/* Strong analog output cuts off smoothly at the voltage limits.

* Let vth = out_high - r_sth * drive_high.

* Then for input voltage v, with drive_high > v > vth,

* the maximum output current is (drive_high - v) / r_sth

*/
PARAMETER_TABLE:
Parameter_Name: r_stl r_sth
Description: "low taper resistance" "high taper resistance"
Data_Type: real real
Default_Value: 20 20
Limits: [1e-6 -] [1e-6 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
/* Resistive analog drive. */
PARAMETER_TABLE:
Parameter_Name: r_low r_high
Description: "drive resistor to ground" "drive resistor to out_high"
Data_Type: real real
Default_Value: 10000 10000
Limits: [1e-6 -] [1e-6 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
/* Analog rise and fall times. */
PARAMETER_TABLE:
Parameter_Name: t_rise t_fall
Description: "rise time 0 -> 1" "fall time 1 -> 0"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1e-12 -] [1e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
/* Digital rise and fall delays. */
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay 0 -> 1" "fall delay 1 -> 0"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1e-12 -] [1e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

240 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: The bidi_bridge is the third and most complex of three analog/digital node
bridges. It is capable of effectively simultaneous output to both analog and digital ports,
depending on the state of the other side. That requires the use of an analog transcon-
ductance port, which may cause convergence problems when there is high impedance
on a connected analog node. Non-zero values for the smooth parameter may be helpful
if such problems occur. For digital nodes that are always strongly driven but also have
digital inputs, the simpler dac_bridge may be preferred. Otherwise, bidi_bridge has
some additional features that may make it preferable to the other bridges. The analog
output characteristics change with the digital drive strength, with strong output behaving
similarly to a very crude model of a CMOS output driver. The low input threshold may
be higher than the high threshold, producing Schmitt Trigger behavior.

Example SPICE Usage:
abridge2 [1 2 3] [8 9 10] null bidi_buff
.model bidi_buff bidi_bridge(in_low = 2 in_high = 1.5)

8.3.4 Controlled Digital Oscillator
NAME_TABLE:
C_Function_Name: cm_d_osc
Spice_Model_Name: d_osc
Description: "controlled digital oscillator"
PORT_TABLE:
Port Name: cntl_in out
Description: "control input" "output"
Direction: in out
Default_Type: v d
Allowed_Types: [v,vd,i,id] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: cntl_array freq_array
Description: "control array" "frequency array"
Data_Type: real real
Default_Value: [0.0 1.0] [1.0e6 2.0e6]
Limits: - [0 -]
Vector: yes yes
Vector_Bounds: [2 -] cntl_array
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: duty_cycle init_phase
Description: "duty cycle" "initial phase of output"
Data_Type: real real
Default_Value: 0.5 0
Limits: [1e-6 0.999999] [-180.0 +360.0]
Vector: no no
Vector_Bounds: - -

8.3. HYBRID MODELS 241

Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1e-9 1e-9
Limits: [0 -] [0 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital oscillator is a hybrid model that accepts as input a voltage or current.
This input is compared to the voltage-to-frequency transfer characteristic specified by the
cntl_array/freq_array coordinate pairs, and a frequency is obtained that represents a
linear interpolation or extrapolation based on those pairs. A digital time-varying signal is
then produced with this fundamental frequency.
The output waveform, which is the equivalent of a digital clock signal, has rise and fall
delays that can be specified independently. In addition, the duty cycle and the phase of
the waveform are also variable and can be set by you.

Example SPICE Usage:
a5 1 8 var_clock
.model var_clock d_osc(cntl_array = [-2 -1 1 2]
+ freq_array = [1e3 1e3 10e3 10e3]
+ duty_cycle = 0.4 init_phase = 180.0
+ rise_delay = 10e-9 fall_delay=8e-9)

8.3.5 Node bridge from digital to real with enable
NAME_TABLE:
Spice_Model_Name: d_to_real
C_Function_Name: ucm_d_to_real
Description: "Node bridge from digital to real with enable"
PORT_TABLE:
Port_Name: in enable out
Description: "input" "enable" "output"
Direction: in in out
Default_Type: d d real
Allowed_Types: [d] [d] [real]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no yes no
PARAMETER_TABLE:
Parameter_Name: zero one delay
Description: "value for 0" "value for 1" "delay"
Data_Type: real real real
Default_Value: 0.0 1.0 1e-9
Limits: - - [1e-15 -]

242 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

8.3.6 A Z**-1 block working on real data
NAME_TABLE:
Spice_Model_Name: real_delay
C_Function_Name: ucm_real_delay
Description: "A Z ** -1 block working on real data"
PORT_TABLE:
Port_Name: in clk out
Description: "input" "clock" "output"
Direction: in in out
Default_Type: real d real
Allowed_Types: [real] [d] [real]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no no
PARAMETER_TABLE:
Parameter_Name: delay
Description: "delay from clk to out"
Data_Type: real
Default_Value: 1e-9
Limits: [1e-15 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes

8.3.7 A gain block for event-driven real data
NAME_TABLE:
Spice_Model_Name: real_gain
C_Function_Name: ucm_real_gain
Description: "A gain block for event-driven real data"
PORT_TABLE:
Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: real real
Allowed_Types: [real] [real]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset gain out_offset
Description: "input offset" "gain" "output offset"
Data_Type: real real real

8.3. HYBRID MODELS 243

Default_Value: 0.0 1.0 0.0
Limits: - - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
PARAMETER_TABLE:
Parameter_Name: delay ic
Description: "delay" "initial condition"
Data_Type: real real
Default_Value: 1.0e-9 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

8.3.8 Node bridge from real to analog voltage
NAME_TABLE:
Spice_Model_Name: real_to_v
C_Function_Name: ucm_real_to_v
Description: "Node bridge from real to analog voltage"
PORT_TABLE:
Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: real v
Allowed_Types: [real] [v, vd, i, id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: gain transition_time
Description: "gain" "output transition time"
Data_Type: real real
Default_Value: 1.0 1e-9
Limits: - [1e-15 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

8.3.9 Controlled PWM Oscillator
NAME_TABLE:
Spice_Model_Name: d_pwm
C_Function_Name: cm_d_pwm
Description: "duty cycle controlled digital oscillator"
PORT_TABLE:
Port_Name: cntl_in out

244 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: "control input" "output"
Direction: in out
Default_Type: v d
Allowed_Types: [v,vd,i,id] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: cntl_array dc_array
Description: "control array" "duty cycle array"
Data_Type: real real
Default_Value: [-1 1] [0 1]
Limits: - [0 1]
Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: frequency init_phase
Description: "oscillator frequency" "initial phase of output"
Data_Type: real real
Default_Value: 1e6 0
Limits: [1e-6 -] [-180.0 +360.0]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1e-9 1e-9
Limits: [0 -] [0 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital pulse-width modulated oscillator is a hybrid model that accepts as
control input a voltage or current. This input is compared to the voltage-to-duty cycle
transfer characteristic specified by the cntl_array/dc_array coordinate pairs, and a
duty cycle is obtained that represents a linear interpolation or extrapolation based on
those pairs. A digital duty cycle-varying signal is then produced. The duty cycle is
limited between 0 and 1 (excluding the limits).
The digital output waveform has rise and fall delays that can be specified independently.
In addition, the oscillator frequency and the phase of the waveform are variable and user
selectable.

Example SPICE Usage:
a5 cin dout pwm_osc
.model pwm_osc d_pwm(cntl_array = [-2 -1.99 1.99 2]

8.4. DIGITAL MODELS 245

+ dc_array = [0.01 0.01 0.99 0.99]
+ frequency = 1.2Meg init_phase = 90.0
+ rise_delay = 10e-9 fall_delay=8e-9)

Currently there are some limits or bugs: a duty cycle < 1% or larger than 99% may generate
false output (e.g. a 50% duty cycle signal). Sometimes spurious missing pulses occur. To obtain
false results by extrapolation during evaluation of the cntl_array, it is recommended to force a
flat output if input signals are above or below the outer limits of the cntl_array data (see the
example shown above).

8.4 Digital Models

The following digital models are supplied with XSPICE. The descriptions included below con-
sist of a (sometimes abbreviated) model Interface Specification File and a description of the
model’s operation. This is followed by an example of a simulator-deck placement of the model,
including the .MODEL card and the specification of all available parameters. Note that these
models have not been finalized at this time.

Some information common to all digital models and/or digital nodes is included here. The fol-
lowing are general rules that should make working with digital nodes and models more straight-
forward:

1. All digital nodes are initialized to ZERO at the start of a simulation (i.e., when INIT=TRUE).
This means that a model need not post an explicit value to an output node upon initial-
ization if its output would normally be a ZERO (although posting such would certainly
cause no harm).

2. Digital nodes may have one out of twelve possible node values. See 8.6.1 for details.

3. Digital models typically have defined their rise and fall delays for their output signals. A
capacitive input load value may be defined as well to determine a load-dependent delay,
but is currently not used in any code model (see 24.7.1.5).

4. Several commands are available for outputting data, e.g. eprint, edisplay, and eprvcd.
Digital inputs may be read from files. Please see Chapt. 8.6.4 for more details.

5. Hybrid models (see Chapt. 8.3) provide an interface between the digital event driven
world and the analog world of ngspice to enable true mixed mode simulation.

There are some common parameters that are used by many of the digital models. To avoid
repetition they are omitted from the individual Interface Description Files listed here and their
availabilty is noted at the end of the file for each model. The common parameters are:

inertial_delay When this boolean parameter is set, output pulses that are shorter than the
current delay time for the port are suppressed, and the output remains unchanged un-
til the next state transition that completes its delay period. The default value is "false",
giving transport delay behavior: all changes reach the output. An interpreter variable,
digital_delay_type, can be used to override the default. A value of 1 changes the

246 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

default to "true"; 2 forces all relevant XSPICE elements to use transport delay; 3 forces
inertial delay.

This parameter is used by PSpice-compatible U-devices (10). In ngspice-40 these XSPICE
digital devices:

d_and, d_buffer, d_inverter, d_nand, d_nor, d_or, d_tristate, d_xnor, d_xor

have the inertial_delay parameter. When the circuits in the examples/digital/digital_devices
directory are run, subcircuits with PSpice U* device instances are translated to XSPICE
primitives. Also, .model statements are generated containing inertial_delay=true. This
causes the circuits to run with inertial delays (suppress glitches) rather than transport de-
lays (propagate glitches). Most digital simulators model gates using inertial delays.

If you run the examples in ngspice-39 and ngspice-40 then compare waveforms pro-
duced by circuits behav-tristate-pulse.cir and behav-283.cir, you will see how glitches
are suppressed by the inertial delay mechanism. To obtain transport delay behavior with
ngspice-40, add the following line:

set digital_delay_type=2

to the .spiceinit file in that directory.

family This is a string-valued parameter that has no effect on the model itself, but labels the
ports of instances of the model to guide the automatic bridging mechanism. See 8.7.

rise_delay The delay time between a change in a model’s internal state, as driven by its
inputs, and a change in output to digital one. This is used when there is only one output,
or they all have the same delays.

fall_delay Like rise_delay, but for transitions to zero.

input_load The capacitance of one or all digital inputs, in Farads. Code models may use the
TOTAL_LOAD macro to find the capacitative load on their outputs. However, the outputs
of models listed here do not respond to their loading. These models always drive outputs
strongly with the specified delays.

These common parameters appear in individual Interface Specification Files in these forms:

PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

8.4. DIGITAL MODELS 247

Parameter_Name: input_load
Description: "input load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: inertial_delay family
Description: "swallow short pulses" "Logic family for bridging"
Data_Type: boolean string
Default_Value: false -
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

8.4.1 Buffer
NAME_TABLE:
C_Function_Name: cm_d_buffer
Spice_Model_Name: d_buffer
Description: "digital one-bit-wide buffer"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The buffer is a single-input, single-output digital buffer that produces as output a
time-delayed copy of its input.

Example SPICE Usage:
a6 1 8 buff1
.model buff1 d_buffer(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

8.4.2 Inverter
NAME_TABLE:

248 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

C_Function_Name: cm_d_inverter
Spice_Model_Name: d_inverter
Description: "digital one-bit-wide inverter"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The inverter is a single-input, single-output digital inverter that produces as out-
put an inverted, time-delayed copy of its input.

Example SPICE Usage:
a6 1 8 inv1
.model inv1 d_inverter(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

8.4.3 And
NAME_TABLE:
C_Function_Name: cm_d_and
Spice_Model_Name: d_and
Description: "digital ‘and’ gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The digital and gate is an n-input, single-output and gate that produces an active
‘1’ value if, and only if, all of its inputs are also ‘1’ values. If ANY of the inputs is a
‘0’, the output will also be a ‘0’; if neither of these conditions holds, the output will be
unknown.

Example SPICE Usage:
a6 [1 2] 8 and1
.model and1 d_and(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

8.4. DIGITAL MODELS 249

8.4.4 Nand
NAME_TABLE:
C_Function_Name: cm_d_nand
Spice_Model_Name: d_nand
Description: "digital ‘nand’ gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The digital nand gate is an n-input, single-output nand gate that produces an
active ‘0’ value if and only if all of its inputs are ‘1’ values. If ANY of the inputs is a ‘0’,
the output will be a ‘1’; if neither of these conditions holds, the output will be unknown.

Example SPICE Usage:
a6 [1 2 3] 8 nand1
.model nand1 d_nand(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

8.4.5 Or
NAME_TABLE:
C_Function_Name: cm_d_or
Spice_Model_Name: d_or
Description: "digital ‘or’ gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The digital or gate is an n-input, single-output or gate that produces an active ‘1’
value if at least one of its inputs is a ‘1’ value. The gate produces a ‘0’ value if all inputs
are ‘0’; if neither of these two conditions holds, the output is unknown.

250 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Example SPICE Usage:
a6 [1 2 3] 8 or1
.model or1 d_or(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

8.4.6 Nor
NAME_TABLE:
C_Function_Name: cm_d_nor
Spice_Model_Name: d_nor
Description: "digital ‘nor’ gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The digital nor gate is an n-input, single-output nor gate that produces an active
‘0’ value if at least one of its inputs is a ‘1’ value. The gate produces a ‘0’ value if all
inputs are ‘0’; if neither of these two conditions holds, the output is unknown.

Example SPICE Usage:
anor12 [1 2 3 4] 8 nor12
.model nor12 d_nor(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

8.4.7 Xor
NAME_TABLE:
C_Function_Name: cm_d_xor
Spice_Model_Name: d_xor
Description: "digital exclusive-or gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

8.4. DIGITAL MODELS 251

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The digital xor gate is an n-input, single-output xor gate that produces an active
‘1’ value if an odd number of its inputs are also ‘1’ values. The delays associated with an
output rise and those associated with an output fall may be specified independently. Note
also that to maintain the technology-independence of the model, any UNKNOWN input,
or any floating input causes the output to also go UNKNOWN.

Example SPICE Usage:
a9 [1 2] 8 xor3
.model xor3 d_xor(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

8.4.8 Xnor
NAME_TABLE:
C_Function_Name: cm_d_xnor
Spice_Model_Name: d_xnor
Description: "digital exclusive-nor gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Common parameters: inertial_delay, family, rise_delay, fall_delay, input_load.

Description: The digital xnor gate is an n-input, single-output xnor gate that produces an
active ‘0’ value if an odd number of its inputs are also ‘1’ values. It produces a ‘1’
output when an even number of ‘1’ values occurs on its inputs. Note also that to maintain
the technology-independence of the model, any UNKNOWN input, or any floating input
causes the output to also go UNKNOWN.

Example SPICE Usage:
a9 [1 2] 8 xnor3
.model xnor3 d_xnor(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

8.4.9 Tristate
NAME_TABLE:
C_Function_Name: cm_d_tristate
Spice_Model_Name: d_tristate

252 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: "digital tristate buffer"
PORT_TABLE:
Port Name: in enable out
Description: "input" "enable" "output"
Direction: in in out
Default_Type: d d d
Allowed_Types: [d] [d] [d]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no no
PARAMETER_TABLE:
Parameter_Name: delay
Description: "delay"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1.0e-12 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: enable_load
Description: "enable load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Common parameters: inertial_delay, family, input_load.

Description: The digital tristate is a simple tristate gate that can be configured to allow for
open-collector behavior, as well as standard tristate behavior. The state seen on the input
line is reflected in the output. The state seen on the enable line determines the strength
of the output. Thus, a ONE forces the output to its state with a STRONG strength. A
ZERO forces the output to go to a HI_IMPEDANCE strength. The delays associated
with an output state or strength change cannot be specified independently, nor may they
be specified independently for rise or fall conditions; other gate models may be used to
provide such delays if needed. The model posts input and enable load values (in farads)
based on the parameters input load and enable. Note also that to maintain the technology-
independence of the model, any UNKNOWN input, or any floating input causes the out-
put to also go UNKNOWN. Likewise, any UNKNOWN input on the enable line causes
the output to go to an UNDETERMINED strength value.

Example SPICE Usage:
a9 1 2 8 tri7
.model tri7 d_tristate(delay = 0.5e-9 input_load = 0.5e-12
+ enable_load = 0.5e-12)

8.4. DIGITAL MODELS 253

8.4.10 Pullup
NAME_TABLE:
C_Function_Name: cm_d_pullup
Spice_Model_Name: d_pullup
Description: "digital pullup resistor"
PORT_TABLE:
Port Name: out
Description: "output"
Direction: out
Default_Type: d
Allowed_Types: [d]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: load
Description: "load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital pullup resistor is a device that emulates the behavior of an analog
resistance value tied to a high voltage level. The pullup may be used in conjunction
with tristate buffers to provide open-collector wired or constructs, or any other logical
constructs that rely on a resistive pullup common to many tristated output devices. The
model posts an input load value (in farads) based on the parameter load.

Example SPICE Usage:
a2 9 pullup1
.model pullup1 d_pullup(load = 20.0e-12)

8.4.11 Pulldown
NAME_TABLE:
C_Function_Name: cm_d_pulldown
Spice_Model_Name: d_pulldown
Description: "digital pulldown resistor"
PORT_TABLE:
Port Name: out
Description: "output"
Direction: out
Default_Type: d
Allowed_Types: [d]
Vector: no

254 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: load
Description: "load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital pulldown resistor is a device that emulates the behavior of an analog
resistance value tied to a low voltage level. The pulldown may be used in conjunction
with tristate buffers to provide open-collector wired or constructs, or any other logical
constructs that rely on a resistive pulldown common to many tristated output devices.
The model posts an input load value (in farads) based on the parameter load.

Example SPICE Usage:
a4 9 pulldown1
.model pulldown1 d_pulldown(load = 20.0e-12)

8.4.12 D Flip Flop
NAME_TABLE:
C_Function_Name: cm_d_dff
Spice_Model_Name: d_dff
Description: "digital d-type flip flop"
PORT_TABLE:
Port Name: data clk
Description: "input data" "clock"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:
Port Name: set reset
Description: "asynch. set" "asynch. reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:
Port Name: out Nout

8.4. DIGITAL MODELS 255

Description: "data output" "inverted data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: clk_delay set_delay
Description: "delay from clk" "delay from set"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: reset_delay ic
Description: "delay from reset" "output initial state"
Data_Type: real int
Default_Value: 1.0e-9 0
Limits: [1.0e-12 -] [0 2]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: data_load clk_load
Description: "data load value (F)" "clk load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector.Bounds: - -
Null_Allowed: yes yes

Common parameters: rise_delay, fall_delay.

Description: The digital d-type flip flop is a one-bit, edge-triggered storage element that will
store data whenever the clk input line transitions from low to high (ZERO to ONE). In

256 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

addition, asynchronous set and reset signals exist, and each of the three methods of chang-
ing the stored output of the d_dff have separate load values and delays associated with
them. Additionally, you may specify separate rise and fall delay values that are added to
those specified for the input lines; these allow for more faithful reproduction of the output
characteristics of different IC fabrication technologies.
Note that any UNKNOWN input on the set or reset lines immediately results in an UN-
KNOWN output.

Example SPICE Usage:
a7 1 2 3 4 5 6 flop1
.model flop1 d_dff(clk_delay = 13.0e-9 set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
+ fall_delay = 3e-9)

8.4.13 JK Flip Flop
NAME_TABLE:
C_Function_Name: cm_d_jkff
Spice_Model_Name: d_jkff
Description: "digital jk-type flip flop"
PORT_TABLE:
Port Name: j k
Description: "j input" "k input"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:
Port Name: clk
Description: "clock"
Direction: in
Default_Type: d
Allowed_Types: [d]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port Name: set reset
Description: "asynchronous set" "asynchronous reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:

8.4. DIGITAL MODELS 257

Port Name: out Nout
Description: "data output" "inverted data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: clk_delay set_delay
Description: "delay from clk" "delay from set"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: reset_delay ic
Description: "delay from reset" "output initial state"
Data_Type: real int
Default_Value: 1.0e-9 0
Limits: [1.0e-12 -] [0 2]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: jk_load clk_load
Description: "j,k load values (F)" "clk load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Common parameters: rise_delay, fall_delay.

Description: The digital jk-type flip flop is a one-bit, edge-triggered storage element that will
store data whenever the clk input line transitions from low to high (ZERO to ONE).

258 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

In addition, asynchronous set and reset signals exist, and each of the three methods of
changing the stored output of the d_jkff have separate load values and delays associated
with them. Additionally, you may specify separate rise and fall delay values that are
added to those specified for the input lines; these allow for more faithful reproduction of
the output characteristics of different IC fabrication technologies.
Note that any UNKNOWN inputs other than j or k cause the output to go UNKNOWN
automatically.

Example SPICE Usage:
a8 1 2 3 4 5 6 7 flop2
.model flop2 d_jkff(clk_delay = 13.0e-9 set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
+ fall_delay = 3e-9)

8.4.14 Toggle Flip Flop
NAME_TABLE:
C_Function_Name: cm_d_tff
Spice_Model_Name: d_tff
Description: "digital toggle flip flop"
PORT_TABLE:
Port Name: t clk
Description: "toggle input" "clock"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:
Port Name: set reset
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:
Port Name: out Nout
Description: "data output" "inverted data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

8.4. DIGITAL MODELS 259

Parameter_Name: clk_delay set_delay
Description: "delay from clk" "delay from set"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: reset_delay ic
Description: "delay from reset" "output initial state"
Data_Type: real int
Default_Value: 1.0e-9 0
Limits: [1.0e-12 -] [0 2]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: t_load clk_load
Description: "toggle load value (F)" "clk load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default.Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Common parameters: rise_delay, fall_delay.

Description: The digital toggle-type flip flop is a one-bit, edge-triggered storage element that
will toggle its current state whenever the clk input line transitions from low to high (ZERO
to ONE). In addition, asynchronous set and reset signals exist, and each of the three meth-
ods of changing the stored output of the d_tff have separate load values and delays asso-
ciated with them. Additionally, you may specify separate rise and fall delay values that
are added to those specified for the input lines; these allow for more faithful reproduction
of the output characteristics of different IC fabrication technologies.
Note that any UNKNOWN inputs other than t immediately cause the output to go UN-
KNOWN.

Example SPICE Usage:

260 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

a8 2 12 4 5 6 3 flop3
.model flop3 d_tff(clk_delay = 13.0e-9 set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
+ fall_delay = 3e-9 t_load = 0.2e-12)

8.4.15 Set-Reset Flip Flop
NAME_TABLE:
C_Function_Name: cm_d_srff
Spice_Model_Name: d_srff
Description: "digital set-reset flip flop"
PORT_TABLE:
Port Name: s r
Description: "set input" "reset input"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:
Port Name: clk
Description: "clock"
Direction: in
Default_Type: d
Allowed_Types: [d]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port Name: set reset
Description: "asynchronous set" "asynchronous reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:
Port Name: out Nout
Description: "data output" "inverted data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

8.4. DIGITAL MODELS 261

Parameter_Name: clk_delay set_delay
Description: "delay from clk" "delay from set"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: reset_delay ic
Description: "delay from reset" "output initial state"
Data_Type: real int
Default_Value: 1.0e-9 0
Limits: [1.0e-12 -] [0 2]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: sr_load clk_load
Description: "set/reset loads (F)" "clk load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Common parameters: rise_delay, fall_delay.

Description: The digital sr-type flip flop is a one-bit, edge-triggered storage element that will
store data whenever the clk input line transitions from low to high (ZERO to ONE). The
value stored (i.e., the out value) will depend on the s and r input pin values, and will be:

out=ONE if s=ONE and r=ZERO;
out=ZERO if s=ZERO and r=ONE;
out=previous value if s=ZERO and r=ZERO;
out=UNKNOWN if s=ONE and r=ONE;

In addition, asynchronous set and reset signals exist, and each of the three methods of changing
the stored output of the d_srff have separate load values and delays associated with them. You

262 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

may also specify separate rise and fall delay values that are added to those specified for the
input lines; these allow for more faithful reproduction of the output characteristics of different
IC fabrication technologies.

Note that any UNKNOWN inputs other than s and r immediately cause the output to go UN-
KNOWN.

Example SPICE Usage:

a8 2 12 4 5 6 3 14 flop7
.model flop7 d_srff(clk_delay = 13.0e-9 set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
+ fall_delay = 3e-9)

8.4.16 D Latch
NAME_TABLE:
C_Function_Name: cm_d_dlatch
Spice_Model_Name: d_dlatch
Description: "digital d-type latch"
PORT_TABLE:
Port Name: data enable
Description: "input data" "enable input"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:
Port Name: set reset
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:
Port Name: out Nout
Description: "data output" "inverter data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: data_delay

8.4. DIGITAL MODELS 263

Description: "delay from data"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1.0e-12 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: enable_delay set_delay
Description: "delay from enable" "delay from SET"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: reset_delay ic
Description: "delay from RESET" "output initial state"
Data_Type: real boolean
Default_Value: 1.0e-9 0
Limits: [1.0e-12 -] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: data_load enable_load
Description: "data load (F)" "enable load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Common parameters: rise_delay, fall_delay.

Description: The digital d-type latch is a one-bit, level-sensitive storage element that will out-
put the value on the data line whenever the enable input line is high (ONE). The value on

264 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

the data line is stored (i.e., held on the out line) whenever the enable line is low (ZERO).
In addition, asynchronous set and reset signals exist, and each of the four methods of
changing the stored output of the d_dlatch (i.e., data changing with enable=ONE, enable
changing to ONE from ZERO with a new value on data, raising set and raising reset) have
separate delays associated with them. You may also specify separate rise and fall delay
values that are added to those specified for the input lines; these allow for more faithful
reproduction of the output characteristics of different IC fabrication technologies.
Note that any UNKNOWN inputs other than on the data line when enable=ZERO imme-
diately cause the output to go UNKNOWN.

Example SPICE Usage:
a4 12 4 5 6 3 14 latch1
.model latch1 d_dlatch(data_delay = 13.0e-9 enable_delay = 22.0e-9
+ set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2
+ rise_delay = 10.0e-9 fall_delay = 3e-9)

8.4.17 Set-Reset Latch
NAME_TABLE:
C_Function_Name: cm_d_srlatch
Spice_Model_Name: d_srlatch
Description: "digital sr-type latch"
PORT_TABLE:
Port Name: s r
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:
Port Name: enable
Description: "enable"
Direction: in
Default_Type: d
Allowed_Types: [d]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port Name: set reset
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no

8.4. DIGITAL MODELS 265

Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:
Port Name: out Nout
Description: "data output" "inverted data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: sr_delay
Description: "delay from s or r input change"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1.0e-12 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: enable_delay set_delay
Description: "delay from enable" "delay from SET"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: reset_delay ic
Description: "delay from RESET" "output initial state"
Data_Type: real boolean
Default_Value: 1.0e-9 0
Limits: [1.0e-12 -] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: sr_load enable_load
Description: "s & r input loads (F)" "enable load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

266 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Common parameters: rise_delay, fall_delay.

Description: The digital sr-type latch is a one-bit, level-sensitive storage element that will
output the value dictated by the state of the s and r pins whenever the enable input line
is high (ONE). This value is stored (i.e., held on the out line) whenever the enable line is
low (ZERO). The particular value chosen is as shown below:

s=ZERO, r=ZERO => out=current value (i.e., not change in output)
s=ZERO, r=ONE => out=ZERO
s=ONE, r=ZERO => out=ONE
s=ONE, r=ONE => out=UNKNOWN

Asynchronous set and reset signals exist, and each of the four methods of changing the stored
output of the d srlatch (i.e., s/r combination changing with enable=ONE, enable changing to
ONE from ZERO with an output-changing combination of s and r, raising set and raising re-
set) have separate delays associated with them. You may also specify separate rise and fall
delay values that are added to those specified for the input lines; these allow for more faithful
reproduction of the output characteristics of different IC fabrication technologies.

Note that any UNKNOWN inputs other than on the s and r lines when enable=ZERO immedi-
ately cause the output to go UNKNOWN.

Example SPICE Usage:
a4 12 4 5 6 3 14 16 latch2
.model latch2 d_srlatch(sr_delay = 13.0e-9 enable_delay = 22.0e-9
+ set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2
+ rise_delay = 10.0e-9 fall_delay = 3e-9)

8.4.18 State Machine
NAME_TABLE:
C_Function_Name: cm_d_state
Spice_Model_Name: d_state
Description: "digital state machine"
PORT_TABLE:
Port Name: in clk
Description: "input" "clock"

8.4. DIGITAL MODELS 267

Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [1 -] -
Null_Allowed: yes no
PORT_TABLE:
Port Name: reset out
Description: "reset" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no yes
Vector_Bounds: - [1 -]
Null_Allowed: yes no
PARAMETER_TABLE:
Parameter_Name: clk_delay reset_delay
Description: "delay from CLK" "delay from RESET"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE: Parameter_Name: state_file
Description: "state transition specification file name"
Data_Type: string
Default_Value: "state.txt"
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: reset_state
Description: "default state on RESET & at DC"
Data_Type: int
Default_Value: 0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: clk_load
Description: "clock loading capacitance (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no

268 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: reset_load
Description: "reset loading capacitance (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Common parameters: input_load.

Description: The digital state machine provides for straightforward descriptions of clocked
combinational logic blocks with a variable number of inputs and outputs and with an
unlimited number of possible states. The model can be configured to behave as virtually
any type of counter or clocked combinational logic block and can be used to replace very
large digital circuit schematics with an identically functional but faster representation.
The d state model is configured through the use of a state definition file (state.in) that
resides in a directory of your choosing. The file defines all states to be understood by the
model, plus input bit combinations that trigger changes in state. An example state.in file
is shown below:

----------- begin file -------------

* This is an example state.in file. This file

* defines a simple 2-bit counter with one input. The

* value of this input determines whether the counter counts

* up (in = 1) or down (in = 0).
0 0s 0s 0 -> 3

1 -> 1
1 0s 1z 0 -> 0

1 -> 2
2 1z 0s 0 -> 1

1 -> 3
3 1z 1z 0 -> 2
3 1z 1z 1 -> 0
------------------ end file ---------------

Several attributes of the above file structure should be noted. First, all lines in the file must be
one of four types. These are

1. A comment, beginning with a ‘*’ in the first column.

2. A header line, which is a complete description of the current state, the outputs corre-
sponding to that state, an input value, and the state that the model will assume should that
input be encountered. The first line of a state definition must always be a header line.

8.4. DIGITAL MODELS 269

3. A continuation line, which is a partial description of a state, consisting of an input value
and the state that the model will assume should that input be encountered. Note that
continuation lines may only be used after the initial header line definition for a state.

4. A line containing nothing but white-spaces (space, form-feed, newline, carriage return,
tab, vertical tab).

A line that is not one of the above will cause a file-loading error. Note that in the example
shown, whitespace (any combination of blanks, tabs, commas) is used to separate values, and
that the character -> is used to underline the state transition implied by the input preceding it.
This particular character is not critical in of itself, and can be replaced with any other character
or non-broken combination of characters that you prefer (e.g. ==>, >>, ’:’, resolves_to, etc.)

The order of the output and input bits in the file is important; the first column is always inter-
preted to refer to the ’zeroth’ bit of input and output. Thus, in the file above, the output from
state 1 sets out[0] to 0s, and out[1] to 1z.

The state numbers need not be in any particular order, but a state definition (which consists of
the sum total of all lines that define the state, its outputs, and all methods by which a state can
be exited) must be made on contiguous line numbers; a state definition cannot be broken into
sub-blocks and distributed randomly throughout the file. On the other hand, the state definition
can be broken up by as many comment lines as you desire.

Header files may be used throughout the state.in file, and continuation lines can be discarded
completely if you so choose: continuation lines are primarily provided as a convenience.

Example SPICE Usage:
a4 [2 3 4 5] 1 12 [22 23 24 25 26 27 28 29] state1
.model state1 d_state(clk_delay = 13.0e-9 reset_delay = 27.0e-9
+ state_file = "newstate.txt" reset_state = 2)

Note: The file named by the parameter filename in state_file="filename" is sought after
according to a search list described in8.1.3.

8.4.19 Frequency Divider
NAME_TABLE:
C_Function_Name: cm_d_fdiv
Spice_Model_Name: d_fdiv
Description: "digital frequency divider"
PORT_TABLE:
Port Name: freq_in freq_out
Description: "frequency input" "frequency output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

270 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Parameter_Name: div_factor high_cycles
Description: "divide factor" "# of cycles for high out"
Data_Type: int int
Default_Value: 2 1
Limits: [1 -] [1 div_factor-1]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: i_count
Description: "divider initial count value"
Data_Type: int
Default_Value: 0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: freq_in_load
Description: "freq_in load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Common parameters: rise_delay, fall_delay.

Description: The digital frequency divider is a programmable step-down divider that accepts
an arbitrary divisor (div_factor), a duty-cycle term (high_cycles), and an initial count
value (i_count). The generated output is synchronized to the rising edges of the input
signal.

Example SPICE Usage:
a4 3 7 divider
.model divider d_fdiv(div_factor = 5 high_cycles = 3
+ i_count = 4 rise_delay = 23e-9
+ fall_delay = 9e-9)

8.4.20 RAM
NAME_TABLE:
C_Function_Name: cm_d_ram
Spice_Model_Name: d_ram
Description: "digital random-access memory"
PORT_TABLE:
Port Name: data_in data_out

8.4. DIGITAL MODELS 271

Description: "data input line(s)" "data output line(s)"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes yes
Vector_Bounds: [1 -] data_in
Null_Allowed: no no
PORT_TABLE:
Port Name: address write_en
Description: "address input line(s)" "write enable line"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [1 -] -
Null_Allowed: no no
PORT_TABLE:
Port Name: select
Description: "chip select line(s)"
Direction: in
Default_Type: d
Allowed_Types: [d]
Vector: yes
Vector_Bounds: [1 16]
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: select_value
Description: "decimal active value for select line comparison"
Data_Type: int
Default_Value: 1
Limits: [0 32767]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: ic
Description: "initial bit state @ dc"
Data_Type: int
Default_Value: 2
Limits: [0 2]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: read_delay
Description: "read delay from address/select/write.en active"
Data_Type: real
Default_Value: 100.0e-9

272 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Limits: [1.0e-12 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: data_load address_load
Description: "data_in load value (F)" "addr. load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: select_load
Description: "select load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: enable_load
Description: "enable line load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital RAM is an M-wide, N-deep random access memory element with
programmable select lines, tristated data out lines, and a single write/~read line. The
width of the RAM words (M) is set through the use of the word width parameter. The
depth of the RAM (N) is set by the number of address lines input to the device. The value
of N is related to the number of address input lines (P) by the following equation:

2P = N

There is no reset line into the device. However, an initial value for all bits may be specified
by setting the ic parameter to either 0 or 1. In reading a word from the ram, the read delay
value is invoked, and output will not appear until that delay has been satisfied. Separate
rise and fall delays are not supported for this device.
Note that UNKNOWN inputs on the address lines are not allowed during a write. In the
event that an address line does indeed go unknown during a write, the entire contents
of the ram will be set to unknown. This is in contrast to the data in lines being set to
unknown during a write; in that case, only the selected word will be corrupted, and this is
corrected once the data lines settle back to a known value. Note that protection is added

8.4. DIGITAL MODELS 273

to the write en line such that extended UNKNOWN values on that line are interpreted as
ZERO values. This is the equivalent of a read operation and will not corrupt the contents
of the RAM. A similar mechanism exists for the select lines. If they are unknown, then it
is assumed that the chip is not selected.
Detailed timing-checking routines are not provided in this model, other than for the enable
delay and select delay restrictions on read operations. You are advised, therefore, to
carefully check the timing into and out of the RAM for correct read and write cycle
times, setup and hold times, etc. for the particular device they are attempting to model.

Example SPICE Usage:
a4 [3 4 5 6] [3 4 5 6] [12 13 14 15 16 17 18 19] 30 [22 23 24] ram2
.model ram2 d_ram(select_value = 2 ic = 2 read_delay = 80e-9)

8.4.21 Digital Source
NAME_TABLE:
C_Function_Name: cm_d_source
Spice_Model_Name: d_source
Description: "digital signal source"
PORT_TABLE:
Port Name: out
Description: "output"
Direction: out
Default_Type: d
Allowed_Types: [d]
Vector: yes
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: input_file
Description: "digital input vector filename"
Data_Type: string
Default_Value: "source.txt"
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Common parameters: input_load.

Description: The digital source provides for straightforward descriptions of digital signal vec-
tors in a tabular format. The model reads input from the input file and, at the times
specified in the file, generates the inputs along with the strengths listed. The format of
the input file is as shown below. Note that comment lines are delineated through the use
of a single ‘*’ character in the first column of a line. This is similar to the way the SPICE
program handles comments.

274 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

* T c n n n . . .

* i l o o o . . .

* m o d d d . . .

* e c e e e . . .

* k a b c . . .
0.0000 Uu Uu Us Uu . . .
1.234e-9 0s 1s 1s 0z . . .
1.376e-9 0s 0s 1s 0z . . .
2.5e-7 1s 0s 1s 0z . . .
2.5006e-7 1s 1s 1s 0z . . .
5.0e-7 0s 1s 1s 0z . . .

Note that in the example shown, whitespace (any combination of blanks, tabs, commas) is used
to separate the time and state/strength tokens. The order of the input columns is important; the
first column is always interpreted to mean ‘time’. The second through the N’th columns map
to the out[0] through out[N-2] output nodes. A non-commented line that does not contain
enough tokens to completely define all outputs for the digital source will cause an error. Also,
time values must increase monotonically or an error will result in reading the source file.

Errors will also occur if a line exists in source.txt that is neither a comment nor vector line.
The only exception to this is in the case of a line that is completely blank; this is treated as
a comment (note that such lines often occur at the end of text within a file; ignoring these in
particular prevents nuisance errors on the part of the simulator).

Example SPICE Usage:
a3 [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17] input_vector
.model input_vector d_source(input_file = "source_simple.text")

Note: The file named by the parameter filename in input_file="filename" is sought after
according to a search list described in8.1.3.

8.4.22 LUT
NAME_TABLE:
C_Function_Name: cm_d_lut
Spice_Model_Name: d_lut
Description: "digital n-input look-up table gate"
PORT_TABLE:
Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [1 -] -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: table_values

8.4. DIGITAL MODELS 275

Description: "lookup table values"
Data_Type: string
Default_Value: -
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: no

Common parameters: rise_delay, fall_delay, input_load.

Description: The lookup table provides a way to map any arbitrary n-input, 1-output combi-
national logic block to XSPICE. The inputs are mapped to the output using a string of
length 2^n. The string may contain values "0", "1" or "X", corresponding to an output of
low, high, or unknown, respectively. The outputs are only mapped for inputs which are
valid logic levels. Any unknown bit in the input vector will always produce an unknown
output. The first character of the string table_values corresponds to all inputs value
zero, and the last (2^n) character corresponds to all inputs value one, with the first signal
in the input vector being the least significant bit. For example, a 2-input lookup table
representing the function (A * B) (that is, A AND B), with input vector [A B] can be
constructed with a table_values string of "0001"; function (~A * B) with input vector
[A B] can be constructed with a table_values string of "0010".

Example SPICE Usage:

* LUT encoding 3-bit parity function
a4 [1 2 3] 5 lut_pty3_1
.model lut_pty3_1 d_lut(table_values = "01101001"
+ input_load 2.0e-12)

8.4.23 General LUT
NAME_TABLE:
C_Function_Name: cm_d_genlut
Spice_Model_Name: d_genlut
Description: "digital n-input x m-output look-up table gate"
PORT_TABLE:
Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes yes
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: input_load input_delay
Description: "input load value (F)" "input delay"
Data_Type: real real
Default_Value: 1.0e-12 0.0

276 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Limits: - -
Vector: yes yes
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: table_values
Description: "lookup table values"
Data_Type: string
Default_Value: -
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: no

Common parameters: rise_delay, fall_delay.

Description: The lookup table provides a way to map any arbitrary n-input, m-output combi-
national logic block to XSPICE. The inputs are mapped to the output using a string of
length m * (2^n). The string may contain values "0", "1", "X", or "Z", corresponding to
an output of low, high, unknown, or high-impedance, respectively. The outputs are only
mapped for inputs which are valid logic levels. Any unknown bit in the input vector will
always produce an unknown output. The character string is in groups of (2^n) characters,
one group corresponding to each output pin, in order. The first character of a group in
the string table_values corresponds to all inputs value zero, and the last (2^n) char-
acter in the group corresponds to all inputs value one, with the first signal in the input
vector being the least significant bit. For example, a 2-input lookup table representing the
function (A * B) (that is, A AND B), with input vector [A B] can be constructed with a
table_values string of "0001"; function (~A * B) with input vector [A B] can be con-
structed with a "table_values" string of "0010". The delays associated with each output
pin’s rise and those associated with each output pin’s fall may be specified independently.
The model also posts independent input load values per input pin (in farads) based on
the parameter input_load. The parameter input_delay provides a way to specify ad-
ditional delay between each input pin and the output. This delay is added to the rise- or
fall-time of the output. The output of this model does not respond to the total loading it
sees on the output; it will always drive the output strongly with the specified delays.

Example SPICE Usage:

* LUT encoding 3-bit parity function
a4 [1 2 3] [5] lut_pty3_1
.model lut_pty3_1 d_genlut(table_values = "01101001"
+ input_load [2.0e-12])

* LUT encoding a tristate inverter function (en in out)
a2 [1 2] [3] lut_triinv_1
.model lut_triinv_1 d_genlut(table_values = "Z1Z0")

* LUT encoding a half-adder function (A B Carry Sum)
a8 [1 2] [3 4] lut_halfadd_1
.model lut_halfadd_1 d_genlut(table_values = "00010110"
+ rise_delay [1.5e-9 1.0e-9] fall_delay [1.5e-9 1.0e-9])

8.4. DIGITAL MODELS 277

8.4.24 D_process

NAME_TABLE:
C_Function_Name: cm_d_process
Spice_Model_Name: d_process
Description: "digital process"
PORT_TABLE:
Port_Name: in clk
Description: "input" "clock"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: - -
Null_Allowed: yes no
PORT_TABLE:
Port_Name: reset out
Description: "reset" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no yes
Vector_Bounds: - [1 -]
Null_Allowed: yes no
PARAMETER_TABLE:
Parameter_Name: clk_delay
Description: "delay from CLK"
Data_Type: real
Default_Value: 1.0e-9
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: process_file
Description: "file name of the executable process"
Data_Type: string
Default_Value: "process"
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: process_params
Description: "parameters to be passed to an executable process"
Data_Type: string
Default_Value: -
Limits: -
Vector: yes

278 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: input_load
Description: "input loading capacitance (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: clk_load
Description: "clock loading capacitance (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: reset_load
Description: "reset loading capacitance (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital d_process model runs an external program, specified by the pro-
cess_file parameter, to read the input signals when the clock changes to ONE and then
produces the output signals after the clk_delay. There can be zero (null) or more inputs,
and one or more outputs. The maximum number of inputs or outputs is 255 bits wide.
If a reset signal is specified and has the value ONE when the clock changes to ONE, the
external program is notified of the reset by sending it a negative time value. The output
signals are initialized to Uz. The strength (s, r, z, u) of an input signal is ignored. After
time 0.0 initialization, outputs are driven with STRONG (s) strength. The input and out-
put states are binary ONE or ZERO. If an input value is UNKNOWN (U) then a ONE or
ZERO is chosen at random.

The external program is started by fork/exec or spawn, and connections are established
using pipes. The external program is written in C, and first of all, in main() the argc,
argv parameters can be read. These command line parameters are those specified in the
process_params field of the d_process .model statement. A header is sent from ngspice to
the external program which acknowledges that the number of inputs and outputs match.
Thereafter, the external program executes a loop: while (read data from the input pipe and
if it is OK) { compute output data for that input write the output data to the output pipe

8.4. DIGITAL MODELS 279

} In the meantime the cm_d_process code in ngspice is writing data to its output pipe at
each clock change to ONE, then reading on its input pipe the response from the external
program.

Please see examples/xspice/d_process for a simple example and study the source code
in the .c files. The d_process model was developed by Uros Platise and he has provided a
non-trivial example and detailed descriptions at:
https://www.isotel.eu/mixedsim/embedded/motorforce/index.html.

Example SPICE Usage:
a1 [d1] clk1 reset1 [o1 o2 o3 o4] proc1
.model proc1 d_process (process_file="prog1in4out"
+ clk_delay = 2.5e-9)

8.4.25 d_cosim
NAME_TABLE:
Spice_Model_Name: d_cosim
C_Function_Name: ucm_d_cosim
Description: "Bridge to an irreversible digital model"
PORT_TABLE:
Port_Name: d_in
Description: "digital input"
Direction: in
Default_Type: d
Allowed_Types: [d]
Vector: yes
Vector_Bounds: [0 -]
Null_Allowed: yes
PORT_TABLE:
Port_Name: d_out
Description: "digital output"
Direction: out
Default_Type: d
Allowed_Types: [d]
Vector: yes
Vector_Bounds: [0 -]
Null_Allowed: yes
PORT_TABLE:
Port_Name: d_inout
Description: "digital bidirectional port"
Direction: inout
Default_Type: d
Allowed_Types: [d]
Vector: yes
Vector_Bounds: [0 -]
Null_Allowed: yes
PARAMETER_TABLE:

https://www.isotel.eu/mixedsim/embedded/motorforce/index.html

280 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Parameter_Name: delay
Description: "output delay time"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1e-12 -]
Vector: no
Vector_bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: simulation
Description: "A shared library containing a digital model"
Data_Type: string
Default_Value: -
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: no
/* Instances maintain an internal input event queue that should be at least

* as large as the number of inputs. Performance with clocked logic may

* be improved by making it larger than (2 * F) / MTS, where F is

* the clock frequency and MTS is the maximum timestep for .tran.

*/
PARAMETER_TABLE:
Parameter_Name: queue_size
Description: "input queue size"
Data_Type: int
Default_Value: 128
Limits: [1 -]
Vector: no
Vector_bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: irreversible
Description: "Parameter passed to library function cm_irreversible()"
Data_Type: int
Default_Value: 1
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
STATIC_VAR_TABLE:
Static_Var_Name: cosim_instance
Data_Type: pointer
Description: "Per-instance structure"

The d_cosim code model is similar to d_process, as it also requires external software to define
the behaviour of a code model instance. An important difference is that with d_cosim such
software runs inside the ngspice process. This code model is intended as a container for other

8.5. TRANSMISSION LINES MODELS 281

types of digital simulation and to provide a simplified programming interface for devices whose
behaviour is defined purely by conventional software. In particular, it is intended to act as a
container for sub-simulations that can not discard any time steps that fail in the main simulator;
that is, they are irreversible.

The actual behaviour of any d_cosim instance is defined by a shared library or Windows DLL
that is set by the ’simulation’ parameter and dynamically loaded. Input changes are relayed to a
function in this library and any outputs reported by the library are relayed to the simulated cir-
cuit. The interface between this code model and the library that it hosts is defined in C-language
header file cosim.h, included in the Ngspice source code and in directory share/ngspice/script-
s/src/ngspice in a binary package. This interface is simpler than the XSPICE programming
interface, but that has a cost: without special care only one d_cosim instance should exist in a
circuit. For more information, see the description of cm_irreversible() in section 24.7.2.7.

Example SPICE usage:

adut [Clk Comp Start] [Sample Valid ~d5 ~d4 ~d3 ~d2 ~d1 ~d0] null dut
.model dut d_cosim simulation="./adc.so"

A method for creating a suitable library from HDL code is described in section 10.3.

8.5 Transmission lines models

A set of XSPICE transmission lines models was added since the version 45. These models
include microstrip lines and allow to simulate RF circuits with Ngspice. Here is an overview
of this model group. All devices mentioned described in this section are available from Qucs-S
schematic capture GUI.

8.5.1 Generic transmission line
NAME_TABLE:
Spice_Model_Name: tline
C_Function_Name: cm_tline
Description: "Generic transmission line"
PORT_TABLE:
Port_Name: in
Description: "Terminals"
Direction: inout
Default_Type: hd
Allowed_Types: [hd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: out
Description: "Terminals"

282 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Direction: inout
Default_Type: hd
Allowed_Types: [hd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: V1sens
Description: "Sensing terminals"
Direction: in
Default_Type: vd
Allowed_Types: [vd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: V2sens
Description: "Sensing terminals"
Direction: in
Default_Type: vd
Allowed_Types: [vd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: l
Description: "length"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: z
Description: "characteristic impedance"
Data_Type: real
Default_Value: 50.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: a
Description: "attenuation per length (dB)"
Data_Type: real
Default_Value: 0.0
Limits: -

8.5. TRANSMISSION LINES MODELS 283

Vector: no
Vector_Bounds: -
Null_Allowed: yes
STATIC_VAR_TABLE:
Static_Var_Name: sim_points_data
Description: "local static data"
Data_Type: pointer

This model represents a generic transmission line described by characteristic impedance, length,
and attenuation per length. The device contains models for both the frequency and time do-
mains. The XSPICE device has four ports. The V1sens and V2sens terminals are the voltage
sensing terminals. They should be connected in parallels to the line terminals. These terminals
serve for the transient model. An example of netlist entry for this device is given below:

A1 %hd(in 0) %hd(out 0) %vd(in 0) %vd(out 0) TLIN1
.MODEL TLIN1 TLINE(l=100e-3 z=50.0 a=0.0)

This device represents a lossless transmission line with 50Ohm characteristic impedance and
100mm length. The sensing terminals are connected in parallel to the input and output terminals
(nodes in and out).

8.5.2 Generic coupled lines

NAME_TABLE:
Spice_Model_Name: cpline
C_Function_Name: cm_cpline
Description: "Generic transmission line"
PORT_TABLE:
Port_Name: p1
Description: "Terminals Line1"
Direction: inout
Default_Type: hd
Allowed_Types: [hd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: p2
Description: "Terminals Line1"
Direction: inout
Default_Type: hd
Allowed_Types: [hd]

284 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: p3
Description: "Terminals Line2"
Direction: inout
Default_Type: hd
Allowed_Types: [hd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: p4
Description: "Terminals Line2"
Direction: inout
Default_Type: hd
Allowed_Types: [hd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: p1s
Description: "Sensing terminals line 1"
Direction: in
Default_Type: vd
Allowed_Types: [vd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: p2s
Description: "Sensing terminals line 1"
Direction: in
Default_Type: vd
Allowed_Types: [vd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: p3s
Description: "Sensing terminals line 1"
Direction: in
Default_Type: vd
Allowed_Types: [vd]
Vector: no
Vector_Bounds: -
Null_Allowed: no

8.5. TRANSMISSION LINES MODELS 285

PORT_TABLE:
Port_Name: p4s
Description: "Sensing terminals line 1"
Direction: in
Default_Type: vd
Allowed_Types: [vd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: l
Description: "length"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: ze
Description: "characteristic impedance of even mode"
Data_Type: real
Default_Value: 50.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: zo
Description: "characteristic impedance of odd mode"
Data_Type: real
Default_Value: 50.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: ae
Description: "attenuation per length (dB) even mode"
Data_Type: real
Default_Value: 0.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: ao
Description: "attenuation per length (dB) odd mode"

286 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Data_Type: real
Default_Value: 0.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: ere
Description: "dielectric constant even mode"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: ero
Description: "dielectric constant odd mode"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
STATIC_VAR_TABLE:
Static_Var_Name: sim_points_data
Description: "local static data"
Data_Type: pointer

The device represents two generic coupled lines. It is described by characteristic impedance for
even and odd propagation modes, line length, and attenuation. The device also provides both
frequency and time domain models. The voltage sensing ports should be connected in parallel
to the line terminals. For example p1s in parallel to p1. An example of SPICE entry for the
coupled lines is shown below:

A1 %hd(p1 0) %hd(p2 0) %hd(p3 0) %hd(p4 0)
+ %vd(p1 0) %vd(p2 0) %vd(p3 0) %vd(p4 0) CPLINE1
.MODEL CPLINE1 CPLINE(ze=100 zo=50 l=100e-3 ere=1
+ ero=1 ao=0 ae=0)

8.5.3 Microstip line
NAME_TABLE:

8.5. TRANSMISSION LINES MODELS 287

Spice_Model_Name: mlin
C_Function_Name: cm_mlin
Description: "Microstrip line"
PORT_TABLE:
Port_Name: port1
Description: "Microstrip terminals"
Direction: inout
Default_Type: hd
Allowed_Types: [hd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: port2
Description: "Microstrip terminals"
Direction: inout
Default_Type: hd
Allowed_Types: [hd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: V1sens
Description: "Sensing terminals"
Direction: in
Default_Type: vd
Allowed_Types: [vd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: V2sens
Description: "Sensisng terminals"
Direction: in
Default_Type: vd
Allowed_Types: [vd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: l
Description: "length (m)"
Data_Type: real
Default_Value: 1e-2
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

288 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

PARAMETER_TABLE:
Parameter_Name: w
Description: "width (m)"
Data_Type: real
Default_Value: 1e-3
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: model
Description: "Model type"
Data_Type: int
Default_Value: 0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: disp
Description: "Dispersion type"
Data_Type: int
Default_Value: 0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: er
Description: "Substrate dielectric permittivity"
Data_Type: real
Default_Value: 9.8
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: h
Description: "Substrate thickness (m)"
Data_Type: real
Default_Value: 1e-3
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: t
Description: "Metal strip thickness (m)"

8.5. TRANSMISSION LINES MODELS 289

Data_Type: real
Default_Value: 35e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: tand
Description: "Substrate dielectric loss"
Data_Type: real
Default_Value: 2e-4
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: rho
Description: "Metal resistance (Ohm*m)"
Data_Type: real
Default_Value: 0.022e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: d
Description: "RMS Substrate roughness"
Data_Type: real
Default_Value: 0.15e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: tranmodel
Description: "TRAN model DC/FULL"
Data_Type: int
Default_Value: 0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
STATIC_VAR_TABLE:
Static_Var_Name: sim_points_data
Description: "local static data"
Data_Type: pointer

290 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Table 8.2: Microstrip model setting
Model property value Microstrip model

0 (default) Hammerstad
1 Kirschning
2 Wheeler
3 Scheider

Table 8.3: Dispersion models
Disp property value Dispersion model

0 (default) Kirschning
1 Kobayashi
2 Yamashita
3 Hammerstad
4 getsinger
5 Scheider
6 Pramanick

This device represents the simple microstrip line. The connection scheme is the same as for
generic transmission line. The er, h, t, tand, d, and rho parameters represent the substrate
properties. This device includes both AC and transient model. The transient model is disabled
by default and could be enabled by setting the tranmodel=1 property. Microstrip line allows to
represent frequency dependency model and different dispersion model. It could be controlled
by setting model and disp properties according the tables below. Set the appropriate code in the
disp and model parameters.

An example of the microstrip device SPICE entry is shown below. The voltage sensing ports
are connected in parallel to device ports (nodes in and out).

A1 %hd(in 0) %hd(out 0) %vd(in 0) %vd(out 0) MLIN1
.MODEL MLIN1 MLIN(w=1e-3 l=50e-3 er=9.8 h=1e-3 t=35e-6 tand=1e-3
+ rho=0.022e-6 d=0.15e-6 model=0 disp=0 tranmodel=0)

8.5.4 Coupled microstrip
NAME_TABLE:
Spice_Model_Name: cpmlin
C_Function_Name: cm_cpmline
Description: "Generic transmission line"
PORT_TABLE:
Port_Name: p1
Description: "Terminals Line1"
Direction: inout
Default_Type: hd
Allowed_Types: [hd]
Vector: no
Vector_Bounds: -
Null_Allowed: no

8.5. TRANSMISSION LINES MODELS 291

PORT_TABLE:
Port_Name: p2
Description: "Terminals Line1"
Direction: inout
Default_Type: hd
Allowed_Types: [hd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: p3
Description: "Terminals Line2"
Direction: inout
Default_Type: hd
Allowed_Types: [hd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: p4
Description: "Terminals Line2"
Direction: inout
Default_Type: hd
Allowed_Types: [hd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: p1s
Description: "Sensing terminals line 1"
Direction: in
Default_Type: vd
Allowed_Types: [vd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: p2s
Description: "Sensing terminals line 1"
Direction: in
Default_Type: vd
Allowed_Types: [vd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: p3s
Description: "Sensing terminals line 1"

292 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Direction: in
Default_Type: vd
Allowed_Types: [vd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port_Name: p4s
Description: "Sensing terminals line 1"
Direction: in
Default_Type: vd
Allowed_Types: [vd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: l
Description: "length (m)"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: w
Description: "width (m)"
Data_Type: real
Default_Value: 1e-3
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: s
Description: "gap (m)"
Data_Type: real
Default_Value: 1e-3
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: model
Description: "Model type"
Data_Type: int
Default_Value: 0
Limits: -

8.5. TRANSMISSION LINES MODELS 293

Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: disp
Description: "Dispersion type"
Data_Type: int
Default_Value: 0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: er
Description: "Substrate dielectric permittivity"
Data_Type: real
Default_Value: 9.8
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: h
Description: "Substrate thickness (m)"
Data_Type: real
Default_Value: 1e-3
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: t
Description: "Metal strip thickness (m)"
Data_Type: real
Default_Value: 35e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: tand
Description: "Substrate dielectric loss"
Data_Type: real
Default_Value: 2e-4
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

294 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

PARAMETER_TABLE:
Parameter_Name: rho
Description: "Metal resistance (Ohm*m)"
Data_Type: real
Default_Value: 0.022e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: d
Description: "RMS Substrate roughness"
Data_Type: real
Default_Value: 0.15e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: tranmodel
Description: "TRAN model DC/FULL"
Data_Type: int
Default_Value: 0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
STATIC_VAR_TABLE:
Static_Var_Name: sim_points_data
Description: "local static data"
Data_Type: pointer

This device provides a model for two coupled microstrip lines. The connection circuit is the
same as for the generic coupled lines. The substrate parameters are defined in a similar way
as for microstrip line. This device provide the models for both frequency and time domain.
The time-domain model is disabled by default and may be enabled by setting tranmodel=1
parameter. The line model and dispersion model codes are the same as for microstrip line (see
the tables 8.2 and 8.3). Here is an example of SPICE entry for coupled microstrips:

A1 %hd(p1 0) %hd(p2 0) %hd(p3 0) %hd(p4 0)
+ %vd(p1 0) %vd(p2 0) %vd(p3 0) %vd(p4 0) CPMLIN1
.MODEL CPMLIN1 CPMLIN(w=1e-3 l=20e-3 s=0.3e-3 er=9.8 h=1e-3
+ t=35e-6 tand=1e-3 rho=0.022e-6 d=0.15e-6 model=0 disp=0)

8.5. TRANSMISSION LINES MODELS 295

8.5.5 Microstrip open end

NAME_TABLE:
Spice_Model_Name: msopen
C_Function_Name: cm_msopen
Description: "Microstrip open end"
PORT_TABLE:
Port_Name: p1
Description: "terminals"
Direction: inout
Default_Type: gd
Allowed_Types: [gd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: w
Description: "width (m)"
Data_Type: real
Default_Value: 1e-3
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: model
Description: "Model type"
Data_Type: int
Default_Value: 0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: disp
Description: "Dispersion type"
Data_Type: int
Default_Value: 0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: msopen_model
Description: "MSOpen model"
Data_Type: int

296 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Default_Value: 0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: er
Description: "Substrate dielectric permittivity"
Data_Type: real
Default_Value: 9.8
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: h
Description: "Substrate thickness (m)"
Data_Type: real
Default_Value: 1e-3
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: t
Description: "Metal strip thickness (m)"
Data_Type: real
Default_Value: 35e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: tand
Description: "Substrate dielectric loss"
Data_Type: real
Default_Value: 2e-4
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: rho
Description: "Metal resistance (Ohm*m)"
Data_Type: real
Default_Value: 0.022e-6
Limits: -
Vector: no

8.6. PREDEFINED NODE TYPES FOR EVENT DRIVEN SIMULATION 297

Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: d
Description: "RMS Substrate roughness"
Data_Type: real
Default_Value: 0.15e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

This device represents microstrip open end. It provides only an AC domain model. It acts as an
open circuit for DC and transient. The substrate parameters, model, and dispersion are defined
in a same way as for microstrip device. Here is an example of the SPICE netlist entry for this
device.

A1 %gd(1 0) MODEL_MS
.MODEL MODEL_MS MSOPEN(w=117.6u model=0 disp=0 msopen_model=0
+ er=9.8 h=1m t=12.5u tand=0 rho=1E-10 d=0)

8.6 Predefined Node Types for event driven simulation

The following predefined node types are included with the XSPICE simulator. These should
provide you not only with valuable event-driven modeling capabilities, but also with examples
to use for guidance in creating new UDN (user defined node) types. You may access these node
data by the plot (13.5.56) or eprint (13.5.29) commands.

8.6.1 Digital Node Type

The ‘digital’ node type is directly built into the simulator. 12 digital node values are available.
They are described by a two character string (the state/strength token). The first character (0,
1, or U) gives the state of the node (logic zero, logic one, or unknown logic state). The second
character (s, r, z, u) gives the "strength" of the logic state (strong, resistive, hi-impedance, or
undetermined). So these are the values we have: 0s, 1s, Us, 0r, 1r, Ur, 0z, 1z, Uz, 0u, 1u, Uu.

8.6.2 Real Node Type

The ‘real’ node type provides for event-driven simulation with double-precision floating point
data. This type is useful for evaluating sampled-data filters and systems. The type implements
all optional functions for User-Defined Nodes, including inversion and node resolution. For
inversion, the sign of the value is reversed. For node resolution, the resultant value at a node is
the sum of all values output to that node. The node is implemented as a user defined node in
ngspice/src/xspice/icm/xtraevt/real.

298 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

8.6.3 Int Node Type

The ‘int’ node type provides for event-driven simulation with integer data. This type is useful
for evaluating round-off error effects in sampled-data systems. The type implements all optional
functions for User-Defined Nodes, including inversion and node resolution. For inversion, the
sign of the integer value is reversed. For node resolution, the resultant value at a node is the
sum of all values output to that node. The node is implemented as a user defined node in
ngspice/src/xspice/icm/xtraevt/int.

8.6.4 (Digital) Input/Output

The analog code models use the standard (analog) nodes provided by ngspice and thus are using
all the commands for sourcing, storing, printing, and plotting data.

I/O for event nodes (digital, real, int, and UDNs) is offered by the following tools: For output
you may use the plot (13.5.56) or eprint (13.5.29) commands, as well as edisplay (13.5.28)
and eprvcd (13.5.30). The latter writes all node data to a VCD file (a digital standard interface)
that may be analyzed by viewers like gtkwave. For input, you may create a test bench with
existing code models (oscillator (8.3.4), frequency divider (8.4.19), state machine (8.4.18) etc.).
Reading data from a file is offered by d_source (8.4.21). Some comments and hints have been
provided by Sdaau. You may also use the analog input from file, (filesource 8.2.9) and convert
its analog input to the digital type by the adc_bridge (8.3.2). If you want reading data from
a VCD file, please have a look at ngspice tips and examples forum and apply a python script
provided by Sdaau to translate the VCD data to d_source or filesource input.

8.7 Automatic insertion of bridging devices

Within ngspice, event nodes such as digital are quite different objects to analog nodes, but in
real circuits analog and digital devices may interconnect. Ngspice requires bridging devices to
interconnect its analog and digital domains.

Bridges are inserted automatically whenever an analog and a digital node have the same name,
so they are not required to be included in the netlist. To examine the inserted bridging devices,
use the command “listing e”. The extra devices appear at the end of the netlist. Automatic
bridging may be disabled by setting the interpreter variable auto_bridge to zero.

The code models used for analog/digital bridges are described in section 8.3. The default models
are:

* Model for bridging digital node with inputs only.
.model auto_adc adc_bridge(in_low = 1.65 in_high = 1.65)

* Model for bridging digital node with outputs only.
.model auto_dac dac_bridge(out_low = 0 out_high = 3.3)

* Model for bridging digital node with either an inout connection or

* both inputs and outputs.
.model auto_bidi bidi_bridge(out_high=3.3 in_low=1.65 in_high=1.65)

http://en.wikipedia.org/wiki/Value_change_dump
http://gtkwave.sourceforge.net/
https://sourceforge.net/p/ngspice/discussion/ngspice-tips/thread/3e193172/
http://en.wikipedia.org/wiki/Value_change_dump
https://sourceforge.net/p/ngspice/discussion/ngspice-tips/thread/635bb14a/

8.7. AUTOMATIC INSERTION OF BRIDGING DEVICES 299

A 3.3 volt supply has been assumed. That may be overriden by setting a parameter, vcc, to
the supply voltage. When bridges are inserted in a subcircuit the local value of the parameter is
used, so subcircuits may have differing supply voltages. An alternative name for the parameter
may be set as the value of the interpreter variable auto_bridge_parm_d.

If the defaults are unsatisfactory, they may be overridden by setting interpreter variables:

* Override the default DAC bridge for TTL levels
.control
pre_set auto_bridge_d_out =
+ (".model auto_dac dac_bridge(out_low = 0.4 out_high = 3.6)"
+ "auto_bridge%d [%s] [%s] auto_dac")
.endc

The variable name is formed from a fixed part (auto_bridge_), the type of the event node (d is
the internal name for "digital") and the bridging direction (in, out or inout). The first string is
the model definition and the second is expanded into an instance of the bridging device. Note
that the pre_set command is used so that the variable is set before the circuit is parsed.

Bridges may be defined by subcircuits as well as single devices:

pre_set auto_bridge_d_out = (".include test_sub.subcir"
+ "xauto_buf%d %s %s auto_buf vcc=%g"
+ 1)

Here the constant "1" is required to specify that a separate instance of the subcircuit is needed
for each bridged node.

The included file might be:

* DAC with internal resistance.
.subckt auto_buf dig ana vcc=5
.model auto_dac dac_bridge(out_low = 0 out_high = {vcc})
auto_dac [dig] [internal] auto_dac
rint internal ana 100
.ends

An additional method for controlling automatic bridging is to set the parameter family on indi-
vidual XSPICE devices or on subcircuits. When the parameter is found a specific interpreter
variable is used to control bridges attached to the device, or as the default within the subcircuit.
In this example all output bridges connected to or inside the subcircuit are specified.

Xmpx_gate [in0 in1 in2 in3] [sel1 sel0] out multiplexor
+ family=”lsttl”

.control
pre_set auto_bridge_lsttl_d_out =
+ (".model auto_dac dac_bridge(out_low = 0.2 out_high = 3.6)"
+ "auto_bridge%d [%s] [%s] auto_dac")
.endc

More details of controls on automatic bridging can found as a comment in the source file sr-
c/xspice/evt/evtcheck.c. Some examples of automatic bridging with various control options are
included in the source directory examples/digital/auto_bridge.

300 CHAPTER 8. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Chapter 9

Verilog-A Compact Device Models

9.1 Introduction

New compact device models today are released as Verilog-A code, a analog subset of Verilog-
AMS. Well-known examples are BSIMBULK, BSIMCMG, PSP, HiSIM or HICUM. The Si2
CMC web page lists more than 20 device models which are publicly available. The models
cover state-of-the-art MOS devices like SOI, FinFet, multi-gate and high voltage transistors,
high speed SiGe bipolar transistors, HEMTs as well as complex diodes and resistors. ngspice
makes all of these models available by its integrated OSDI interface and the OpenVAF compiler,
which translates Verilog-A device models into dynamically loadable libraries. User-defined
Verilog-A models may be compiled and loaded into ngspice as well. Currently Linux and MS
Windows are supported, OSDI/OpenVAF for macOS is not yet available. We are thankful to
SemiMod GmbH for these excellent contributions.

9.2 OSDI/OpenVAF

OSDI is a simulator independent interface for device models. Since release 39 ngspice contains
an integrated adapter to serve this interface and communicate with the compiled shared library
device models. The shared library models are linked into ngspice dynamically at runtime with
the osdi or pre_osdi (see 13.5.58) .control language commands.

OpenVAF compiles Verilog-A compact device model files into shared libraries that conform to
the OSDI interface. The model descriptions have to comply with the standard Verilog-AMS
LRM 2.x. Since ngspice-42, the small signal noise simulation (11.3.4) is implemented. Noise
simulation , however, is only available with the Sparse 1.3 matrix solver, not with KLU (see
11.1.1). Other restrictions may apply. Please consult the OpenVAF web pages for further
information. QA actions are not possible due to CMC refusing to provide data.

301

https://si2.org/standard-models/
https://si2.org/standard-models/
https://semimod.de/projects/
https://openvaf.semimod.de/
https://semimod.de
https://www.accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf
https://www.accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf
https://openvaf.semimod.de/

302 CHAPTER 9. VERILOG-A COMPACT DEVICE MODELS

9.3 How to create and apply OpenVAF models

9.3.1 Preparing for simulation

Using Verilog-A models for simulation in ngspice consists of five steps: Obtain or compile
ngspice with OSDI interface, compile the VA-model with OpenVAF, prepare a suitable model
parameter set, load the compiled model into ngspice ... and start the simulation.

9.3.1.1 Obtaining OpenVAF

OpenVAF may be downloaded for MS Windows or Linux as a single executable each from
https://openvaf.semimod.de/download/, and copied into a user defined directory. Compiling
OpenVAF yourself is possible, however is not recommended due to its complicated procedure.

9.3.1.2 Verilog-A compact models

Verilog-A compact device models are available from the si2 CMC standard compact model
page or directly from device modelling web sites, e.g. BSIM from UC Berkeley, HiSIM from
Hiroshima University, PSP from CEA-Leti, or HICUM from TU Dresden. Others are available.
User provided or user defined models may be compiled as well. All models have to comply
to the LRM 2.x standard of Verilog-AMS. Not all publicly availables models do comply (e.g.
PSP102, EKV2.6).

There is a github repository VA-Models with most of the public available Verilog-A compact
models. The models are checked against the LRM 2.4.0 and prepared for ngspice simulation.
A script for generation of the osdi files is provided and each model has more or less simple
ngspice netlist files to show main capabilities. So this web site should be a good starting point
for beginners.

9.3.1.3 Prepare ngspice

Compile ngspice with the configure flag -enable-osdi to add the OSDI interface to ngspice.
The MSVC Windows version ngspice.exe from the distribution already contains this inter-
face.

9.3.1.4 Compile the models

A very basic approach is to put the openvaf executable and the Verilog-A model (e.g. bsimbulk.va)
into a directory, then from a console window cd into that directory and call the command
openvaf bsimbulk.va. After a few seconds the compiled shared library bsimbulk.osdi
becomes available, ready to be loaded into ngspice.

Where to place *.osdi? Basically in any directory of your choice, the osdi or pre-osdi com-
mands (9.3.1.6) may be prepended by an absolute or relative path to that directory. For a perma-
nent location a bulk model install to libs/ngspice is recommended (to the folder where you
also find the XSPICE code model libs *.cm). An easy way that ngspice can find the compiled

https://openvaf.semimod.de/download/
https://si2.org/standard-models/
https://si2.org/standard-models/
https://bsim.berkeley.edu/models/
https://www.hisim.hiroshima-u.ac.jp/index.php?id=87
https://www.hisim.hiroshima-u.ac.jp/index.php?id=87
https://www.cea.fr/cea-tech/leti/pspsupport/Pages/Welcome.aspx
https://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html
https://www.accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf
https://github.com/dwarning/VA-Models

9.3. HOW TO CREATE AND APPLY OPENVAF MODELS 303

and linked shared library files (*.osdi) is to use the environment variable NGSPICE_OSDI_DIR,
e.g. in Linux export NGSPICE_OSDI_DIR="$HOME/Verilog-A/VA-Models/osdilibs".

openvaf --help yields more options of the compiler.

To simplify making suitable *.osdi models for the example netlists provided in ngspice/ex-
amples/osdi, the appropriate Verilog-A models and short scripts (for Linux and Windows) are
available for download as VAforOSDI.7z from our release directory. The following steps are
required to compile the shared library models:

• Expand VAforOSDI.7z into a directory of your choice.

• Download OpenVAF (Linux or Windows) from and place the executable here in this
directory.

• Run the script openvaf-compile-va.bat for MS Windows or openvaf-compile-va.sh
for Linux

• Copy the *.osdi files from directory osdilibs to the place where then code models
(*.cm) are located, typically in lib/ngspice or similar.

• Edit file ’spinit’, typically found in share/ngspice/scripts: Comment out the line
’unset osdi_enabled’

9.3.1.5 Prepare the model parameters

According to chapter 2.5 the model parameter set for each device model is organized in a
.model line. This is valid for OSDI models as well. However here the model type takes
the role to distinguish models from each other, not the level or version parameters found in
the intrinsic models. A TYPE parameter determines, if NMOS (TYPE=1) or PMOS (TYPE=-1),
NPN (TYPE=1) or PNP (TYPE=-1) are selected.

Consider as an example the bsimbulk model. The modeltype is set by the

module bsimbulk(d, g, s, b, t);

line of the BSIMBULK.va Verilog-A model file. So one has to search for the module name in
the *.va file to obtain the modeltype for the .model line and the number of nodes (and their
meanings) for the instance (or device) line while creating the netlist (see next chapter 9.3.1.6).

General form:

.model mname modeltype(pname1=pval1 pname2=pval2 ...)

Examples:

.model BSIMBULK_osdi_N bsimbulk TYPE=1 GEOMOD=0 RGEOMOD=0 ...

So to prepare the .model line, select an appropriate model parameter set, comment out the
version and level parameters, add the type parameter, and change the modeltype to the
Verilog-A module name.

https://sourceforge.net/projects/ngspice/files/ng-spice-rework/39/VAforOSDI.7z
https://openvaf.semimod.de/download/

304 CHAPTER 9. VERILOG-A COMPACT DEVICE MODELS

9.3.1.6 Prepare the ngspice netlist

The compiled model, e.g. bsimbulk.osdi, has to be loaded into ngspice. This may occur
automatically during start-up of ngspice, if the installation has been prepared according to the
bulk model install (compiled *.osdi models in lib/ngspice, osdi commands added to spinit).

Local usage of a *.osdi which are residing in an arbitrary directory is possible from within a
.control section (12.4.3) by the pre_osdi command. A relative path (as in the example below)
or an absolute path to that directory may be chosen.

pre_osdi ../osdi_libs/bsimbulk107.osdi

The reference designator for the OSDI devices is the letter N. Instance lines starting with N are
recognized as OSDI devices. The model name mname has to point to the .model line which
contains the parameter set to be selected.

Instance line, general form:

Ndevname node1 ... nodex mname pname1=pval1 pname2=pval2 ...

Examples:

Np1 z a vdd vdd BSIMBULK_osdi_P l=0.1u w=1u
+ as=0.26235p ad=0.26235p ps=2.51u pd=2.51u
Nn1 z a vss vss BSIMBULK_osdi_N l=0.1u w=0.5u
+ as=0.131175p ad=0.131175p ps=1.52u pd=1.52u

NMOS and PMOS devices are selected by their respective model names BSIMBULK_osdi_N
and BSIMBULK_osdi_P. The number and role of the nodes has been defined in the VA code
in its module statement (module bsimbulk(d, g, s, b, t); in the BSIMBULK example).
Instance parameters (like l, w, as etc.) are allowed, as defined by the VA code.

9.3.1.7 Run the simulation

The simulation may be run as usual. Batch mode is especially supported when the OSDI li-
braries are loaded via spinit during ngspice start-up.

9.3.2 OSDI/OpenVAF examples distributed with ngspice

Several example input netlists are available in folder ngspice/examples/osdi. All (except
for bsimbulk-local) make use of the *.osdi installation as a bulk model install in a folder
pointed to by spinit. bsimbulk-local however requires a local copy of bsimbulk.osdi into
folder bsimbulk-local/osdi_libs.

Example folders bsimbulk, bsimbulk-local, bsimcmg, mixed-models, and psp103 contain
MOS devices with their dc characteristics, CMOS inverters, CMOS ring oscillators, or even the
7552_ann benchmark CMOS circuit with 15.000 transistors and may more passives. Hicuml0,
or mextram contain bipolar devices with output characteristics, Gummel-plot and some circuits.
r2_cmc is a special resistor model.

Chapter 10

Digital Device Models

10.1 U devices (basic digital building blocks)

If PS compatibility mode is set, ngspice supports .subckt statements which contain entirely
U* instances of digital gates, flip-flops, latches, LOGICEXP and PINDLY behavioral primi-
tives (see chapter 10.1.2 for the list), and timing models. Typical rise/fall delays are estimated
from the timing models and PINDLY statements. CONSTRAINT primitives and io models
are ignored. Other U* instances (such as RAM, ROM, STIM and PLAs) in a .subckt are not
supported, and such .subckt will not be converted to XSPICE digital primitives.

These U devices are not meant to immediately describe digital circuits like the 74xx or 40xx
series. However they are used in subcircuits to generate models for such circuits (see chapter
10.2). Their syntax is mostly compatible to the Micro-Cap and PSPICE simulators.

305

306 CHAPTER 10. DIGITAL DEVICE MODELS

10.1.1 General format

General form:

U<name> <basic type> [(<parameter value>*)]
+<digital power node> <digital ground node> <node>*
+<timing model name> <I/O model name>
+[MNTYMXDLY=<delay select value>]
+[IO_LEVEL=<interface subcircuit select value>]

Example:

U2 AND(2) $G_DPWR $G_DGND 4 5 6
+ M2 IOM2 IO_LEVEL=0 MNTYMXDLY=2

.MODEL M2 UGATE ()

.MODEL IOM2 UIO (INLD=0 OUTLD=0 DRVH=50 DRVL=50
+ ATOD1="ATOD1" DTOA1="DTOD1" ATOD2="ATOD2" DTOA2="DTOD2"
+ ATOD3="ATOD3" DTOA3="DTOD3" ATOD4="ATOD4" DTOA4="DTOD4"
+ TSWLH1=0 TSWLH2=0 TSWLH3=0 TSWLH4=0
+ TSWHL1=0 TSWHL2=0 TSWHL3=0 TSWHL4=0 DIGPOWER="DIGPOWER")

10.1.2 List of devices available in ngspice (basic types)
Standard gates:
BUF buffer
INV inverter
AND AND gate
NAND NAND gate
OR OR gate
NOR NOR gate
XOR exclusive OR gate
NXOR exclusive NOR gate
BUFA buffer array
INVA inverter array
ANDA AND gate array
NANDA NAND gate array
ORA OR gate array
NORA NOR gate array
XORA exclusive OR gate array
NXORA exclusive NOR gate array
AO AND-OR compound gate
OA OR-AND compound gate
AOI AND-NOR compound gate
OAI OR-NAND compound gate
Tristate gates:
BUF3 buffer

10.2. SUPPORT FOR STANDARD DIGITAL DEVICES 307

INV3 inverter
AND3 AND gate
NAND3 NAND gate
OR3 OR gate
NOR3 NOR gate
XOR3 exclusive OR gate
NXOR3 exclusive NOR gate
BUF3A buffer array
INV3A inverter array
AND3A AND gate array
NAND3A NAND gate array
OR3A OR gate array
NOR3A NOR gate array
XOR3A exclusive OR gate array
NXOR3A exclusive NOR gate array
Flip-flops and latches:
DFF D-type flip-flop, positive-edge triggered
JKFF J-K flip-flop, negative-edge triggered
DLTCH D-type latch
SRFF S-R flip-flop
Delay lines:
DLYLINE Delay line
Behavioral primitives:
LOGICEXP Combinational logic expressions
PINDLY Output buffers and tristate buffers with estimated delays

10.1.3 URC transmission line versus U devices

For the first time ngspice may have a naming conflict, in that the reference designator U is used
for two different devices, the Uniformly distributet RC line and the U devices, our digital basic
types or primitives.

U-devices require the compatibility mode flag (12.14.1) set to PS. In addition U devices are
recognized only when they occur inside of a subcircuit. Finally the basic type
(second token in the U instance line) has to fit to the list of basic types given in the
table above.

URC in any other case ngspice will assume an URC (uniformly distributed) transmission
line.

10.2 Support for standard digital devices

The digital primitives (U devices) are the basic building blocks of the models for digital ICs
used in ngspice. An example of a simple subcircuit model for a And Gate is listed below:

308 CHAPTER 10. DIGITAL DEVICE MODELS

Example: 74LV08A Quad 2-Input And Gate

* ------------------------- 74LV08A ------

* Quad 2-Input And Gate

*
* TI PDF File

* bss 2/21/03

*
.SUBCKT 74LV08A 1A 1B 1Y
+ optional: DPWR_3V=$G_DPWR_3V DGND_3V=$G_DGND_3V
+ params: MNTYMXDLY=0 IO_LEVEL=0

U1 and(2) DPWR_3V DGND_3V
+ 1A 1B 1Y
+ DLY_LV08 IO_LV-A MNTYMXDLY={MNTYMXDLY} IO_LEVEL={IO_LEVEL}

.model DLY_LV08 ugate
+ (tplhTY=7.5ns tplhMX=12.3ns tphlTY=7.5ns tphlMX=12.3ns)

.ENDS 74LV08A

The circuit example ex4.cir in ngspice/examples/digital/digital_devices, together with the
stimulus file ex4.stim presents a fully digital, event based full-adder simulation with 74xx
series ICs. The internal plotting capability of ngspice is used. ex5.cir with the stimulus file
ex5.stim demonstrates the conversion of a D-Type Flip-Flop. ex283.cir is a 74283 4-bit full
adder, with stimulus and involving GTKWave for plotting. Also, there are several new examples
illustrating LOGICEXP and PINDLY.

A set of such models for the 74xx devices currently supported by ngspice is available from the
ngspice models as 74xx-models.7z, derived from the Micro-Cap library.

10.3 Digital devices defined by a Hardware Description Lan-
guage

Ngspice can make a digital device from a description in a Hardware Description Language,
such as Verilog or VHDL. There are several ways that can be done, including running the HDL
code in a separate process, or compiling directly to a partial netlist. The current Ngspice source
code and binary packages also have support for three more direct methods: HDL files may be
compiled by either Verilator, Icarus Verilog or GHDL and the output file may be loaded into
an instance of the d_cosim XSPICE code model (8.4.25). (Warning: using multiple d_cosim
instances in a circuit requires careful planning.)

The steps for using such a digital device are these: write HDL code whose top-level module
defines the device behaviour; the HDL file is compiled into a form acceptable by d_cosim; and
the netlist contains device and model lines to include the new device in a circuit. A circuit of this
type can only be used for a single simulation before process exit, as previous HDL simulation
state may not be cleared, even by remcirc.

https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/examples/digital/digital_devices
https://gtkwave.sourceforge.net/
https://ngspice.sourceforge.io/modelparams.html
https://ngspice.sourceforge.io/model-parameters/74xx-models.7z
https://www.veripool.org/verilator/
https://steveicarus.github.io/iverilog/
http://ghdl.free.fr/

10.3. DIGITAL DEVICES DEFINED BY A HARDWARE DESCRIPTION LANGUAGE309

10.3.1 Using Verilator, Verilog, and code model d_cosim

When using Verilator, version 4.210 or later is required. The compilation step is not straight-
forward, as “glue code” must be added to the C++ software created by Verilator’s compiler so
that it can be attached to a d_cosim instance. A script is provided to make this step easier:

ngspice vlnggen source.v

Ngspice is used to run the script vlnggen, passing the Verilog source file, source.v, as input. The
script analyses C++ code output from Verilator and creates additional code to describe the ports
of the top-level module. Then all the generated code is compiled. The output will be a shared
library/DLL called source.so/source.DLL that may be used in the netlist as:

ahdldevice [inputs ...] [outputs ...]dmod
.model dmod d_cosim simulation="some/path/source"

Formally, a third list of nodes may be included in the device instance line. If present, they are
matched against inout ports of the top-level Verilog module. But Verilator does not fully support
inout ports.

Additional arguments to vlnggen may be other HDL source files or options: everything is passed
to Verilator. To pass options to Verilator, insert “--” before them to mark the end of ngspice
options. Verilator’s “--timing” option must be passed this way if delays are used in the Verilog
source, so to use time delays in the Verilog source the command may be:

ngspice vlnggen -- --timing pwm.v

The output file is named from the first Verilog source file (*.v) that is listed, or is “veri-
lated.so”/”verilated.DLL”.

For each port type the connected event nodes are assigned to bits of the Verilog ports from left
to right, treating ports with multiple bits as big-endian: more significant bits are matched first.
If the number of bits of each port type do not match, a warning is issued and extra input or
output bits will be matched with any excess inout bits, in either direction.

Example netlist and Verilog code can be found at examples/xspice/verilator, with instructions
in README.txt.

10.3.2 Using Icarus Verilog, and code model d_cosim

Icarus Verilog handles a larger subset of the full SystemVerilog specification than Verilator and
compiles primarily into interpereted code. Ngspice includes components to run the interpreter,
VVP, inside an instance of the d_cosim code model. To use this feature, Verilog code is com-
piled as usual for Icarus Verilog:

310 CHAPTER 10. DIGITAL DEVICE MODELS

iverilog -o adc adc.v

The output file is in a form that can be executed directly on Unix-like systems or by VVP.EXE
on Windows. It may also be included in a co-simulation with Ngspice by including netlist lines
like:

aivldevice [inputs ...] [outputs ...][inouts ...]dmod
.model dmod d_cosim simulation="ivlng" sim_args=["adc"]

Here, ports of the top-level Verilog module are matched to ngspice nodes as for Verilator. Ad-
ditional string values for the sim_args parameter will be passed to the Verilog simulation as
though included in a command line.

The timescale should always be set in Verilog source, even if no delays are used. The reason
is that even without delays, VVP seems to schedule output to the next internal clock tick, and
SPICE and Verilog times are bound as tight as possible. The precision should be small compared
to the expected transient simulation step.

While the user’s setup for co-simulation with Icarus Verilog should be simple, the underlying
mechanism is somewhat elaborate. In addition to the d_cosim code model that is included in
ngspice’s digital.cm dynamic library, three more dynamic libraries are loaded: ivlng.so/.DLL
is specified by d_cosim’s “simulation” parameter; it loads libvvp.so/.DLL, the dynamic library
version of Icarus Verilog’s simulation engine; and that in turn loads ivlng.vpi, a Verilog VPI
module. Additionally, libvvp loads the compiled Verilog code, here the file “adc”. The files
for ivlng.so/.DLL and ivlng.vpi are built and installed with ngspice. For libvvp to be available,
Icarus Verilog must be configured with “–enable-libvvp” before building.

NOTE: At the time of writing, libvvp is not a released feature, and Icarus Verilog must be built
from current development source.

In case of problems, relative or absolute paths to all components can be set as parameters. The
lib_args parameter of d_cosim can be used to set: path to libvvp.so/.DLL; path to ivlng.vpi; and
the path to a VVP log file. Note that null strings are ignored, so if libvvp is on the standard
dynamic library search path (as it should be), it may be specified as “libvvp”, but must be set.

Example netlists can be found at examples/xspice/icarus_verilog, with instructions in README.txt.
The Verilog code is shared with the Verilator examples.

10.3.3 Using GHDL and code model d_cosim.

The open source compiler GHDL translates VHDL source into binary programs or shared li-
braries. For use with d_cosim a shared library is generated, using the LLVM back end. (Other
GHDL back-ends may work, but have not been tested). To use this method, both an LLVM-
based build of GHDL development code and the C compiler, Clang, should be installed. GHDL
Version 5.0.1, or later, is required. Suitable GHDL binaries can be found on GHDL’s develop-
ment site. (A Github login is required for downloading.)

To prepare VHDL source for co-simulation, it must be processed by “ghdl -a” (analysis) and
combined with compiled source from ghdl_shim.c, a file included with ngspice. Then the code

https://github.com/ghdl/ghdl/
https://github.com/ghdl/ghdl/

10.3. DIGITAL DEVICES DEFINED BY A HARDWARE DESCRIPTION LANGUAGE311

must be “elaborated” by “ghdl -e” to produce a module that d_cosim can load. In addition,
an auxiliary module must be built from included source, using “ghdl --vpi-compile” and
“ghdl --vpi-link”. A script is privided to simplify these steps. If the top-level VHDL entity
has the same name as the first source file:

ngspice ghnggen name.vhd ...

When entity and file names differ:

ngspice -- ghnggen -top top_entity_name file_name.vhd ...

The result will be a dynamic library (.so, .DLL or .dylib) named after the top-level. Apart from
“-top”, anything else in the command will be passed to ghdl. In the netlist the VHDL code is
accessed as an A-device, with ports mapped as for Verilog:

adut [inputs ...] [outputs ...][inouts ...]ghdl_mod
.model ghdl_mod d_cosim
+simulation="./entity" sim_args=["./entity"]

The sim_args values are passed to the simulation and may include “-gVariable=value” options
to override top-level Generic parameters. A lib_args parameter may be used to set the explicit
path to the auxiliary VP module, ghdlng.vpi. Otherwise it is expected to have been generated
in the current directory.

Example netlists can be found at examples/xspice/ghdl, with instructions in README.txt.

10.3.4 Using independent processes (e.g. C coded), pipes, and code model
d_process

Independent processes, e.g. made of C-coded executables, may be integrated into ngspice by
using the code model d_process. A template for using this interface, with C-coded executables
and ngspice netlists, is available at examples/xspice/d_process. The README will give you a
detailed description of the procedure. A relatively complex example, a motor control, has been
provided by Uros Platise at Isotel. His d_process code model has been enhanced to serve also
MS Windows and is included in ngspice since version 42.

10.3.5 Using Yosys to map digital Verilog onto basic code model cells

Another method to bring HDL code into a ngspice netlists for mixed-signal simulation is to
use Yosys to compile HDL and map the generated synthesizable cells directly to a ngspice sub-
circuit definition using basic XSPICE elements (BUF, NOT, NAND, NOR, DLATCH, DFF). A
demonstrator has been developed by Uros Platise at Isotel (see description and code).

https://www.isotel.eu/mixedsim/embedded/motorforce/index.html
https://yosyshq.net/yosys/
https://www.isotel.eu/mixedsim/intro/prssine.html
https://github.com/Isotel/mixedsim/tree/master/examples/prssine

312 CHAPTER 10. DIGITAL DEVICE MODELS

Chapter 11

Analyses and Output Control (batch
mode)

The command lines described in this chapter are used to specify analyses and outputs within
the circuit description file. They start with a ‘.’ (dot commands). Specifying analyses and plots
(or tables) in the input file with dot commands is used with batch runs. Batch mode is entered
when either the -b option is given upon starting ngspice

ngspice -b -r rawfile.raw circuitfile.cir

or when the default input source is redirected from a file (see also Chapt. 12.4.1).

ngspice < circuitfile.cir

In batch mode, the analyses specified by the control lines in the input file (e.g. .ac, .tran, etc.)
are immediately executed. If the -r rawfile option is given then all data generated is written to
a ngspice rawfile. The rawfile may later be read by the interactive mode of ngspice using the
load command (see 13.5.48). In this case, the .save line (see 11.6) may be used to record the
value of internal device variables (see Appendix, Chapt. 27).

If a rawfile is not specified, then output plots (in ‘line-printer’ form) and tables can be printed
according to the .print, .plot, and .four control lines, described in Chapt. 11.6.

If ngspice is started in interactive mode (see Chapt. 12.4.2), like

ngspice circuitfile.cir

and no control section (.controlendc, see 12.4.3) is provided in the circuit file, the dot
commands are not executed immediately, but are waiting for manually receiving the command
run.

11.1 Simulator Variables (.options)

Various parameters of the simulations available in Ngspice can be altered to control the ac-
curacy, speed, or default values for some devices. These parameters may be changed via the
option command (described in Chapt. 13.5.55) or via the .options line:

313

314 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

General form:

.options opt1 opt2 ... (or opt=optval ...)

Examples:

.options reltol=.005 trtol=8

The options line allows the user to reset program control and user options for specific simulation
purposes. Options specified to ngspice via the option command (see13.5.55) are also passed on
as if specified on a .options line. Any combination of the following options may be included,
in any order. ‘x’ (below) represents some positive number.

11.1.1 General Options

SPARSE selects the Sparse 1.3 matrix solver, which is also the standard when no option is
given. It is preferable for simulating behavioural device models. This option is required
with noise (11.3.4) or CIDER (26) simulation.

KLU selects the KLU matrix solver, which is preferable (yielding faster simulation) when
(large) circuits containing MOS devices are to be simulated. Small signal noise (11.3.4)
or CIDER (26) simulations are not (yet) supported.

ACCT causes accounting and run time statistics to be printed.

NOACCT no printing of statistics, no printing of the Initial Transient Solution.

NOINIT suppresses only printing of the Initial Transient Solution, maybe combined with
ACCT.

LIST causes the summary listing of the input data to be printed.

NOMOD suppresses the printout of the model parameters.

NOPAGE suppresses page ejects.

NODE causes the printing of the node table.

NOREFVALUE suppresses printing of reference values, when ngspice has been compiled
with configure option --enable-ndev.

OPTS causes the option values to be printed.

SEED=val|random Sets the seed value of the random number generator. val may be any
integer number greater than 0. As an alternative, random will set the seed value to the
current Unix epoch time, which is the time in seconds since 1.1.1970 excluding leap
seconds.

SEEDINFO will print the seed value when it has been set to a new integer number.

11.1. SIMULATOR VARIABLES (.OPTIONS) 315

TEMP=x Resets the operating temperature of the circuit. The default value is 27 ◦C (300K).
TEMP can be overridden per device by a temperature specification on any temperature
dependent instance. May also be generally overridden by a .TEMP card (2.14).

TNOM=x resets the nominal temperature at which device parameters are measured. The de-
fault value is 27 ◦C (300 deg K). TNOM can be overridden by a specification on any
temperature dependent device model.

WARN=1|0 enables or turns of SOA (Safe Operating Area) voltage warning messages (default:
0).

MAXWARNS=x specifies the maximum number of SOA (Safe Operating Area) warning mes-
sages per model (default: 5).

SAVECURRENTS save currents through all terminals of the following devices: M, J, Q, D, R,
C, L, B, F, G, W, S, I (see 2.3). Recommended only for small circuits, because otherwise
memory requirements explode and simulation speed suffers. See 11.7 for more details.
This option is available only for op, dc, and tran simulation, not for ac. During transient
simulation the value returned may be delayed by one time step. For M devices, MOS
level 1 is supported fully, not all nodes are reported for the other MOS devices. As the
option is installed upfront, before the simulation, it has no clue about the devices used in
the circuit. It simply does do a best guess. This may lead to empty vectors of zero length
after the simulation, impeding commands like wrdata (13.5.106). Running command
remzerovec (13.5.64) before wrdata will remove all these zero length vectors.

11.1.2 OP and DC Solution Options

The following options control properties pertaining to DC and OP (operating point) analyses
and algorithms. Since transient analysis (11.1.4) is based on OP, many of the options affect
transient simulation as well. AC analysis (11.1.3) can be performed only when a stable operat-
ing point has been found.

ABSTOL=x resets the absolute current error tolerance of the program. The default value is 1
pA.

GMIN=x resets the value of GMIN, the minimum conductance allowed by the program. The
default value is 1.0e-12.

GMINSTEPS=x [*] sets the number of Gmin steps to be attempted. If the value is set to zero,
the standard gmin stepping algorithm is skipped. The standard behavior is that gmin
stepping is tried before going to the source stepping algorithm.

ITL1=x resets the dc iteration limit. The default is 100.

ITL2=x resets the dc transfer curve iteration limit. The default is 50.

KEEPOPINFO Retain the operating point information when either an AC, Distortion, or Pole-
Zero analysis is run. This is particularly useful if the circuit is large and you do not want
to run a (redundant) .OP analysis.

NOOPITER Go directly to gmin stepping, skipping the first iteration.

316 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

PIVREL=x resets the relative ratio between the largest column entry and an acceptable pivot
value. The default value is 1.0e-3. In the numerical pivoting algorithm the allowed min-
imum pivot value is determined by EPSREL = AMAX1(PIVREL · MAXVAL, PIVTOL) where
MAXVAL is the maximum element in the column where a pivot is sought (partial pivot-
ing).

PIVTOL=x resets the absolute minimum value for a matrix entry to be accepted as a pivot.
The default value is 1.0e-13.

RELTOL=x resets the relative error tolerance of the program. The default value is 0.001
(0.1%).

RSHUNT=x introduces a resistor from each analog node to ground. The value of the resistor
should be high enough to not interfere with circuit operations. The XSPICE option has to
be enabled (see 28.1.8) .

VNTOL=x resets the absolute voltage error tolerance of the program. The default value is 1
µV .

11.1.2.1 Matrix Conditioning info

In SPICE-based simulators, specific problems arise with certain circuit topologies. One issue
is the absence of a DC path to ground at some node. This may happen when two capacitors
are connected in series with no other connection at the common node, or when code models are
cascaded. The result is an ill-conditioned or nearly singular matrix that prevents the simulation
from completing. Configuring with XSPICE introduces the rshunt option to help eliminate
this problem. The option inserts resistors to ground at all the analog nodes in the circuit. In
general, the value of rshunt is set to some high resistance (e.g. 1000MΩ or greater) so that
the operation of the circuit is essentially unaffected but the matrix problems are corrected. If a
‘no DC path to ground’ or a ‘matrix is nearly singular’ error message is encountered, add the
following .option card to the circuit deck:

.option rshunt = 1.0e12

Usually a value of 1TΩ is sufficient to correct the problem. In bad cases one can try lowering
the value to 10GΩ or even 1GΩ.

A different matrix conditioning problem occurs if an inductor is placed in parallel to a voltage
source. The AC simulation will fail, because it is preceded by an OP analysis. Option NOOPAC
(11.1.3) will help if the circuit is linear. However, if the circuit is non-linear the OP analysis is
essential. In such a case, adding a small resistor (e.g. 0.1mΩ) in series to the inductor will help
to obtain convergence.

.option rseries = 1.0e-4

adds a series resistor to each inductor in the circuit. Be careful when using behavioral inductors
(see 3.3.13), as the result may become unpredictable.

.option cshunt = 1.3e-13

adds a capacitor from each voltage node in the circuit to ground.

11.1. SIMULATOR VARIABLES (.OPTIONS) 317

11.1.3 AC Solution Options

NOOPAC Do not run an operating point (OP) analysis prior to an AC analysis. This option
requires that the circuit is linear, i.e. consists only of R, L, and C devices, independent
V, I sources and linear dependent E, G, H, and F sources (without poly statement, non-
behavioral). If a non-linear device is detected, the OP analysis is executed automatically.
This option is of interest e.g. in nested LC circuits where no series resistance for L devices
is present. During the OP analysis an ill-formed matrix may be encountered, causing the
simulator to abort with an error message. It is also useful if you have very large linear
arrays (10000 nodes and more), where simulation speedup by a factor of 10 may be
achieved.

11.1.4 Transient Analysis Options

AUTOSTOP stops a transient analysis after successfully calculating all functions (11.4) spec-
ified with the dot command .meas. Autostop is not available with the meas (13.5.50)
command used in control mode.

CHGTOL=x resets the charge tolerance of the program. The default value is 1.0e-14.

CONVSTEP=x relative step limit applied to code models.

CONVABSSTEP=x absolute step limit applied to code models.

INTERP interpolates output data onto fixed time steps on a TSTEP grid (11.3.10). Uses linear
interpolation between previous and next time values. Simulation itself is not influenced
by this option. This option can be used in all simulation modes (batch, control or interac-
tive, 12.4). It may drastically reduce memory requirements in control mode, and file size
in batch mode, but care is needed not to undersample the output data. See also the com-
mand linearize (13.5.46) that achieves a similar result by post-processing the data in
control mode. The Ngspice/examples/xspice/delta-sigma/delta-sigma-1.cir example
demonstrates how INTERP reduces memory requirements and speeds up plotting.

ITL3=x resets the lower transient analysis iteration limit. The default value is 4. (Note: not
implemented in Spice3).

ITL4=x resets the transient analysis time-point iteration limit. The default is 10.

ITL5=x resets the transient analysis total iteration limit. The default is 5000. Set ITL5=0 to
omit this test. (Note: not implemented in Spice3).

ITL6=x [*] synonym for SRCSTEPS.

MAXEVTITER=x sets the maximum number of event iterations per analysis point.

MAXOPALTER=x specifies the maximum number of analog/event alternations that the sim-
ulator will use to solve a hybrid circuit.

MAXORD=x [*] specifies the maximum order for the numerical integration method used by
SPICE. Possible values for the Gear method are from 2 (the default) to 6. Using the value
1 with the trapezoidal method specifies backward Euler integration.

318 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

METHOD=name sets the numerical integration method used by SPICE. Possible names are
‘Gear’ or ‘trapezoidal’ (or just ‘trap’). The default is trapezoidal.

NOOPALTER=TRUE|FALSE if set to false, alternations between analog and event calls to
XSPICE models are enabled during initial DC operating analysis.

RAMPTIME=x During source stepping, this option sets the rate of change of independent
supplies. It also affects code model inductors and capacitors that have initial conditions
specified.

SRCSTEPS=x [*] a non-zero value causes SPICE to use a source-stepping method to find the
DC operating point. The value specifies the number of steps.

TRTOL=x resets the transient error tolerance. The default value is 7. This parameter is an es-
timate of the factor by which SPICE overestimates the actual truncation error. If XSPICE
is configured and ’A’ devices are included, the value is internally set to 1 for higher pre-
cision. This slows down transient analysis by a factor of two.

XMU=x sets the damping factor for trapezoidal integration. The default value is XMU=0.5. A
value < 0.5 may be chosen. Even a small reduction, e.g. to 0.495, may already suppress
trap ringing. The reduction has to be set carefully in order not to excessively damp circuits
that are prone to ringing or oscillation, which might lead the user to believe that the circuit
is stable.

11.1.5 ELEMENT Specific options

diode_cj0=x Add optional diode junction capacitance, if none is defined in the .model state-
ment. Example call: .options diode_cj0=20p.

diode_rser=x Add optional diode series resistance, if none is defined in the .model statement.
Example call: .options diode_rser=20m.

BADMOS3 Use the older version of the MOS3 model with the ‘kappa’ discontinuity.

DEFAD=x resets the value for MOS drain diffusion area; the default is 0.

DEFAS=x resets the value for MOS source diffusion area; the default is 0.

DEFL=x resets the value for MOS channel length; the default is 100 µm.

DEFW=x resets the value for MOS channel width; the default is 100 µm.

SCALE=x set the element scaling factor for geometric element parameters whose default unit
is meters. As an example: scale=1u and a MOSFET instance parameter W=10 will result
in a width of 10µm for this device. An area parameter AD=20 will result in 20e−12m2.
Following instance parameters are scaled:

• Resistors and Capacitors: W, L

• Diodes: W, L, Area

• JFET, MESFET: W, L, Area

• MOSFET: W, L, AS, AD, PS, PD, SA, SB, SC, SD

11.2. INITIAL CONDITIONS 319

11.1.6 Transmission Lines Specific Options

TRYTOCOMPACT Applicable only to the LTRA model (see 6.2.1). When specified, the
simulator tries to condense an LTRA transmission line’s past history of input voltages
and currents.

11.1.7 Precedence of option and .options commands

There are various ways to set the above mentioned options in Ngspice. If no option or
.options lines are set by the user, internal default values are given for each of the simula-
tor variables.

You may set options in the init files spinit or .spiceinit via the option command (see 13.5.55).
The values given there will supersede the default values. If you set options via the .options
line in your input file, their values will supersede the default and init file data. Finally, if you set
options inside a .controlendc section, these values will again supersede any simulator
variables given so far.

11.2 Initial Conditions

11.2.1 .NODESET: Specify Initial Node Voltage Guesses

General form:

.nodeset v(nodnum)=val v(nodnum)=val ...

.nodeset all=val

Examples:

.nodeset v(12)=4.5 v(4)=2.23

.nodeset all=1.5

The .nodeset line helps the program find the DC or initial transient solution by making a
preliminary pass with the specified nodes held to the given voltages. The restrictions are then
released and the iteration continues to the true solution. The .nodeset line may be necessary
for convergence on bistable or astable circuits. .nodeset all=val sets all starting node volt-
ages (except for the ground node) to the same value. In general, the .nodeset line should not
be necessary.

320 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

11.2.2 .IC: Set Initial Conditions

General form:

.ic v(nodnum)=val v(nodnum)=val ...

Examples:

.ic v(11)=5 v(4)=-5 v(2)=2.2

The .ic line is for setting transient initial conditions. It has two different interpretations, de-
pending on whether the uic parameter is specified on the .tran control line, or not. One should
not confuse this line with the .nodeset line. The .nodeset line is only to help DC conver-
gence, and does not affect the final bias solution (except for multi-stable circuits). The two
indicated interpretations of this line are as follows:

1. When the uic parameter is specified on the .tran line, the node voltages specified on
the .ic control line are used to compute the capacitor, diode, BJT, JFET, and MOSFET
initial conditions. This is equivalent to specifying the ic=... parameter on each device
line, but is much more convenient. The ic=... parameter can still be specified and takes
precedence over the .ic values. Since no dc bias (initial transient) solution is computed
before the transient analysis, one should take care to specify all dc source voltages on the
.ic control line if they are to be used to compute device initial conditions.

2. When the uic parameter is not specified on the .tran control line, the DC bias (initial
transient) solution is computed before the transient analysis. In this case, the node volt-
ages specified on the .ic control lines are forced to the desired initial values during the
bias solution. During transient analysis, the constraint on these node voltages is removed.
This is the preferred method since it allows Ngspice to compute a consistent dc solution.

The wrnodev command 13.5.108 saves node voltages in .ic format so that they may re-input
by .include.

11.3. ANALYSES 321

11.3 Analyses

11.3.1 .AC: Small-Signal AC Analysis

General form:

.ac dec nd fstart fstop

.ac oct no fstart fstop

.ac lin np fstart fstop

Examples:

.ac dec 10 1 10K

.ac dec 10 1K 100MEG

.ac lin 100 1 100HZ

dec stands for decade variation, and nd is the number of points per decade. oct stands for
octave variation, and no is the number of points per octave. lin stands for linear variation, and
np is the number of points. fstart is the starting frequency, and fstop is the final frequency.
If this line is included in the input file, Ngspice performs an AC analysis of the circuit over the
specified frequency range. Note that in order for this analysis to be meaningful, at least one
independent source must have been specified with an ac value. Typically it does not make much
sense to specify more than one ac source. If you do, the result will be a superposition of all
sources and difficult to interpret.

Example:

Basic RC circuit
r 1 2 1.0
c 2 0 1.0
vin 1 0 dc 0 ac 1 $ <--- the ac source
.options noacct
.ac dec 10 .01 10
.plot ac vdb(2) xlog
.end

In this AC (or ’small signal’) analysis, all non-linear devices are linearized around their actual
DC operating point. All L and C devices get their imaginary value that depends on the actual
frequency step. Each output vector will be calculated relative to the input voltage (current)
given by the AC value (Vin equals 1 in the example above). The resulting node voltages (and
branch currents) are complex vectors. Therefore one has to be careful using the plot command,
specifically, one may use the variants of vxx(node) described in Chapt. 11.6.2 like vdb(2) (see
also the above example).

If one wants to simulate ac on a large linear array, the option noopac (11.1.3) may be useful.
Linear circuits are containing only linear device instances starting with letters r, l, c, i, v, e, g, f,
h, k. The instances e, g, f, h have to be the simple ones, as of chapt. 4.2, not the polynomial nor
the behavioral variants. If the option noopac is set, ngspice tests for the absence of any other

322 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

devices. If successful, the often lengthy op calculation is skipped, ac is started immediately.
Considerable simulation time savings may result.

Output parameters like @m1[cgs] or @r1[i] (see 27) are not supported during AC simulation.

11.3.2 .DC: DC Transfer Function

General form:

.dc srcnam vstart vstop vincr [src2 start2 stop2 incr2]

Examples:

.dc VIN 0.25 5.0 0.25

.dc VDS 0 10 .5 VGS 0 5 1

.dc VCE 0 10 .25 IB 0 10u 1u

.dc RLoad 1k 2k 100

.dc TEMP -15 75 5

The .dc line defines the dc transfer curve source and sweep limits (with capacitors open and
inductors shorted). srcnam is the name of an independent voltage or current source, a resistor,
or the circuit temperature. vstart, vstop, and vincr are the starting, final, and incrementing
values, respectively. The first example causes the value of the voltage source VIN to be swept
from 0.25 Volts to 5.0 Volts with steps of 0.25 Volt. A second source (src2) may optionally
be specified with its own associated sweep parameters. In such a case the first source is swept
over its own range for each value of the second source. This option is useful for obtaining
semiconductor device output characteristics. See the example on transistor characterization
(17.3).

11.3.3 .DISTO: Distortion Analysis

General form:

.disto dec nd fstart fstop <f2overf1>

.disto oct no fstart fstop <f2overf1>

.disto lin np fstart fstop <f2overf1>

Examples:

.disto dec 10 1kHz 100MEG

.disto dec 10 1kHz 100MEG 0.9

The .disto line does a small-signal distortion analysis of the circuit. A multi-dimensional
Volterra series analysis is done using multi-dimensional Taylor series to represent the nonlin-
earities at the operating point. Terms of up to third order are used in the series expansions.

11.3. ANALYSES 323

If the optional parameter f2overf1 is not specified, .disto does a harmonic analysis - i.e.,
it analyses distortion in the circuit using only a single input frequency F1, which is swept as
specified by arguments of the .disto command exactly as in the .ac command. Inputs at this
frequency may be present at more than one input source, and their magnitudes and phases are
specified by the arguments of the distof1 keyword in the input file lines for the input sources
(see the description for independent sources). (The arguments of the distof2 keyword are not
relevant in this case).

The analysis produces information about the AC values of all node voltages and branch currents
at the harmonic frequencies 2F1 and , vs. the input frequency F1 as it is swept. (A value of 1
(as a complex distortion output) signifies cos(2π(2F1)t) at 2F1 and cos(2π(3F1)t) at 3F1, using
the convention that 1 at the input fundamental frequency is equivalent to cos(2πF1t).) The
distortion component desired (2F1 or 3F1) can be selected using interactive or control commands
in ngspice, and then printed or plotted. (Normally, one is interested primarily in the magnitude
of the harmonic components, so the magnitude of the AC distortion value is looked at). It should
be noted that these are the AC values of the actual harmonic components, and are not equal to
HD2 and HD3. To obtain HD2 and HD3, one must divide by the corresponding AC values
at F1, obtained from an .ac line. This division can be done again using interactive or control
commands.

If the optional f2overf1 parameter is specified, it should be a real number between (and not
equal to) 0.0 and 1.0; in this case, .disto does a spectral analysis. It considers the circuit with
sinusoidal inputs at two different frequencies F1 and F2. F1 is swept according to the .disto
control line options exactly as in the .ac control line. F2 is kept fixed at a single frequency
as F1 sweeps - the value at which it is kept fixed is equal to f2overf1 times fstart. Each
independent source in the circuit may potentially have two (superimposed) sinusoidal inputs
for distortion, at the frequencies F1 and F2. The magnitude and phase of the F1 component are
specified by the arguments of the distof1 keyword in the source’s input line (see the descrip-
tion of independent sources); the magnitude and phase of the F2 component are specified by the
arguments of the distof2 keyword. The analysis produces plots of all node voltages/branch
currents at the intermodulation product frequencies F1 +F2, F1 −F2, and (2F1)−F2, vs the
swept frequency F1. The IM product of interest may be selected using the setplot command,
and displayed with the print and plot commands. It is to be noted as in the harmonic analysis
case, the results are the actual AC voltages and currents at the intermodulation frequencies, and
need to be normalized with respect to .ac values to obtain the IM parameters.

If the distof1 or distof2 keywords are missing from the description of an independent source,
then that source is assumed to have no input at the corresponding frequency. The default values
of the magnitude and phase are 1.0 and 0.0 respectively. The phase should be specified in
degrees.

It should be carefully noted that the number f2overf1 should ideally be an irrational number,
and that since this is not possible in practice, efforts should be made to keep the denominator
in its fractional representation as large as possible, certainly above 3, for accurate results (i.e.,
if f2overf1 is represented as a fraction A/B, where A and B are integers with no common
factors, B should be as large as possible; note that A < B because f2overf1 is constrained
to be < 1). To illustrate why, consider the cases where f2overf1 is 49/100 and 1/2. In a
spectral analysis, the outputs produced are at F1 +F2, F1 −F2 and 2F1 −F2. In the latter case,
F1 −F2 = F2, so the result at the F1 −F2 component is erroneous because there is the strong
fundamental F2 component at the same frequency. Also, F1 +F2 = 2F1 −F2 in the latter case,
and each result is erroneous individually. This problem is not there in the case where f2overf1

324 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

= 49/100, because F1 −F2 = 51/100 F1 <> 49/100 F1 = F2. In this case, there are two very
closely spaced frequency components at F2 and F1 −F2. One of the advantages of the Volterra
series technique is that it computes distortions at mix frequencies expressed symbolically (i.e.
nF1 +mF2), therefore one is able to obtain the strengths of distortion components accurately
even if the separation between them is very small, as opposed to transient analysis for example.
The disadvantage is of course that if two of the mix frequencies coincide, the results are not
merged together and presented (though this could presumably be done as a postprocessing step).
Currently, the interested user should keep track of the mix frequencies himself or herself and
add the distortions at coinciding mix frequencies together should it be necessary.

Only a subset of the ngspice nonlinear device models supports distortion analysis. These are

• Diodes (DIO),

• BJT,

• JFET (level 1),

• MOSFETs (levels 1, 2, 3, 9, and BSIM1),

• MESFET (level 1).

11.3.4 .NOISE: Noise Analysis

General form:

.noise v(output <,ref>) src (dec | lin | oct) pts fstart fstop
+ <pts_per_summary>

Examples:

.noise v(5) VIN dec 10 1kHz 100MEG

.noise v(5,3) V1 oct 8 1.0 1.0e6 1

The .noise line does a noise analysis of the circuit. output is the node at which the total
output noise is desired; if ref is specified, then the noise voltage v(output) - v(ref) is
calculated. By default, ref is assumed to be ground. src is the name of an independent source
to which input noise is referred. pts, fstart and fstop are .ac type parameters that specify
the frequency range over which plots are desired. pts_per_summary is an optional integer; if
specified, the noise contributions of each noise generator is produced every pts_per_summary
frequency points. The .noise control line produces two plots, which can selected by setplot
command:

• one for the Voltage or Current Noise Spectral Density (in V/
√

Hz or A/
√

Hz respective the
input is a voltage or current source) curves (e.g. after setplot noise1). There are two
vectors over frequency:

– onoise_spectrum: This is the output noise voltage or current divided by
√

Hz.

11.3. ANALYSES 325

– inoise_spectrum: This the equivalent input noise = output noise divided by the
gain of the circuit.

• one for the Total Integrated Noise (in V or A) over the specified frequency range (e.g.
after setplot noise2). There are two vectors which are in reality scalars:

– onoise_total: This is the output noise voltage over the specified frequency range

– inoise_total: This the equivalent input noise over the specified frequency range
= output noise divided by the gain of the circuit.

The units of all result vectors can be changed by using control variable sqrnoise:

• set sqrnoise: will deliver results in squared form, means the unit is V 2/Hz or A2/Hz .
This value refers more to the convenient Power Spectral Density.

Default setting of ngspice is unset sqrnoise, which delivers Voltage or Current Noise Spec-
tral Density. This is more practical from designers point of view.

The KLU matrix solver (11.1.1) is not compatible with noise simulation.

11.3.5 .OP: Operating Point Analysis

General form:

.op

Compute the DC operating point of the circuit with inductors shorted and capacitors opened.

A DC solution can be difficult to find for some circuits, including those with floating nodes
or active devices that are non-conducting. After an attempt at an initial DC solution (may be
suppressed by .option noopiter), ngspice uses the following convergence aids, in order, to
try to obtain a DC solution:

1. gmin stepping (gminsteps option). Inserts small conductances across active devices.

• gminsteps = 0: No gmin

• gminsteps = 1: Two gmin stepping processes in series (default)

• gminsteps = 2: Original SPICE 3 gmin

2. source stepping (srcsteps option)

• srcsteps = 0: No source stepping

• srcsteps = 1: Gillespie source stepping (default)

• srcsteps = 2: Original SPICE 3 source stepping

3. transient operating point (optional)

326 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

DC analysis is complete as soon as one successful step is found, according to some convergence
criteria..

The default behaviour during gmin stepping is the following: Switch gmin to a start value (1e-
3), followed by a first trial of gmin stepping, using the true device gmin, then try dynamic gmin
stepping with diagonal parallel gmin elements. If variable dyngmin is set, only dynamic gmin
stepping is used.

Source stepping sets all supply voltages and currents to zero, then ramps them up dynamically
to 100%.

The transient op calculation uses a transient simulation, with default parameters set by ngspice
(initial iteration, gmin and source stepping enabled, optran step size 10n, total optran time 10u).
The results of this transient simulation then are used as the operating point for starting any other
simulation (tran, ac, noise, pz etc.). No other data of this transient op are stored anywhere.

General form:

optran !noopiter gminsteps srcsteps tstep tstop supramp

Example 1:

optran 0 0 0 100n 10u 0

Example 1 changes the defaults to: no inital op iteration, no gmin stepping, no source stepping,
i.e. directly move to transient op with transient step and stop times given. Flag supramp ins cur-
rently not used. The optran command may be put into one of the initialization files .spiceinit
or spinit. or into the .control section.

Example 2:

optran 1 1 1 100n 10u 0

Example 2 shows an optran command which restores the initial conditions.

Note: an operating point analysis is automatically performed prior to a transient analysis (if the
parameter uic is not selected) to determine the transient initial conditions, and prior to an AC
small-signal, Noise, and Pole-Zero analysis to determine the linearized, small-signal models for
nonlinear devices. These data are not stored, except for setting the KEEPOPINFO variable 11.1.2,
that prompts creating an OP plot in addition to the TRAN, AC, Noise, or PZ plots.

11.3. ANALYSES 327

11.3.6 .PZ: Pole-Zero Analysis

General form:

.pz node1 node2 node3 node4 cur pol

.pz node1 node2 node3 node4 cur zer

.pz node1 node2 node3 node4 cur pz

.pz node1 node2 node3 node4 vol pol

.pz node1 node2 NODE3 node4 vol zer

.pz node1 node2 node3 node4 vol pz

Examples:

.pz 1 0 3 0 cur pol

.pz 2 3 5 0 vol zer

.pz 4 1 4 1 cur pz

cur stands for a transfer function of the type (output voltage)/(input current) while vol stands
for a transfer function of the type (output voltage)/(input voltage). pol stands for pole analysis
only, zer for zero analysis only and pz for both. This feature is provided mainly because if there
is a non-convergence in finding poles or zeros, then, at least the other can be found. Finally,
node1 and node2 are the two input nodes and node3 and node4 are the two output nodes. Thus,
there is complete freedom regarding the output and input ports and the type of transfer function.

In interactive mode, the command syntax is the same except that the first field is pz instead of
.pz. To print the results, one should use the command print all.

11.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis

General form:

.SENS OUTVAR [< filter ...>] [DC]

.SENS OUTVAR [< filter ...>] AC DEC ND FSTART FSTOP

.SENS OUTVAR [< filter ...>] AC OCT NO FSTART FSTOP

.SENS OUTVAR [< filter ...>] AC LIN NP FSTART FSTOP

Examples:

.SENS V(1,OUT)

.SENS V(OUT) AC DEC 10 100 100k

.SENS I(VTEST) rbias m*_* q*:*

The sensitivity of OUTVAR to device and model parameters is calculated when the SENS
analysis is specified. OUTVAR is a circuit variable (node voltage or voltage-source branch
current). The first form calculates sensitivity of the DC operating-point value of OUTVAR. The
second form calculates sensitivity of the AC values of OUTVAR. The sweep parameters listed
for AC sensitivity are the same as in an AC analysis (see .AC above). The output values are in

328 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

dimensions of change in output per unit change of input (as opposed to percent change in output
or per percent change of input).

By default, all modifiable, real-valued parameters are varied and an output vector is created
for each. For primary device parameters, that may be written directly after the node list, the
vector name is the device name. (Examples are resistance and inductance.) Otherwise vector
names have the form device_parameter for device parameters, and model:parameter for model
parameters.

Optional filter strings allow selection of the parameters to be varied and recorded by matching
potential vector names. The filter strings may include ’*’ to match any substring or ’?’ that
will match any single character (a byte, not a complete multibyte character). So, in the example
above, a specific resistor, all device parameters for MOSFETS and all model parameters for
BJTs are selected.

11.3.8 .SP S-Parameter Analysis

General form:

.sp dec nd fstart fstop <donoise>

.sp oct no fstart fstop <donoise>

.sp lin np fstart fstop <donoise>

Examples:

.sp dec 10 1 10K

.sp dec 10 1K 100MEG 1

.sp lin 100 1 100HZ

To prepare the independent voltage source VSRC please see 4.1.11.

SP Simulation Syntax is identical to .AC (11.3.1) except that you have one more optional pa-
rameter donoise (0|1). SP does always linear S-Matrix simulation and, as outputs, it gives

S Matrix (size nport x nport where nport is the count of RF ports) which is the Scattering
Parameters. It may be used to export Touchstone files (to be implemented yet)...

Y Matrix (size nport x nport where nport is the count of RF ports) which is the Admittance
Matrix

Z Matrix (size nport x nport where nport is the count of RF ports) which is the Impedance
Matrix

All S|Y|Z output are S_i_j where i and j are integer identifiers of the ports. They refer to the
portnum identifier of corresponding RF port of the VSRC (4.1.11).

If donoise = 0 SP simulation ends here.

If donoise = 1, SP simulation performs also SP Noise. In this case: you have one more output
which is the Noise Current Correlation Matrix: Cy_i_j Cy_i_j = <in(i), in*(j)=""> which is the

11.3. ANALYSES 329

correlation between equivalent input noise current at port i and equivalent input noise current at
port j. * stands for conjugate</in(i),>

When donoise = 1 and you have a two port networks, 4 more outputs are provided:

Rn input noise resistance (unnormalized)

NF (dB): noise figure of the 2-ports network

NFmin (dB): minimum noise figure

SOpt: optimum input reflection coefficient for noise

11.3.9 .TF: Transfer Function Analysis

General form:

.tf outvar insrc

Examples:

.tf v(5, 3) VIN

.tf i(VLOAD) VIN

The .tf line defines the small-signal output and input for the dc small-signal analysis. outvar
is the small signal output variable and insrc is the small-signal input source. If this line is
included, ngspice computes the dc small-signal value of the transfer function (output/input),
input resistance, and output resistance. For the first example, ngspice would compute the ratio
of V(5, 3) to VIN, the small-signal input resistance at VIN, and the small signal output resistance
measured across nodes 5 and 3.

11.3.10 .TRAN: Transient Analysis

General form:

.tran tstep tstop <tstart <tmax>> <uic>

Examples:

.tran 1ns 100ns

.tran 1ns 1000ns 500ns

.tran 10ns 1us

tstep is the printing or plotting increment for line-printer output. For use with the post-
processor, tstep is the suggested computing increment. tstop is the final time, and tstart is
the initial time. If tstart is omitted, it is assumed to be zero. The transient analysis always
begins at time zero. In the interval [zero, tstart), the circuit is analyzed (to reach a steady

330 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

state), but no outputs are stored. In the interval [tstart, tstop], the circuit is analyzed and
outputs are stored. tmax is the maximum stepsize that ngspice uses; for default, the program
chooses either tstep or (tstop-tstart)/50.0, whichever is smaller. tmax is useful when one
wishes to guarantee a computing interval that is smaller than the printer increment, tstep.

An initial transient operating point at time zero is calculated according to the following proce-
dure: all independent voltages and currents are applied with their time zero values, all capaci-
tances are opened, inductances are shorted, the non linear device equations are solved iteratively.

uic (use initial conditions) is an optional keyword that indicates that the user does not want
ngspice to solve for the quiescent operating point before beginning the transient analysis. If this
keyword is specified, ngspice uses the values specified using IC=... on the various elements as
the initial transient condition and proceeds with the analysis. If the .ic control line has been
specified (see 11.2.2), then the node voltages on the .ic line are used to compute the initial
conditions for the devices. IC=... will take precedence over the values given in the .ic control
line. If neither IC=... nor the .ic control line is given for a specific node, node voltage zero is
assumed.

Look at the description on the .ic control line (11.2.2) for its interpretation when uic is not
specified.

11.3.11 Transient noise analysis (at low frequency)

In contrast to the analysis types described above, the transient noise simulation (noise current
or voltage versus time) is not implemented as a dot command, but is integrated with the inde-
pendent voltage source vsrc (isrc not yet available) (see 4.1.7) and used in combination with
the .tran transient analysis (11.3.10).

Transient noise analysis deals with noise currents or voltages added to your circuits as a time
dependent signal of randomly generated voltage excursion on top of a fixed dc voltage. The
sequence of voltage values has random amplitude, but equidistant time intervals, selectable by
the user (parameter NT). The resulting voltage waveform is differentiable and thus does not
require any modifications of the matrix solving algorithms.

White noise is generated by the ngspice random number generator, applying the Box-Muller
transform. Values are generated on the fly, each time when a breakpoint is hit.

The 1/f noise is generated with an algorithm provided by N. J. Kasdin (‘Discrete simulation of
colored noise and stochastic processes and 1/ f a power law noise generation’, Proceedings of
the IEEE, Volume 83, Issue 5, May 1995 Page(s):802–827). The noise sequence (one for each
voltage/current source with 1/f selected) is generated upon start up of the simulator and stored
for later use. The number of points is determined by the total simulation time divided by NT,
rounded up the the nearest power of 2. Each time a breakpoint (n ⋆NT , relevant to the noise
signal) is hit, the next value is retrieved from the sequence.

If you want a random, but reproducible sequence, you may select a seed value for the random
number generator by adding

setseed nn

to the spinit or .spiceinit file, nn being a positive integer number.

The transient noise analysis will allow the simulation of the three most important noise sources.
Thermal noise is described by the Gaussian white noise. Flicker noise (pink noise or 1 over

11.3. ANALYSES 331

f noise) with an exponent between 0 and 2 is provided as well. Shot noise is dependent on
the current flowing through a device and may be simulated by applying a non-linear source as
demonstrated in the following example:

Example:

* Shot noise test with B source, diode

* voltage on device (diode, forward)
Vdev out 0 DC 0 PULSE(0.4 0.45 10u)

* diode, forward direction, to be modeled with noise
D1 mess 0 DMOD
.model DMOD D IS=1e-14 N=1
X1 0 mess out ishot

* device between 1 and 2

* new output terminals of device including noise: 1 and 3
.subckt ishot 1 2 3

* white noise source with rms 1V

* 20000 sample points
VNG 0 11 DC 0 TRNOISE(1 1n 0 0)

*measure the current i(v1)
V1 2 3 DC 0

* calculate the shot noise

* sqrt(2*current*q*bandwidth)
BI 1 3 I=sqrt(2*abs(i(v1))*1.6e-19*1e7)*v(11)
.ends ishot

.tran 1n 20u

.control
run
plot (-1)*i(vdev)
.endc
.end

The selection of the delta time step (NT) is worth discussing. Gaussian white noise has unlimited
bandwidth and thus unlimited energy content. This is unrealistic. The bandwidth of real noise
is limited, but it is still called ‘White’ if it is the same level throughout the frequency range
of interest, e.g. the bandwidth of your system. Thus you may select NT to be a factor of 10
smaller than the frequency limit of your circuit. A thorough analysis is still needed to clarify the
appropriate factor. The transient method is probably most suited to circuits including switches,
which are not amenable to the small signal .NOISE analysis (Chapt. 11.3.4).

There is a price you have to pay for transient noise analysis: the number of required time steps,
and thus the simulation time, increases.

In addition to white and 1/f noise the independent voltage and current sources offer a random
telegraph signal (RTS) noise source, also known as burst noise or popcorn noise, again for
transient analysis. For each voltage (current) source offering RTS noise an individual noise
amplitude is required for input, as well as a mean capture time and a mean emission time.
The amplitude resembles the influence of a single trap on the current or voltage. The capture
and emission times emulate the filling and emptying of the trap, typically following a Poisson

332 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

process. They are generated from an random exponential distribution with respective mean
values given by the user. To simulate an ensemble of traps, you may combine several current or
voltage sources with different parameters.

All three sources (white, 1/f, and RTS) may be combined in a single command line.

RTS noise example:

* white noise, 1/f noise, RTS noise

* voltage source
VRTS2 13 12 DC 0 trnoise(0 0 0 0 5m 18u 30u)
VRTS3 11 0 DC 0 trnoise(0 0 0 0 10m 20u 40u)
VALL 12 11 DC 0 trnoise(1m 1u 1.0 0.1m 15m 22u 50u)

VW1of 21 0 DC trnoise(1m 1u 1.0 0.1m)

* current source
IRTS2 10 0 DC 0 trnoise(0 0 0 0 5m 18u 30u)
IRTS3 10 0 DC 0 trnoise(0 0 0 0 10m 20u 40u)
IALL 10 0 DC 0 trnoise(1m 1u 1.0 0.1m 15m 22u 50u)
R10 10 0 1

IW1of 9 0 DC trnoise(1m 1u 1.0 0.1m)
Rall 9 0 1

* sample points
.tran 1u 500u

.control
run
plot v(13) v(21)
plot v(10) v(9)
.endc

.end

Some details on RTS noise modeling are available in a recent article [20], available here.

This transient noise feature is still experimental.

The following questions (among others) are to be solved:

• clarify the theoretical background

• noise limit of plain ngspice (numerical solver, fft etc.)

• time step (NT) selection

• calibration of noise spectral density

• how to generate noise from a transistor model

• application benefits and limits

http://www.see.ed.ac.uk/~tbt/iscas09.pdf

11.3. ANALYSES 333

11.3.12 .PSS: Periodic Steady State Analysis

Experimental code, not yet made publicly available.

General form:

.pss gfreq tstab oscnob psspoints harms sciter steadycoeff <uic>

Examples:

.pss 150 200e-3 2 1024 11 50 5e-3 uic

.pss 624e6 1u v_plus 1024 10 150 5e-3 uic

.pss 624e6 500n bout 1024 10 100 5e-3 uic

gfreq is guessed frequency of fundamental suggested by user. When performing transient
analysis the PSS algorithm tries to infer a new rough guess rgfreq on the fundamental. If
gfreq is out of ±10% with respect to rgfreq then gfreq is discarded.

tstab is stabilization time before the shooting begin to search for the PSS. It has to be noticed
that this parameter heavily influence the possibility to reach the PSS. Thus is a good practice to
ensure a circuit to have a right tstab, e.g. performing a separate TRAN analysis before to run
PSS analysis.

oscnob is the node or branch where the oscillation dynamic is expected. PSS analysis will give
a brief report of harmonic content at this node or branch.

psspoints is number of step in evaluating predicted period after convergence is reached. It
is useful only in Time Domain plots. However this number should be higher than 2 times the
requested harms. Otherwise the PSS analysis will properly adjust it.

harms number of harmonics to be calculated as requested by the user.

sciter number of allowed shooting cycle iterations. Default is 50.

steady_coeff is the weighting coefficient for calculating the Global Convergence Error (GCE),
which is the reference value in order to infer is convergence is reached. The lower steady_coeff
is set, the higher the accuracy of predicted frequency can be reached but at longer analysis time
and sciter number. Default is 1e-3.

uic (use initial conditions) is an optional keyword that indicates that the user does not want
ngspice to solve for the quiescent operating point before beginning the transient analysis. If this
keyword is specified, ngspice uses the values specified using IC=... on the various elements as
the initial transient condition and proceeds with the analysis. If the .ic control line has been
specified, then the node voltages on the .ic line are used to compute the initial conditions for
the devices. Look at the description on the .ic control line for its interpretation when uic is
not specified.

334 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

11.4 Measurements after AC, DC and Transient Analysis

11.4.1 .meas(ure)

The .meas or .measure statement (and its equivalent meas command, see Chapt. 13.5.50)
are used to analyze the output data of a tran, ac, or dc simulation. The command is executed
immediately after the simulation has finished.

11.4.2 batch versus interactive mode

.meas analysis may not be used in batch mode (-b command line option), if an output file
(rawfile) is given at the same time (-r rawfile command line option). In this batch mode
ngspice will write its simulation output data directly to the output file. The data is not kept
in memory, thus is no longer available for further analysis. This is done to allow a very large
output stream with only a relatively small memory usage. For .meas to be active you need to
run the batch mode with a .plot or .print command. A better alternative may be to start
ngspice in interactive mode.

If you need batch like operation, you may add a .controlendc section to the input
file:

Example:

*input file
...
.tran 1ns 1000ns
...

.control
run
write outputfile data
.endc

.end

and start ngspice in interactive mode, e.g. by running the command

ngspice inputfile .

.meas<ure> then prints its user-defined data analysis to the standard output. The analysis
includes propagation, delay, rise time, fall time, peak-to-peak voltage, minimum or maximum
voltage, the integral or derivative over a specified period and several other user defined values.

11.4.3 General remarks

The measure type {DC|AC|TRAN|SP} depends on the data that is to be evaluated, either orig-
inating from a dc analysis, an ac analysis, or a transient simulation. The type SP to analyze a
spectrum from the spec or fft commands is only available when executed in a meas command,
see 13.5.50.

11.4. MEASUREMENTS AFTER AC, DC AND TRANSIENT ANALYSIS 335

result will be a vector containing the result of the measurement. trig_variable, targ_variable,
and out_variable are vectors stemming from the simulation, e.g. a voltage vector v(out).

VAL=val expects a real number val. It may be as well a parameter delimited by ” or {}
expanding to a real number.

TD=td and AT=time expect a time value if measure type is tran. For ac and sp, AT will be a
frequency value, TD is ignored. For dc analysis, AT is a voltage (or current), TD is ignored as
well.

CROSS=# requires an integer number #. CROSS=LAST is possible as well. The same is expected
by RISE and FALL.

Frequency and time values may start at 0 and extend to positive real numbers. Voltage (or
current) inputs for the independent (scale) axis in a dc analysis may start or end at arbitrary real
valued numbers.

Please note that not all of the .measure commands have been implemented.

11.4.4 Input

In the following lines you will get some explanation on the .measure commands. A simple
simulation file with two sines of different frequencies may serve as an example. The transient
simulation delivers time as the independent variable and two voltages as output (dependent
variables).

Input file:

File: simple-meas-tran.sp

* Simple .measure examples

* transient simulation of two sine

* signals with different frequencies
vac1 1 0 DC 0 sin(0 1 1k 0 0)
vac2 2 0 DC 0 sin(0 1.2 0.9k 0 0)
.tran 10u 5m

*
.measure tran ... $ for the different inputs see below!

*
.control
run
plot v(1) v(2)
.endc
.end

After displaying the general syntax of the .measure statement, some examples are posted,
referring to the input file given above.

11.4.5 Trig Targ

.measure according to general form 1 measures the difference in dc voltage, frequency or time
between two points selected from one or two output vectors. The current examples all are using

336 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

transient simulation. Measurements for tran analysis start after a delay time td. If you run
other examples with ac simulation or spectrum analysis, time may be replaced by frequency,
after a dc simulation the independent variable may become a voltage or current.

General form 1:

.MEASURE {DC|AC|TRAN|SP} result TRIG trig_variable VAL=val
+ <TD=td> <CROSS=# | CROSS=LAST> <RISE=# | RISE=LAST>
+ <FALL=# | FALL=LAST> <TRIG AT=time> TARG targ_variable
+ VAL=val <TD=td> <CROSS=# | CROSS=LAST> <RISE=# |
+ RISE=LAST> <FALL=# | FALL=LAST> <TARG AT=time>

Measure statement example (for use in the input file given above):

.measure tran tdiff TRIG v(1) VAL=0.5 RISE=1 TARG v(1) VAL=0.5 RISE=2

measures the time difference between v(1) reaching 0.5 V for the first time on its first rising
slope (TRIG) versus reaching 0.5 V again on its second rising slope (TARG), i.e. it measures
the signal period.

Output:

tdiff = 1.000000e-003 targ= 1.083343e-003 trig= 8.334295e-005

Measure statement example:

.measure tran tdiff TRIG v(1) VAL=0.5 RISE=1 TARG v(1) VAL=0.5 RISE=3

measures the time difference between v(1) reaching 0.5 V for the first time on its rising slope
versus reaching 0.5 V on its rising slope for the third time (i.e. two periods).

Measure statement:

.measure tran tdiff TRIG v(1) VAL=0.5 RISE=1 TARG v(1) VAL=0.5 FALL=1

measures the time difference between v(1) reaching 0.5V for the first time on its rising slope
versus reaching 0.5 V on its first falling slope.

Measure statement:

.measure tran tdiff TRIG v(1) VAL=0 FALL=3 TARG v(2) VAL=0 FALL=3

measures the time difference between v(1) reaching 0V its third falling slope versus v(2) reach-
ing 0 V on its third falling slope.

Measure statement:

.measure tran tdiff TRIG v(1) VAL=-0.6 CROSS=1 TARG v(2) VAL=-0.8 CROSS=1

measures the time difference between v(1) crossing -0.6 V for the first time (any slope) versus
v(2) crossing -0.8 V for the first time (any slope).

Measure statement:

.measure tran tdiff TRIG AT=1m TARG v(2) VAL=-0.8 CROSS=3

measures the time difference between the time point 1ms versus the time when v(2) crosses -0.8
V for the third time (any slope).

11.4. MEASUREMENTS AFTER AC, DC AND TRANSIENT ANALYSIS 337

11.4.6 Find ... When

The FIND and WHEN functions allow measuring any dependent or independent time, frequency,
or dc parameter, when two signals cross each other or a signal crosses a given value. Measure-
ments start after a delay TD and may be restricted to a range between FROM and TO.

General form 2:

.MEASURE {DC|AC|TRAN|SP} result WHEN out_variable=val
+ <TD=td> <FROM=val> <TO=val> <CROSS=# | CROSS=LAST>
+ <RISE=# | RISE=LAST> <FALL=# | FALL=LAST>

Measure statement:

.measure tran teval WHEN v(2)=0.7 CROSS=LAST

measures the time point when v(2) crosses 0.7 V for the last time (any slope).

General form 3:

.MEASURE {DC|AC|TRAN|SP} result
+ WHEN out_variable=out_variable2
+ <TD=td> <FROM=val> <TO=val> <CROSS=# | CROSS=LAST>
+ <RISE=# | RISE=LAST> <FALL=# | FALL=LAST>

Measure statement:

.measure tran teval WHEN v(2)=v(1) RISE=LAST

measures the time point when v(2) and v(1) are equal, v(2) rising for the last time.

General form 4:

.MEASURE {DC|AC|TRAN|SP} result FIND out_variable
+ WHEN out_variable2=val <TD=td> <FROM=val> <TO=val>
+ <CROSS=# | CROSS=LAST> <RISE=# | RISE=LAST>
+ <FALL=# | FALL=LAST>

Measure statement:

.measure tran yeval FIND v(2) WHEN v(1)=-0.4 FALL=LAST

returns the dependent (y) variable drawn from v(2) at the time point when v(1) equals a value
of -0.4, v(1) falling for the last time.

General form 5:

.MEASURE {DC|AC|TRAN|SP} result FIND out_variable
+ WHEN out_variable2=out_variable3 <TD=td>
+ <CROSS=# | CROSS=LAST>
+ <RISE=#|RISE=LAST> <FALL=#|FALL=LAST>

Measure statement:

.measure tran yeval FIND v(2) WHEN v(1)=v(3) FALL=2

338 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

returns the dependent (y) variable drawn from v(2) at the time point when v(1) crosses v(3),
v(1) falling for the second time.

General form 6:

.MEASURE {DC|AC|TRAN|SP} result FIND out_variable AT=val

Measure statement:

.measure tran yeval FIND v(2) AT=2m

returns the dependent (y) variable drawn from v(2) at the time point 2 ms (given by AT=time).

11.4.7 AVG|MIN|MAX|PP|RMS|MIN_AT|MAX_AT

General form 7:

.MEASURE {DC|AC|TRAN|SP} result
+ {AVG|MIN|MAX|PP|RMS|MIN_AT|MAX_AT}
+ out_variable <TD=td> <FROM=val> <TO=val>

Measure statements:

.measure tran ymax MAX v(2) from=2m to=3m

returns the maximum value of v(2) inside the time interval between 2 ms and 3 ms.

.measure tran tymax MAX_AT v(2) from=2m to=3m

returns the time point of the maximum value of v(2) inside the time interval between 2 ms and
3 ms.

.measure tran ypp PP v(1) from=2m to=4m

returns the peak to peak value of v(1) inside the time interval between 2 ms and 4 ms.

.measure tran yrms RMS v(1) from=2m to=4m

returns the root mean square value of v(1) inside the time interval between 2 ms and 4 ms.

.measure tran yavg AVG v(1) from=2m to=4m

returns the average value of v(1) inside the time interval between 2 ms and 4 ms.

11.4.8 Integ

General form 8:

.MEASURE {DC|AC|TRAN|SP} result INTEG<RAL> out_variable
+ <TD=td> <FROM=val> <TO=val>

Measure statement:

.measure tran yint INTEG v(2) from=2m to=3m

returns the area under v(2) inside the time interval between 2 ms and 3 ms.

11.4. MEASUREMENTS AFTER AC, DC AND TRANSIENT ANALYSIS 339

11.4.9 param

General form 9:

.MEASURE {DC|AC|TRAN|SP} result param=’expression’

Measure statement:

.param fval=5

.measure tran yadd param=’fval + 7’

will evaluate the given expression fval + 7 and return the value 12.

’Expression’ is evaluated according to the rules given in Chapt. 2.11.5 during start up of ngspice.
It may contain parameters defined with the .param statement. It may also contain parameters
resulting from preceding .meas statements.

.param vout_diff=50u

...

.measure tran tdiff TRIG AT=1m TARG v(2) VAL=-0.8 CROSS=3

.meas tran bw_chk param=’(tdiff < vout_diff) ? 1 : 0’

will evaluate the given ternary function and return the value 1 in bw_chk, if tdiff measured is
smaller than parameter vout_diff.

The expression may not contain vectors like v(10), e.g. anything resulting directly from a
simulation. This may be handled with the following .meas command option.

11.4.10 par(’expression’)

The par(’expression’) option (11.6.6) allows the use of algebraic expressions on the .measure
lines. Every out_variable may be replaced by par(’expression’) using the general forms 1. . . 9
described above. Internally par(’expression’) is substituted by a vector according to the rules
of the B source (Chapt. 5.1). A typical example of the general form is shown below:

General form 10:

.MEASURE {DC|TRAN|AC|SP} result
+ FIND par(’expression’) AT=val

The measure statement

.measure tran vtest find par(’(v(2)*v(1)’) AT=2.3m

returns the product of the two voltages at time point 2.3 ms.

Note that a B-source, and therefore the par(’...’) feature, operates on values of type complex
in AC analysis mode.

Both param and par are not available for the meas command (13.5.50) inside of a .control
section, where meas with par or param may be replaced by let (13.5.45).

340 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

11.4.11 Deriv

General form:

.MEASURE {DC|AC|TRAN|SP} result DERIV<ATIVE> out_variable
+ AT=val

.MEASURE {DC|AC|TRAN|SP} result DERIV<ATIVE> out_variable
+ WHEN out_variable2=val <TD=td>
+ <CROSS=# | CROSS=LAST> <RISE=#|RISE=LAST>
+ <FALL=#|FALL=LAST>

.MEASURE {DC|AC|TRAN|SP} result DERIV<ATIVE> out_variable
+ WHEN out_variable2=out_variable3
+ <TD=td> <CROSS=# | CROSS=LAST>
+ <RISE=#|RISE=LAST> <FALL=#|FALL=LAST>

11.4.12 More examples

Some other examples, also showing the use of parameters, are given below. Corresponding
demonstration input files are distributed with ngspice in folder /examples/measure.

11.5. SAFE OPERATING AREA (SOA) WARNING MESSAGES 341

Other examples:

.meas tran inv_delay2 trig v(in) val=’vp/2’ td=1n fall=1
+ targ v(out) val=’vp/2’ rise=1
.meas tran test_data1 trig AT = 1n targ v(out)
+ val=’vp/2’ rise=3
.meas tran out_slew trig v(out) val=’0.2*vp’ rise=2
+ targ v(out) val=’0.8*vp’ rise=2
.meas tran delay_chk param=’(inv_delay < 100ps) ? 1 : 0’
.meas tran skew when v(out)=0.6
.meas tran skew2 when v(out)=skew_meas
.meas tran skew3 when v(out)=skew_meas fall=2
.meas tran skew4 when v(out)=skew_meas fall=LAST
.meas tran skew5 FIND v(out) AT=2n
.meas tran v0_min min i(v0)
+ from=’dfall’ to=’dfall+period’
.meas tran v0_avg avg i(v0)
+ from=’dfall’ to=’dfall+period’
.meas tran v0_integ integ i(v0)
+ from=’dfall’ to=’dfall+period’
.meas tran v0_rms rms i(v0)
+ from=’dfall’ to=’dfall+period’
.meas dc is_at FIND i(vs) AT=1
.meas dc is_max max i(vs) from=0 to=3.5
.meas dc vds_at when i(vs)=0.01
.meas ac vout_at FIND v(out) AT=1MEG
.meas ac vout_atd FIND vdb(out) AT=1MEG
.meas ac vout_max max v(out) from=1k to=10MEG
.meas ac freq_at when v(out)=0.1
.meas ac vout_diff trig v(out) val=0.1 rise=1 targ v(out)
+ val=0.1 fall=1
.meas ac fixed_diff trig AT = 10k targ v(out)
+ val=0.1 rise=1
.meas ac vout_avg avg v(out) from=10k to=1MEG
.meas ac vout_integ integ v(out) from=20k to=500k
.meas ac freq_at2 when v(out)=0.1 fall=LAST
.meas ac bw_chk param=’(vout_diff < 100k) ? 1 : 0’
.meas ac vout_rms rms v(out) from=10 to=1G

11.5 Safe Operating Area (SOA) warning messages

By setting .option warn=1, the Safe Operation Area check algorithm is enabled. In this case
for .op, .dc and .tran analysis warning messages are issued if the branch voltages of devices
(Resistors, Capacitors, Diodes, BJTs and MOSFETs), or the currents and dissipated power
(Diodes, and BJTs), or the resulting temperature (Diodes) exceed limits that are specified by
model parameters. All these parameters are positive with default value of infinity. For the
bipolar VBIC model (11.5.3.3) .option warn=2 will add additional operating point info

342 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

The check is executed after Newton-Raphson iteration is finished i.e. in transient analysis in
each time step. The user can specify an additional .option maxwarns (default: 5) to limit the
count of messages.

The output goes on default to stdout or alternatively to a file specified by command line option
--soa-log=filename.

To achive SOA checking, add some or all of these parameters with suitable limit values to the
.model line of the respective device.

11.5.1 Resistor and Capacitor SOA model parameters

1. Bv_max: If |Vr| or |Vc| exceed Bv_max, SOA warning is issued.

11.5.2 Diode SOA model parameters

1. Bv_max: If |Vj| exceeds Bv_max, SOA warning is issued.

2. Fv_max: If |Vf| exceeds Fv_max, SOA warning is issued.

3. Id_max: If |Id| exceeds Id_max, SOA warning is issued.

4. Pd_max: If power exceeds Pd_max, SOA warning is issued.

5. Te_max: If temperature exceeds Te_max, SOA warning is issued.

6. rth0: Thermal resistance between junction and ambient.

7. tnom: Nominal temperature where all parameters have been measured at.

Three SOA modes are available. All modes check for Bv_max, Vf_max, and Id_max.

If self-heating (7.2.2) is switched on, and Te_max, tnom and rth0 are given, then a derating for
the maximam allowed power dissipation is calculated, and power and current temperature are
checked against their max. allowed values.

pdmax = pdmaxmod − (tempcurr − tnom)/rth0

If self-heating is switched off, and rth0 and tnom are given, then a static max. power derating
is calculated, taking the device temperature (set by its default value 27 °C, or the global .temp
value, or the device specific instance parameter temp) into account. The reference temperature
is tnom.

pdmax = pdmaxmod − (temp− tnom)/rth0

If rth0 or tnom are not given, no derating is calculated, the power disspation is simply checked
against Pd_max.

11.5. SAFE OPERATING AREA (SOA) WARNING MESSAGES 343

11.5.3 BJT SOA model parameters

11.5.3.1 Gummel-Poon (levels 1 and 2)

Bipolar device models level 1 and 2 are supported with all the SOA parameters named below.

1. Vbe_max: If |Vbe| exceeds Vbe_max, SOA warning is issued.

2. Vbc_max: If |Vbc| exceeds Vbc_max, SOA warning is issued.

3. Vce_max: If |Vce| exceeds Vce_max, SOA warning is issued.

4. Vcs_max: If |Vcs| exceeds Vcs_max, SOA warning is issued.

5. Ic_max: If |Ic| exceeds Ic_max, SOA warning is issued.

6. Ib_max: If |Ib| exceeds Ib_max, SOA warning is issued.

7. Pd_max: If power exceeds Pd_max, SOA warning is issued.

8. Te_max: If temperature exceeds Te_max, SOA warning is issued.

9. rth0: Thermal resistance between junction and ambient.

10. tnom: Nominal temperature where all parameters have been measured at.

Two SOA modes are available (self-heating is not yet modeled in bipolar level 1 and 2). All
modes check for Vbe_max, Vbc_max, Vce_max, Vcs_max, Ic_max and Ib_max.

If rth0 and tnom are given, then a static max. power derating is calculated, taking the device
temperature (set by its default value 27 °C, or the global .temp value, or the device specific
instance parameter temp) into account. The reference temperature is tnom.

pdmax = pdmaxmod − (temp− tnom)/rth0

If rth0 or tnom are not given, no derating is calculated, the power disspation is simply checked
against Pd_max.

Te_max is not (yet) used.

11.5.3.2 HICUM (level 8)

HICUM2 currently aknowledges the following voltage parameters:

1. Vbe_max: If |Vbe| exceeds Vbe_max, SOA warning is issued.

2. Vbc_max: If |Vbc| exceeds Vbc_max, SOA warning is issued.

3. Vce_max: If |Vce| exceeds Vce_max, SOA warning is issued.

4. Vcs_max: If |Vcs| exceeds Vcs_max, SOA warning is issued.

344 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

11.5.3.3 VBIC (levels 4 and 9)

VBIC aknowledges the following parameters:

1. Vbe_max: If |Vbe| exceeds Vbe_max, SOA warning is issued.

2. Vbc_max: If |Vbc| exceeds Vbc_max, SOA warning is issued.

3. Vce_max: If |Vce| exceeds Vce_max, SOA warning is issued.

4. Vcs_max: If |Vcs| exceeds Vcs_max, SOA warning is issued.

As an alternative to the above listed parameters bvbe, bvbc, bvce, and bvsub may be used.

If .option warn=2 is set, the following parameters (defaults are set to 0.2 V) may be used to
determine the current operation point of the device.

1. vbefwd B-E forward voltage.

2. vbcfwd B-C forward voltage.

The following criteria are used:

op conditions
off Vbe <= vbefwd and Vbc <= vbcfwd

saturation Vbe > vbefwd and Vbc > vbcfwd

forward Vbe > vbefwd and Vbc <= vbcfwd

reverse Vbe <= vbefwd and Vbc > vbcfwd

Substrate leakage due to forward conduction of the collector-substrate diode may be detected
using:

1. vsubfwd Substrate junction forward voltage.

11.5.4 MOS SOA model parameters

1. Vgs_max: If |Vgs| exceeds Vgs_max, SOA warning is issued.

2. Vgd_max: If |Vgd| exceeds Vgd_max, SOA warning is issued.

3. Vgb_max: If |Vgb| exceeds Vgb_max, SOA warning is issued.

4. Vds_max: If |Vds| exceeds Vds_max, SOA warning is issued.

5. Vbs_max: If |Vbs| exceeds Vbs_max, SOA warning is issued.

6. Vbd_max: If |Vbd| exceeds Vbd_max, SOA warning is issued.

11.6. BATCH OUTPUT 345

11.5.5 VDMOS SOA model parameters

1. Vgs_max: If |Vgs| exceeds Vgs_max, SOA warning is issued.

2. Vgd_max: If |Vgd| exceeds Vgd_max, SOA warning is issued.

3. Vds_max: If |Vds| exceeds Vds_max, SOA warning is issued.

4. Vgsr_max: If |Vgsr| exceeds Vgsr_max, SOA warning is issued.

5. Vgdr_max: If |Vgdr| exceeds Vgdr_max, SOA warning is issued.

11.6 Batch Output

The following commands .print (11.6.2), .plot (11.6.3) and .four (11.6.4) are valid only
if ngspice is started in batch mode (see 12.4.1), whereas .save and the equivalent .probe are
aknowledged in all operating modes.

If you start ngspice in batch mode using the -b command line option, the outputs of .print,
.plot, and .four are printed to the console output. You may use the output redirection of your
shell to direct this printout into a file (not available with MS Windows GUI). As an alternative,
you may extend the ngspice command by specifying an output file:

ngspice -b -o output.log input.cir

If you however add the command line option -r to create a rawfile, .print and .plot are
ignored. If you want to involve the graphics plot output of ngspice, use the control mode
(12.4.3) instead of the -b batch mode option.

11.6.1 .SAVE: Name vector(s) to be saved in raw file

General form:

.save vector vector vector ...

Examples:

.save i(vin) node1 v(node2)

.save @m1[id] vsource#branch

.save all @m2[vdsat]

The vectors listed on the .SAVE line are recorded in the rawfile for use later with ngspice. The
standard vector names are accepted. Node voltages may be saved by giving the nodename or
v(nodename). Currents through an independent voltage source are given by i(sourcename)
or sourcename#branch. Internal device data are accepted as @dev[param].

If no .SAVE line is given, then the default set of vectors is saved (node voltages and voltage
source branch currents). If .SAVE lines are given, only those vectors specified are saved. For
more discussion on internal device data, e.g. @m1[id], see Appendix, Chapt. 27.1. If you

346 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

want to save internal data in addition to the default vector set, add the parameter all to the
additional vectors to be saved. If the command .save vm(out) is given, and you store the
data in a rawfile, only the original data v(out) are stored. The request for storing the magnitude
is ignored, because this may be added later during rawfile data evaluation with ngspice. See
also the section on the interactive command interpreter (Chapt. 13.5) for information on how to
use the rawfile.

11.6.2 .PRINT Lines

General form:

.print prtype ov1 <ov2 ... ov8>

Examples:

.print tran v(4) i(vin)

.print dc v(2) i(vsrc) v(23, 17)

.print ac vm(4, 2) vr(7) vp(8, 3)

The .print line defines the contents of a tabular listing of one to eight output variables. prtype
is the type of the analysis (DC, AC, TRAN, NOISE, or DISTO) for which the specified outputs are
desired. The form for voltage or current output variables is the same as given in the previous
section for the print command; Spice2 restricts the output variable to the following forms
(though this restriction is not enforced by ngspice):

V(N1<,N2>) specifies the voltage difference between nodes N1 and N2.
If N2 (and the preceding comma) is omitted, ground (0) is
assumed. See the print command in the previous section
for more details. For compatibility with SPICE2, the
following five additional values can be accessed for the ac
analysis by replacing the ‘V’ in V(N1,N2) with:

VR Real part
VI Imaginary part

VM Magnitude
VP Phase

VDB 20log10(magnitude)
I(VXXXXXXX) specifies the current flowing in the independent voltage

source named VXXXXXXX. Positive current flows from
the positive node, through the source, to the negative node.
(Not yet implemented: For the ac analysis, the
corresponding replacements for the letter I may be made
in the same way as described for voltage outputs.)

Output variables for the noise and distortion analyses have a different general form from that of
the other analyses. There is no limit on the number of .print lines for each type of analysis.
The par(’expression’) option (11.6.6) allows the use of algebraic expressions in the .print
lines. .width (11.6.7) selects the maximum number of characters per line.

11.6. BATCH OUTPUT 347

11.6.3 .PLOT Lines

.plot creates a printer plot output.

General form:

.plot pltype ov1 <(plo1, phi1)> <ov2 <(plo2, phi2)> ... ov8>

Examples:

.plot dc v(4) v(5) v(1)

.plot tran v(17, 5) (2, 5) i(vin) v(17) (1, 9)

.plot ac vm(5) vm(31, 24) vdb(5) vp(5)

.plot disto hd2 hd3(R) sim2

.plot tran v(5, 3) v(4) (0, 5) v(7) (0, 10)

The .plot line defines the contents of one plot of from one to eight output variables. pltype is
the type of analysis (DC, AC, TRAN, NOISE, or DISTO) for which the specified outputs are desired.
The syntax for the ovi is identical to that for the .print line and for the plot command in the
interactive mode.

The overlap of two or more traces on any plot is indicated by the letter ‘X’. When more than
one output variable appears on the same plot, the first variable specified is printed as well
as plotted. If a printout of all variables is desired, then a companion .print line should be
included. There is no limit on the number of .plot lines specified for each type of analysis.
The par(’expression’) option (11.6.6) allows the use of algebraic expressions in the .plot
lines.

11.6.4 .FOUR: Fourier Analysis of Transient Analysis Output

General form:

.four freq ov1 <ov2 ov3 ...>

Examples:

.four 100K v(5)

The .four (or Fourier) line controls whether ngspice performs a Fourier analysis as a part of
the transient analysis. freq is the fundamental frequency, and ov1 is the desired vector to
be analyzed. The Fourier analysis is performed over the interval <TSTOP-period, TSTOP>,
where TSTOP is the final time specified for the transient analysis, and period is one period of
the fundamental frequency. The dc component and the first nine harmonics are determined. For
maximum accuracy, TMAX (see the .tran line) should be set to period/100.0 (or less for very
high-Q circuits). The par(’expression’) option (11.6.6) allows the use of algebraic expressions
in the .four lines.

348 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

As .four is available only when ngspice is executed in batch mode (12.4.1), and no rawfile
selected, you may consider the spec (13.5.87) or fft (13.5.33) commands, when using ngspice
in .control mode (with a .control section, 12.4.3).

11.6.5 .PROBE: Save device node currents, device power dissipation, or
differential voltages between arbitrary nodes

Command .probe enables current measurement at user specified device nodes, as well as (dif-
ferential) voltage measurements between device nodes.

11.6.5.1 Current measurement

Current measurement at a device node is achieved by automatically placing a Zero volt voltage
source (VSRC, 4.1) between the selected (or all) device node and the net attached to that node.
The positive pole of the VSRC is pointing out towards the net, the negative pole towards the
device. The resulting output vectors are using the xx#branch notation (see examples below).
Only top level devices are accessible, so device inside of subcircuits are not considered.

Besides standard devices you may also measure currents at X instance lines (subcircuit calls). If
the subcircuit definition (.subckt line) uses named nodes, these are used instead of node numbers
(see device u1 in the example below).

Be careful when .probe alli is given, because the many output vectors generated automati-
cally may require a large amount of memory to store all the current measurement vectors.

11.6. BATCH OUTPUT 349

General form for current measurements on all devices:

.probe alli

General form for current measurements on a 2- and multi-terminal device:

.probe I(device)

General form for current measurements on a multi-terminal device (one command per terminal):

.probe I(device,node)

Examples:

* measure current at every node of each device in the circuit
.probe <alli>

* measure current at node 1 of a two-terminal device
.probe I(R1)

* measure current at all nodes of a subcircuit invocation
.probe I(XU1)

* measure current at node 3 of a multi-terminal device M4
.probe I(MQ4,3)

Resulting output vectors:

r1#branch
mq4:s#branch

Resulting output vectors for .probe all (excerpt only, example file 555-timer-2.cir):

...
ra#branch : current, real, 14579 long
rb#branch : current, real, 14579 long
rl#branch : current, real, 14579 long
time : time, real, 14579 long [default scale]
xu1:cont#branch : current, real, 14579 long
xu1:disc#branch : current, real, 14579 long
xu1:gnd#branch : current, real, 14579 long
xu1:out#branch : current, real, 14579 long
xu1:reset#branch : current, real, 14579 long
xu1:thres#branch : current, real, 14579 long
xu1:trig#branch : current, real, 14579 long
xu1:vcc#branch : current, real, 14579 long
xu2:1#branch : current, real, 14579 long
xu2:19#branch : current, real, 14579 long
...

350 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

Compared to the approach using command .options savecurrents the resulting vectors
from a .probe command are available for every simulation type including AC simulation.
A slight disadvantage may be that new nodes are added to the instance matrix, increasing sim-
ulation time (typically a little bit only).

11.6.5.2 (Differential) voltage measurement

Differential voltage measurements are achieved by placing a voltage controlled voltage source
(VCVS, E device) with its two inputs connected to the nodes specified by the user and gain 1.
The output is then saved in a vector with a leading vd_ in its name.

11.6. BATCH OUTPUT 351

General form for (differential) voltage measurements:

.probe v(node1)

.probe vd(device:node1:node2)

.probe vd(device1:node1, device2:node2)

device, device1, and device2 are device names (first token in an instance line). node1, node2
are either numbers (according to the node sequence in the instance line, e.g. 1, 2, 3, ...), or are
node names of known devices (d, g, s, b for MOS of JFET, c, b, e for bipolar.

Examples:

* voltage at node named nR1
.probe v(nR1)

* voltage across a two-terminal device named R1
.probe vd(R1)

* voltage at instance node 1 of device m4
.probe vd(m4:1:0)

* voltage between nodes 1 and 3 of device m4
.probe vd(m4:1:3)

* voltage between node 1 of device m4 and node 3 of device m5
.probe vd(m4:1, m5:3)

* m4, m5 are MOS devices, so the following is equivalent:
.probe vd(m4:d, m5:s)

Resulting output vectors:

nR1
vd_R1
vd_m4:d:0
vd_m4:d:s
vd_m3:d_m5:s

11.6.5.3 Measurement of power dissipation in a device

A power consumption measurement of a device with n nodes consists of two steps: all n device
node currents i1, i2, ... , in are measured (see11.6.5.1). Then all node voltages v1
... vn are measured. A common virtual star point vref is calculated as the mean of all n
node voltages. Power is the sum of the products of each node current times its node voltage
minus vref.

P = i1*(v1-vref) + i2*(v2-vref) +...+ in*(vn-vref)

352 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

General form for power measurements:

.probe p(device)

Examples:

* power dissipation of a subcircuit device
.probe p(XU1)

* power dissipation in a MOS transistor
.probe p(MQ1)

Resulting output vectors:

xu1:power

mq1:power

All new items are added to the list of vectors named by .SAVE (see 11.6.1). If .save is not given,
only the newly generated .PROBE vectors are saved.

11.6.6 par(’expression’): Algebraic expressions for output

General form:

par(’expression’)
output=par(’expression’) $ not in .measure ac

Examples:

.four 1001 sq1=par(’v(1)*v(1)’)

.measure tran vtest find par(’(v(2)*v(1))’) AT=2.3m

.print tran output=par(’v(1)/v(2)’) v(1) v(2)

.plot dc v(1) diff=par(’(v(4)-v(2))/0.01’) out222

With the output lines .four, .plot, .print, .save and in .measure evaluation, it is pos-
sible to add algebraic expressions for output, in addition to vectors. All of these output lines
accept par(’expression’), where expression is any expression valid for a B source (see Chapt.
5.1). Thus expression may contain predefined functions, numerical values, constants, simula-
tor output like v(n1) or i(vdb), parameters predefined by a .param statement, and the variables
hertz, temper, and time. Note that a B-source, and therefore the par(’...’) feature, oper-
ates on values of type complex in AC analysis mode.

Internally the expression is replaced by a generated voltage node that is the output of a B source,
one node, and the B source implementing par(’...’). Several par(’...’) are allowed in each line,
up to 99 per input file. The internal nodes are named pa_00 to pa_99. An error will occur if
the input file contains any of these reserved node names.

11.7. MEASURING CURRENT THROUGH DEVICE TERMINALS 353

In .four, .plot, .print, .save, but not in .measure, an alternative syntax
output=par(’expression’) is possible. par(’expression’) may be used as described above.
output is the name of the new node to replace the expression. So output has to be unique and
a valid node name.

The syntax of output=par(expression) is strict: no spaces are allowed between par and (’or
between (and ’. Also,(’ and ’) both are required. There is not much error checking on your
input, so if there is a typo, for example, an error may pop up at an unexpected place.

11.6.7 .width

Set the width of a print-out or plot with the following card:

.with out = 256

Parameter out yields the maximum number of characters plotted in a row, if printing in columns
or an ASCII-plot is selected.

11.7 Measuring current through device terminals

11.7.1 Using the .probe command

Device currents (discrete devices or subcircuits) may be measured by the .probe command
(11.6.5). Voltage sources for measurements are placed in series to the devices nodes specified
by the user. For details please see (11.6.5).

11.7.2 Adding a voltage source in series

The ngspice matrix solver determines node voltages and currents through independent voltage
sources. So to measure the currents through a resistor, you may add a voltage source in series
with dc voltage 0.

Current measurement with series voltage source

*measure current through R1
V1 1 0 1
R1 1 0 5
R2 1 0 10

* will become
V1 1 0 1
R1 1 11 5
Vmeas 11 0 dc 0
R2 1 0 10

and the current is available as

vmeas#branch

after simulation.

354 CHAPTER 11. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

11.7.3 Using option ’savecurrents’

Current measurement by reading internal current data

*measure current through R1 and R2
V1 1 0 1
R1 1 0 5
R2 1 0 10
.options savecurrents

The option savecurrents will add .save lines (11.6.1) like

.save @r1[i]

.save @r2[i]

to your input file information read during circuit parsing. These newly created vectors contain
the terminal currents of the devices R1 and R2.

You will find information of the nomenclature in Chapt. 27, also how to plot these vectors.
The following devices are supported: M, J, Q, D, R, C, L, B, F, G, W, S, I (see 2.3). For
MOSFETdevices only a subset of MOS1 to MOS9 current parameters are included per default
(but see options below). Devices in subcircuits are supported as well. The advantage of the data
obtained by .options savecurrents is that no extra nodes are required, because the data are
retrieved from internal nodes already existing.

This option however cannot be used in AC simulations, because complex data are not supported.
Vectors thus created will be empty after an AC simulation. So for AC you might use one of the
two methods (.probe or series voltage source) as previously described.

Be careful when choosing savecurrents in larger circuits, because 1 to 4 additional output
vectors are created per device and this may consume lots of memory.

Also note that the data thus retrieved may be delayed by on time step after a transient simulation.

For MOS1, BSIM3 and BSIM4 three special options are available, listing all currents as de-
scribed in chapters 31.6.1, 31.6.8 and 31.6.9 of the ngspice manual:

Current measurement for MOS transistors with BSIM3 or BSIM4 models:

*measure all currents of MOS1, BSIM3 and BSIM4 transistors
.options savecurrents_mos1
.options savecurrents_bsim3
.options savecurrents_bsim4

Chapter 12

Starting ngspice

12.1 Introduction

Ngspice consists of the simulator and a front-end for data analysis and plotting. Input to the
simulator is a netlist file, including commands for circuit analysis and output control. Interactive
ngspice can plot data from a simulation on a PC or a workstation display.

The usual way to run ngspice is by a console command, passing options and at least one netlist
file as a parameter. Multiple netlists are concatenated and treated as one, except when the first
file is a pure script with parameters (13.8).

Ngspice on Linux (and OSs like MacOS, Cygwin, BSD, Solaris ...) uses the X Window System
for plotting (see Chapt. 14.3) if the environment variable DISPLAY is available. (An X11 server
must first be installed on MacOS.) Otherwise, a console mode (non-graphical) interface is used.
If you are using X on a workstation, the DISPLAY variable should already be set; if you want
to display graphics on a system different from the one you are running ngspice or ngutmeg on,
DISPLAY should be of the form machine:0.0. See the appropriate documentation on the X
Window System for more details.

The MS Windows GUI version of ngspice has a native graphics interface (see Chapt. 14.1).

The front-end may be run as a separate ‘stand-alone’ program under the name ngnutmeg. ngnut-
meg is a subset of ngspice dedicated to data evaluation, still optionally compilable (Linux,
Mingw) for historical reasons. Ngnutmeg will read in the ‘raw’ data output file created by
ngspice -r or by the write command during an interactive ngspice session.

12.2 Where to obtain ngspice

The actual distribution of ngspice may be downloaded from the ngspice download web page.
The installation for Linux or MS Windows is described in the file INSTALL to be found in
the top level directory. You may also have a look at Chapt. 28 of this manual for compiling
instructions.

If you want to check out the source code that is actually under development, you may have a
look at the ngspice source code repository, which is stored using the Git Source Code Man-
agement (SCM) tool. The Git repository may be browsed on the Git web page, also useful for

355

http://sourceforge.net/projects/ngspice/files/
http://sourceforge.net/scm/?type=git&group_id=38962

356 CHAPTER 12. STARTING NGSPICE

downloading individual files. You may however download (or clone) the complete repository
including all source code trees from the console window (Linux, CYGWIN or MSYS/MINGW)
by issuing the command (in a single line)

git clone git://git.code.sf.net/p/ngspice/ngspice

You need to have Git installed, which is available for all three OSs. The whole source tree
is then available in <current directory>/ngspice. Compilation and local installation is again
described in INSTALL (or Chapt. 28). If you later want to update your files and download the
recent changes from SourceForge into your local repository, cd into the ngspice directory and
just type

git pull

git pull will not overwrite modified files in your working directory. To drop your local changes
first, you can run

git reset --hard

To learn more about git, which can be both powerful and difficult to master, please consult
http://git-scm.com/, especially: http://git-scm.com/documentation, which has pointers to docu-
mentation and tutorials.

12.3 Command line options for starting ngspice

Command Synopsis:

ngspice [-o logfile] [-r rawfile] [-b] [-i] [input files]

The oudated, optional ngnutmeg may be called by

Command Synopsis:

ngnutmeg [-] [datafile ...]

Where data file is the standard ngspice rawfile.

Options are shown below.

http://git-scm.com/
http://git-scm.com/documentation

12.3. COMMAND LINE OPTIONS FOR STARTING NGSPICE 357

Option Long option Meaning
- Don’t try to load the default data file ("rawspice.raw") if no

other files are given (ngnutmeg only, obsolete).
-n --no-spiceinit Don’t try to source the file upon start-up. Normally

ngspice seeks to find it according to the search folder
sequence described in 12.6.

-t TERM --terminal=TERM The program is being run on a terminal with mfb name
term (obsolete).

-b --batch Run in batch mode. Ngspice reads the default input source
(e.g. keyboard) or reads the given input file and performs
the analyses specified; output is either Spice2-like
line-printer plots ("ascii plots") or a ngspice rawfile. See
the following section for details. Note that if the input
source is not a terminal (e.g. using the IO redirection
notation of "<") ngspice defaults to batch mode (-i
overrides). This option is valid for ngspice only.

-s --server Run in server mode. This is like batch mode, except that a
temporary rawfile is used and then written to the standard
output, preceded by a line with a single "@", after the
simulation is done. This mode is used by the ngspice
daemon. This option is valid for ngspice only.
Example for using pipes from the console window:
cat adder.cir|ngspice -s|more

-i --interactive Run in interactive mode. This is useful if the standard input
is not a terminal but interactive mode is desired. Command
completion is not available unless the standard input is a
terminal, however. This option is valid for ngspice only.

-r FILE --rawfile=FILE Use rawfile as the default file into which the results of the
simulation are saved. This option is valid for ngspice only.

-p --pipe Allow a program (e.g., xcircuit) to act as a GUI frontend
for ngspice through a pipe. Thus ngspice will assume that
the input pipe is a tty and allow running in interactive
mode.

-o FILE --output=FILE All logs generated during a batch run (-b) will be saved in
outfile.

-h --help A short help statement of the command line syntax.
-v --version Prints a version information.
-a --autorun Start simulation immediately, as if a control section

.control
run
.endc
had been added to the input file.

--soa-log=FILE output from Safe Operating Area (SOA) check
-D --define Set a variable (13.8.1), to be used in a .control section.

-D var1 will set a boolean variable named var1,
-D var2=7 will set a variable with its value.

Further arguments to ngspice are taken to be ngspice input files, which are read and saved (if

358 CHAPTER 12. STARTING NGSPICE

running in batch mode then they are run immediately). Ngspice accepts Spice3 (and also most
Spice2) input files, and outputs ASCII plots, Fourier analyses, and node printouts as specified
in .plot, .four, and .print cards. If an out parameter is given on a .width card (11.6.7),
the effect is the same as set width = Since ngspice ASCII plots do not use multiple ranges,
however, if vectors together on a .plot card have different ranges they do not provide as much
information as they do in a scalable graphics plot.

For ngnutmeg, further arguments are taken to be data files in binary or ASCII raw file format
(generated with -r in batch mode or the write (see 13.5.107) command) that are loaded into
ngnutmeg. If the file is in binary format, it may be only partially completed (useful for exam-
ining output before the simulation is finished). One file may contain any number of data sets
from different analyses.

12.4 Starting options

12.4.1 Batch mode

Let’s take as an example the Four-Bit binary adder MOS circuit shown in Chapt. 17.6, stored
in a file adder-mos.cir. You may start the simulation immediately by calling

ngspice -b -r adder.raw -o adder.log adder-mos.cir

ngspice will start, simulate according to the .tran command and store the output data in a
rawfile adder.raw. Comments, warnings and info messages go to log file adder.log. Commands
for batch mode operation are described in Chapt. 11.

12.4.2 Interactive mode

If you call

ngspice

ngspice will start, load spinit (12.5) and .spiceinit (12.6, if available), and then waits for your
manual input. Any of the commands described in 13.5 may be chosen, but many of them are
useful only after a circuit has been loaded by

ngspice 1 -> source adder-mos.cir

others require the simulation to be done already (e.g. plot):

ngspice 2 ->run
ngspice 3 ->plot allv

If you call ngspice from the command line with a circuit file as parameter:

ngspice adder-mos.cir

ngspice will start, load the circuit file, parse the circuit (same circuit file as above, containing
only dot commands (see Chapt. 11) for analysis and output control). ngspice then just waits for
your input. You may start the simulation by issuing the run command. Following completion
of the simulation you may analyze the data by any of the commands given in Chapt. 13.5.

12.4. STARTING OPTIONS 359

12.4.3 Control mode (Interactive mode with control file or control sec-
tion)

If you add the following control section to your input file adder-mos.cir, you may call

ngspice adder-mos.cir

from the command line and see ngspice starting, simulating and then plotting immediately.

Control section:

* ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER
.control
save vcc#branch
run
plot vcc#branch
rusage all
.endc

Any suitable command listed in Chapt. 13.5 may be added to the control section, as well as
control structures described in Chapt. 13.6. Batch-like behavior may be obtained by changing
the control section to

Control section with batch-like behavior:

* ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER
.control
save vcc#branch
run
write adder.raw vcc#branch
quit
.endc

If you put this control section into a file, say adder-start.sp, you may just add the line

.include adder-start.sp

to your input file adder-mos.cir to obtain the batch-like behavior. In the following example
the line .tran ... from the input file is overridden by the tran command given in the control
section.

Control section overriding the .tran command:

* ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER
.control
save vcc#branch
tran 1n 500n
plot vcc#branch
rusage time
.endc

The commands within the .control section are executed in the order they are listed and only

360 CHAPTER 12. STARTING NGSPICE

after the circuit has been read in and parsed. If you want to have a command being executed
before circuit parsing, you may use the prefix pre_ (13.5.57) to the command.

A warning is due however: If your circuit file contains such a control section (.control ...
.endc), you should not start ngspice in batch mode (with -b as parameter). The outcome may
be unpredictable!

12.5 Standard configuration file spinit

At startup ngspice reads its configuration file spinit. spinit may be found in a path relative to
the location of the ngspice executable
..\share\ngspice\scripts. The path may be overridden by setting the environmental variable
SPICE_SCRIPTS to a path where spinit is located. Ngspice for Windows will additionally
search for spinit in the directory where ngspice.exe resides. If spinit is not found a warning
message is issued, but ngspice continues.

spinit contains a script, made of commands from Chapt. 13.5, that is run upon start up of
ngspice. Aliases (name equivalences) can be set. The asterisk ‘*’ comments out a line. If used
by ngspice, spinit will then load the XSPICE code models from a path relative to the current
directory where the ngspice executable resides, as well as OpenVAF compiled compact devices
models. You may also define absolute paths.

If the standard path for the libraries (see standard spinit above or /usr/local/lib/spice un-
der CYGWIN and Linux) is not adequate, you can add the ./configure options --prefix=/usr
--libdir=/usr/lib64 to set the codemodel search path to /usr/lib64/spice. Besides the
standard lib only lib64 is acknowledged.

12.5. STANDARD CONFIGURATION FILE SPINIT 361

Standard spinit contents:

* Standard ngspice init file
alias exit quit
alias acct rusage all

** set the number of threads in openmp

** (to the number of physical cores)

** default (if compiled with --enable-openmp) is: 2
set num_threads=8

if $?sharedmode
unset interactive
unset moremode

else
set interactive
set x11lineararcs

end

* comment out if central osdi management is set up

* unset osdi_enabled

* Load the codemodels
if $?xspice_enabled
codemodel ../lib/spice/spice2poly.cm
codemodel ../lib/spice/analog.cm
codemodel ../lib/spice/digital.cm
codemodel ../lib/spice/xtradev.cm
codemodel ../lib/spice/xtraevt.cm
codemodel ../lib/spice/table.cm

end

* Load the OpenVAF/OSDI models
if $?osdi_enabled
osdi ../lib/ngspice/BSIMBULK107.osdi
osdi ../lib/ngspice/BSIMCMG.osdi
osdi ../lib/ngspice/psp103_nqs.osdi
osdi ../lib/ngspice/vbic_4T_et_cf.osdi

end

Special care has to be taken when using the ngspice shared library. If you use ngspice.dll under
Windows OS, the standard is to use relative paths for the code models as shown above. However,
the path is relative to the calling program, not to the dll. This is fine when ngspice.dll and the
calling program reside in the same directory. If ngspice.dll is placed in a different directory,
please check Chapt. 28.2.

The Linux shared library ... t.b.d.

362 CHAPTER 12. STARTING NGSPICE

12.6 User defined configuration file .spiceinit

In addition to spinit you may define a (personal) configuration file .spiceinit and put it into any
of the following locations. The typical search sequence for .spiceinit is:

1. directory from where the netlist will be loaded

2. user provided directory (in env. variable SPICE_USERINIT_DIR)

3. current directory

4. HOME (Linux)

5. USERPROFILE (Windows).

HOME (Linux, Cygwin, macOS) may point to /home/<User name>, or /root if you are acting
as admin. USERPROFILE (MS Windows) is typically C:\Users\<User name>. To find out
what directory HOME or USERPROFILE are pointing to, enter the commands set or export
into a console window and search for the token.

In case of ngspice as a shared library item 1. of the list above may read

1. in the directory Infile_Path received from the caller (to be sent before initialization)

.spiceinit will be read in and executed after spinit, but before any other input file is read. It
may contain further scripts, set variables, or issue commands from Chapt.13.5 to override
commands given in spinit. For example set filetype=ascii will yield ASCII output in the
output data file (rawfile), instead of the compact binary format that is used by default. set
ngdebug will yield a lot of additional debug output. Any other contents of the script, e.g.
plotting preferences, may be included here also. If the command line option -n is used upon
ngspice start up, this file will be ignored.

.spiceinit for simulating IC designs with MOS transistor data from PDKs may contain:

* .spiceinit for use with Skywater PDK and ngspice KLU
set ngbehavior=hsa ; set compatibility for reading

; PDK libs
set skywaterpdk ; omit some time consuming checks

; during lib loading
set ng_nomodcheck ; don’t check the model parameters
option noinit ; don’t print operating point data
option klu ; select KLU as matrix solver
optran 0 0 0 100p 2n 0 ; don’t use dc operating point,

; but only transient op

set num_threads=8 should be set to the number of physical cores of the computer in use (here
for example 8 cores), set ngbehavior=hsa will ensure HSPICE compatibility with some
important and essential tweaks for the PDK, set skywaterpdk suppresses time consuming
checks during lib loading, assuming 4 nodes for a MOS device and adequately labled parame-
ters. set ng_nomodcheck will suppress some unwanted warnings, option noinit will sup-
press the (often lengthy) printing of the operating point results. option klu often will yield

12.7. ENVIRONMENTAL VARIABLES 363

simulation speed up by a factor of 2 or more. optran ... will skip usual operating point iter-
ations, which for very large circuits consume much time, and replace them by a time integrated
operating point estimation.

.spiceinit for simulating circuits containing PSPICE-compatible behavioural models may con-
tain:

* User defined ngspice init file
set filetype=ascii

*set ngdebug

*set outputpath=C:\Spice64\out
set ngbehavior = ltpsa
option sparse

set ngbehavior = ltpsa will provide PSPICE compatibility. option sparse (maybe omit-
ted) selects the venerable Sparse 1.3 matrix solver, which sometimes is much faster than klu.

Some editors on MS Windows refuse to save files with leading dot in their names. An alternative
name to .spiceinit is therefore spice.rc.

12.7 Environmental variables

12.7.1 Ngspice specific variables

SPICE_LIB_DIR default: /usr/local/share/ngspice (Linux, CYGWIN), C:\Spice\share\ngspice
(Windows)

SPICE_EXEC_DIR default: /usr/local/bin (Linux, CYGWIN), C:\Spice\bin (Windows)

SPICE_BUGADDR default: https://ngspice.sourceforge.io/bugrep.html
Where to send bug reports on ngspice.

SPICE_EDITOR default: vi (Linux, CYGWIN), notepad.exe (MINGW, Visual Studio)
Set the editor called in the edit command. Always overrides the EDITOR env. variable.

SPICE_ASCIIRAWFILE default: 0
Format of the rawfile. 0 for binary, and 1 for ascii.

SPICE_NEWS default: $SPICE_LIB_DIR/news
A file that is copied verbatim to stdout when ngspice starts in interactive mode.

SPICE_HELP_DIR default: $SPICE_LIB_DIR/helpdir
Help directory, not used in Windows mode

SPICE_HOST default: empty string
Used in the rspice command (probably obsolete, to be documented)

SPICE_SCRIPTS default: $SPICE_LIB_DIR/scripts
In this directory the spinit file will be searched.

364 CHAPTER 12. STARTING NGSPICE

SPICE_PATH default: $SPICE_EXEC_DIR/ngspice
Used in the aspice command (probably obsolete, to be documented)

NGSPICE_MEAS_PRECISION default: 5
Sets the number of digits if output values are printed by the meas(ure) command.

SPICE_NO_DATASEG_CHECK default: undefined
If defined, will suppress memory resource info (probably obsolete, not used on Windows
or where the /proc information system is available.)

NGSPICE_INPUT_DIR default: undefined
If defined, using a valid directory name, will add the given directory to the search path
when looking for input files (*.cir, *.inc, *.lib).

NGSPICE_OSDI_DIR default: undefined
If defined, using a valid directory name, will add the given directory to the search path
when looking for VA-Models shared library files (*.osdi).

SPICE_USERINIT_DIR default: undefined
If defined, using a valid directory name, this is the first place to search for the user-defined
initialization file .spiceinit (or spice.rc). The search sequence then following is: current
directory, HOME directory, USERPROFILE directory

12.7.2 Common environment variables

TERM LINES COLS DISPLAY HOME PATH EDITOR SHELL POSIXLY_CORRECT

12.8 Memory usage

Ngspice started with batch option (-b) and rawfile output (-r rawfile) will store all simulation
data immediately into the rawfile without keeping them in memory. Thus very large circuits
may be simulated, the memory requested upon ngspice start up will depend on the circuit size,
but will not increase during simulation.

If you start ngspice in interactive mode or interactively with control section, all data will be kept
in memory, to be available for later evaluation. A large circuit may outgrow even Gigabytes of
memory. The same may happen after a very long simulation run with many vectors and many
time steps to be stored. Issuing the save <nodes> command will help to reduce memory
requirements by saving only the data defined by the command. You may also choose option
INTERP (11.1.4) to reduce memory usage.

12.9 Simulation time

Simulating large circuits may take an considerable amount of CPU time. If this is of importance,
you should compile ngspice with the flags for optimum speed, set during configuring ngspice

12.10. NGSPICE ON MULTI-CORE PROCESSORS USING OPENMP 365

compilation. Under Linux, MINGW, CYGWIN, and macOS there are bash scripts for compil-
ing in the main directory of the ngspice distribution, see chapter 28. The -O2 optimization flag
for compiling and linking is used.

Under MS Visual Studio, you will have to select the releaseOMP or release versions, which
includes optimization for speed.

Several simulation periods contribute to CPU time usage. There is the setup period, especially
time consuming when externally contributed PDKs have to be resolved, or large circuits are
loaded. Due to its data structure the KLU matrix solver (11.1.1) may be advantageous here.
A lengthy (transient) simulation comprises of two activities: solving the matrix and solving
the non-linear device equations. Again, KLU is often faster than Sparse while solving the
matrix. Device evaluation, especially for MOS transistors, is sped up by parallel processing
with OpenMP (12.10). Finally data evaluation may take some additional time.

XSPICE (see Chapt. 8 and II) is enabled as part of your compilation configuration. Then
the value of trtol (see 11.1.4) is set internally to 1 (instead of default 7) for higher precision if
XSPICE code model ’A’ devices included in the circuit. This may double or even triple the CPU
time needed for any transient simulation, because the amount of time steps and thus iteration
steps is more than doubled.

You may enforce higher speed during XSPICE usage by setting the variable xtrtol in your
.spiceinit initialization file or in the .control section in front of the tran command (via set
xtrtol=2 using the set command 13.5.73) and override the above trtol reduction. Beware
however of precision or convergence issues if you use XSPICE ’A’ devices, especially if xtrtol
is set to values larger than 2.

12.10 Ngspice on multi-core processors using OpenMP

12.10.1 Introduction

Today’s computers typically come with CPUs having more than one core. It will thus be useful
to enhance ngspice to make use of such multi-core processors.

Using circuits containing mostly transistors and e.g. the BSIM3 model, around 2/3 of the CPU
time is spent in evaluating the model equations (e.g. in the BSIM3Load() function). The same
happens with other advanced transistor models. Thus, such functions should be parallelized, if
possible. Solving the matrix takes about 10% to 50% of the CPU time, so parallel processing
in the matrix solver is sometimes of secondary interest only! Furthermore, such paralellization
is difficult to achieve with our Sparse and KLU matrix solvers.

Another alternative is using CUSPICE, that is ngspice (developpment based on ngspice-27)
designed for running massively parallel on NVIDIA GPUs. CUDA enhancements to C code are
applied. For LINUX, please see the user guide. For MS Windows, an executable is available at
the ngspice download pages.

12.10.2 Internals

A publication [1] has described a way to exactly do that using OpenMP, which is available on
many platforms and is easy to use, especially if you want to perform parallel processing of a
for-loop.

https://developer.nvidia.com/cuda-toolkit
http://ngspice.sourceforge.net/cuspice/CUSPICE_User_Guide.pdf
http://ngspice.sourceforge.net/download.html#exp1

366 CHAPTER 12. STARTING NGSPICE

Table 12.1: OpenMP performance
Threads CPU time [s] CPU time [s]

Windows Linux

1 65.4 69.3

2 46.7 47.4

4 37.2 36.9

6 33.6 33.6

8 32.4 32.4

12 35.7 31.7

16 38.2 34.3

To explain the implemented approach BSIM3 version 3.3.0 model was chosen, located in the
BSIM3 directory, as the first example. The BSIM3load() function in b3ld.c contains two nested
for-loops using linked lists (models and instances, e.g. individual transistors). Unfortunately
OpenMP requires a loop with an integer index. So in file B3set.c an array is defined, filled with
pointers to all instances of BSIM3 and stored in model->BSIM3InstanceArray.

BSIM3load() is now a wrapper function, calling the for-loop, which runs through functions
BSIM3LoadOMP(), once per instance. Inside BSIM3LoadOMP() the model equations are cal-
culated.

Typically it is necessary to use synchronization constructs such as mutexes when multiple
threads write to a common memory location. To avoid the performance degradation of such
synchronization, temporary per-thread memory locations are used within the for loop of the
BSIM3LoadOMP() function as defined in bsim3def.h. After all threads complete the for-loop,
the update to the matrix is done in an extra function BSIM3LoadRhsMat() in the main thread.

Then the thread programming needed is only a single line!!

#pragma omp parallel for

introducing the for-loop over the device instances.

This of course is made possible only thanks to the OpenMP guys and the clever trick on no
synchronization introduced by the above cited authors.

The time-measuring function getrusage() used with Linux or Cygwin to determine the CPU
time usage (with the rusage option enabled) counts tics from every core, adds them up, and
thus reports a CPU time value enlarged by a factor of 8 if 8 threads have been chosen. So now
ngspice is forced to use ftime for time measuring if OpenMP is selected.

12.10.3 Some results

Some results on an inverter chain with 627 CMOS inverters, BSIM4.7, 45 nm, running for
200ns, compiled with Visual Studio Community 2019 on Windows 10 (full optimization) or
gcc 7.4, SUSE Linux Leap 15.1, -O2, on a i9 9900K machine with 8 real cores (16 logical
processors using hyperthreading) and 32 GB of memory are shown in table 12.1.

So we see a ngspice speed up of more than a factor of two! Even on an Windows 7 notebook
with a dual core i7 processor, more than 1.5x improvement using two threads was attained. This
is consistent with the fact that roughly half of the CPU time is used for evaluating the device

12.11. SERVER MODE OPTION -S 367

model, half of the time for solving the matrix. Only the device evaluation is parallelized by
OpenMP. The time for doing this becomes negligible with 8 or more threads. Allowing more
than 8 threads (using the 8 physical cores) does not yield much improvement, even leads to a
slight increase of simulation time, because the code is not optimized for hyperthreading.

12.10.4 Usage

To state it clearly: OpenMP is installed inside the model equations of a particular model. It is
available in BSIM3 versions 3.3.0 and 3.2.4, but not in any other BSIM3 model, in BSIM4
versions 4.5, 4.6.5, 4.7 or 4.8, but not in any other BSIM4 model, and in B4SOI, version 4.4,
not in any other SOI model and in models added by the OSDI interface. Older parameter files
of version 4.6.x (x any number up to 5) are accepted, you have to check for compatibility.

OpenMP is enabled as a default during ngspice compilation with gcc on all operating systems.

Under MS Windows with Visual Studio the preprocessor flag USE_OMP, and the /openmp flag
in Visual Studio are enabled when selecting the ReleaseOMP configuration.

The number of threads has to be set manually by placing

set num_threads=4

into spinit or .spiceinit or in the control section of the SPICE input file. If OpenMP is enabled,
but num_threads not set, a default value num_threads=2 is set internally.

If you simulate a circuit, please keep in mind to select BSIM3 (levels 8, 49) version 3.2.4 or
3.3.0 (7.6.3.3), by placing this version number into your parameter files, BSIM4 (levels 14, 54)
version 4.5, 4.6.5, 4.7 or 4.8 (7.6.3.4), or B4SOI (levels 10, 58) version 4.4 (7.6.4). All other
transistor models run as usual (without multithreading support).

If you run ./configure with --disable-openmp (or without USE_OMP preprocessor flag under
MS Windows), you will get only the standard, not paralleled BSIM3 and BSIM4 models, as has
been available from Berkeley. If OpenMP is selected and the number of threads set to 1, there
will be only a very slight CPU time disadvantage (typ. 3%) compared to the old, non OpenMP
build.

12.10.5 Literature

[1] R.K. Perng, T.-H. Weng, and K.-C. Li: "On Performance Enhancement of Circuit Simulation
Using Multithreaded Techniques", IEEE International Conference on Computational Science
and Engineering, 2009, pp. 158-165

12.11 Server mode option -s

A program may write the SPICE input to the console. This output is redirected to ngspice via
‘|’. ngspice called with the -s option writes its output to the console, which again is redirected
to a receiving program by ‘|’. In the following simple example cat reads the input file and
prints it content to the console, which is redirected to ngspice by a first pipe, ngspice transfers
its output (similar to a raw file, see below) to less via another pipe.

368 CHAPTER 12. STARTING NGSPICE

Example command line:

cat input.cir|ngspice -s|less

Under MS Windows you will need to compile ngspice as a console application (see Chapt.
28.2.4) for this server mode usage.

Example input file:

test -s
v1 1 0 1
r1 1 0 2k
.options filetype=ascii
.save i(v1)
.dc v1 -1 1 0.5
.end

If you start ngspice console with

ngspice -s

you may type in the above circuit line by line (not to forget the first line, which is a title and
will be ignored). If you close your input with ctrl Z, and return, you will get the following
output (this is valid for MINGW only) on the console, like a raw file:

Circuit: test -s

Doing analysis at TEMP = 27.000000 and TNOM = 27.000000

Title: test -s
Date: Sun Jan 15 18:57:13 2012
Plotname: DC transfer characteristic
Flags: real
No. Variables: 2
No. Points: 0
Variables:
No. of Data Columns : 2
0 v(v-sweep) voltage
1 i(v1) current
Values:
0 -1.000000000000000e+000

5.000000000000000e-004
1 -5.000000000000000e-001

2.500000000000000e-004
2 0.000000000000000e+000

0.000000000000000e+000
3 5.000000000000000e-001

-2.500000000000000e-004

12.12. PIPE MODE OPTION -P 369

4 1.000000000000000e+000
-5.000000000000000e-004

@@@ 122 5

The number 5 of the last line @@@ 122 5 shows the number of data points, which is missing in
the above line No. Points: 0 because at the time of writing to the console it has not yet
been available.

ctrl Z is not usable here in Linux, a patch to install ctrl D instead is being evaluated.

12.12 Pipe mode option -p

A program may write a set of ngspice commands (see 13.5) to the console. This output is redi-
rected to ngspice via ‘|’. ngspice called with the -p option immediately executes the commands
and then exits. In the following simple example cat reads the input file and prints it content to
the console, which is redirected to ngspice by a pipe, ngspice executes the commands.

Example command line:

cat pipe-circuit.cir | ngspice -p

Under MS Windows you will need to compile ngspice as a console application (see Chapt.
28.2.4) for this pipe mode usage.

Example input file:

*pipe-circuit.cir
source circuit.cir
tran 10u 2m
write pcir.raw all

Example circuit file:

* Circuit.cir
V1 n0 0 SIN(0 10 1kHz)
C1 n1 n0 3.3nF
R1 0 n1 1k
.end

The raw file pcir.raw will contain the final simulation results.

370 CHAPTER 12. STARTING NGSPICE

12.13 Ngspice control via input, output fifos

Example bash script:

#!/usr/bin/env bash

NGSPICE_COMMAND="ngspice"

rm input.fifo
rm output.fifo

mkfifo input.fifo
mkfifo output.fifo

$NGSPICE_COMMAND -p -i <input.fifo >output.fifo &

exec 3>input.fifo
echo "I can write to input.fifo"

echo "Start processing..."
echo ""

echo "source circuit.cir" >&3
echo "unset askquit" >&3
echo "set nobreak" >&3
echo "tran 0.01ms 0.1ms">&3
echo "print n0" >&3
echo "quit" >&3

echo "Try to open output.fifo ..."
exec 4<output.fifo
echo "I can read from output.fifo"

echo "Ready to read..."
while read output
do

echo $output
done <&4

exec 3>&-
exec 4>&-

echo "End processing"

The bash script listed above (tested under Linux and Cygwin)

- launches ngspice in pipe mode (-p) in another thread.

- writes some commands to the ngspice input

12.14. COMPATIBILITY 371

- runs ngspice with the tran command

- reads the output and prints it onto the console.

The input file with a small circuit is:

Circuit.cir :

* Circuit.cir
V1 n0 0 SIN(0 10 1kHz)
C1 n1 n0 3.3nF
R1 0 n1 1k
.end

12.14 Compatibility

ngspice is a direct derivative of spice3f5 from UC Berkeley and thus inherits all of the com-
mands available in its predecessor. Thanks to the open source policy of UCB (original spice3
from 1994 is still available here), several commercial variants have sprung off, either being more
dedicated to IC design or more concentrating on simulating discrete and board level electronics.
None of the commercial and almost none of the freely downloadable SPICE providers publishes
the source code. All of them have proceeded with the development, by adding functionality, or
by adding a more dedicated user interface. Some have kept the original SPICE syntax for their
netlist description, others have quickly changed some if not many of the commands, functions
and procedures. Thus it is difficult, if not impossible, to offer a simulator that acknowledges
all of these netlist dialects. ngspice includes some features that enhance compatibility that are
included automatically. This selection may be controlled to some extend by setting the com-
patibility mode. Others may be invoked by the user by small additions to the netlist input file.
Some of them are listed in this chapter, some will be integrated into ngspice at a later stage,
others will be added if they are reported by users.

12.14.1 Compatibility mode

The variable (13.7) ngbehavior sets the compatibility mode. Per default no compatibility mode
is selected. The compatibility status will be displayed in the output window.

set ngbehavior=ltpsa

in spinit or .spiceinit is a typical command, setting PSPICE and LTSPICE compatibility for the
whole netlist. Flag ’a’ may be combined with any of the flags listed below. By contrast

set ngbehavior=ps

(without ’a’) will set PSPICE compatibility only for libraries which are added by a .include
command. So you may keep your Spice3 compatible netlist, but including PSPICE device
models. The available compatibility flags are:

http://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm

372 CHAPTER 12. STARTING NGSPICE

Flag Ref. Short description
a complete netlist transformed
ps 12.14.5 PSPICE compatibility
hs 12.14.10 HSPICE compatibility
spe 12.14.9 Spectre compatibility
lt 12.14.6 LTSPICE compatibility
s3 Spice3 compatibility
ll all (currently not used)
ki 12.14.8 KiCad compatibility
eg EAGLE compatibility
mc for ’make check’

Table 12.2: Compatibility flags

’s3’ will disable some of the advanced ngspice features. ’eg’ will enable EAGLE compatible
voltage vector output.’mc’ is required when the command ’make check’ is to be executed.
Then all flags are reset, in addition the compatibility status output is suppressed. Flags ’ps’
and ’hs’ are mutually exclusive.

The command ’unset ngbehavior’ will remove the variable ngbehavior, thus resetting the
compatibility mode to the default (no compat mode is set).

12.14.2 Missing functions

You may add one or more function definitions to your input file, as listed below.

.func LIMIT(x,a,b) {min(max(x, a), b)}

.func PWR(x,a) {abs(x) ** a}

.func PWRS(x,a) {sgn(x) * PWR(x,a)}

.func stp(x) {u(x)}

12.14.3 Devices

12.14.3.1 E Source with LAPLACE

see 5.2.5.

12.14.3.2 VSwitch

The VSwitch

S1 2 3 11 0 SW
.MODEL SW VSWITCH(VON=5V VOFF=0V RON=0.1 ROFF=100K)

may become

12.14. COMPATIBILITY 373

a1 %v(11) %gd(2 3) sw
.MODEL SW aswitch(cntl_off=0.0 cntl_on=5.0 r_off=1e5
+ r_on=0.1 log=TRUE)

The XSPICE option has to be enabled.

12.14.4 Controls and commands

12.14.4.1 .lib

The ngspice .lib command (see 2.10) requires two parameters, a file name followed by a library
name. If no library name is given, the line

.lib filename

should be replaced by

.inc filename

Alternatively, the compatibility mode (12.14.1) may be set to ’ps’.

12.14.4.2 .incpslt

A special command to include model files is needed if the compatibility mode is set to ’hs’,
for reading data from a PDK (12.14.10), but you want to co-simulate this (integrated) circuit
together with for example a power device which has a model that requires the compatibility
mode ’pslt’. The command

.incpslt filename

treats the included netlist from file filename, e.g. a subcircuit device model, as if its com-
patibility mode had been set to ’pslt’ (12.14.7), but otherwise the netlist (including library
handling) is treated according to compatibility mode given at top level, typically ’hs’ or none.

12.14.4.3 .step

Repeated analysis in ngspice is offered by a short script inside of a .control section (see Chapt.
13.8.8) added to the input file. A simple application (multiple dc sweeps) is shown below.

374 CHAPTER 12. STARTING NGSPICE

Input file with parameter sweep

parameter sweep

* resistive divider, R1 swept from start_r to stop_r

* replaces .STEP R1 1k 10k 1k

R1 1 2 1k
R2 2 0 1k

VDD 1 0 DC 1
.dc VDD 0 1 .1

.control
let start_r = 1k
let stop_r = 10k
let delta_r = 1k
let r_act = start_r

* loop
while r_act le stop_r
alter r1 r_act
run
write dc-sweep.out v(2)
set appendwrite
let r_act = r_act + delta_r

end
plot dc1.v(2) dc2.v(2) dc3.v(2) dc4.v(2) dc5.v(2)
+ dc6.v(2) dc7.v(2) dc8.v(2) dc9.v(2) dc10.v(2)
.endc

.end

12.14.5 PSPICE Compatibility mode

If the variable (13.7) ngbehavior is set to ’ps’ or ’psa’ with the commands

set ngbehavior=ps

or

set ngbehavior=psa

in spinit or .spiceinit, ngspice will translate all files that have been read into ngspice netlist
by the .include command (ps) or the complete netlist (psa) from PSPICE syntax to ngspice.
This feature allows reading of PSPICE (or TINA) compatible device libraries (ps) that are
often supplied by the semiconductor device manufacturers. Or you may choose to use complete
PSPICE simulation decks (psa). Some ngspice input files may fail, however. For example

12.14. COMPATIBILITY 375

ngspice\examples\memristor\memristor.sp will not do, because it uses the parameter vt,
and vt is a reserved word in PSPICE.

PSPICE to ngspice translation details:

• .model replacement in ako (a kind of) model descriptions

• replace the E source TABLE function by a B source pwl

• add predefined params TEMP, VT, GMIN to beginning of deck

• add predefined params TEMP, VT to beginning of each .subckt call

• add .functions limit, pwr, pwrs, stp, if, int

• replace
S1 D S DG GND SWN
.MODEL SWN VSWITCH(VON=0.55 VOFF=0.49
+ RON={1/(2*M*(W/LE)*(KPN/2)*10)} ROFF=1G)
by
as1 %vd(DG GND) % gd(D S) aswn
.model aswn aswitch(cntl_off=0.49 cntl_on=0.55
+ r_off=1G r_on={1/(2*M*(W/LE)*(KPN/2)*10)} log=TRUE)

• replace & by &&

• replace | by ||

• replace T_ABS by temp and T_REL_GLOBAL by dtemp

• get the area factor for diodes and bipolar devices
d1 n1 n2 dmod 7 –> d1 n1 n2 dmod area=7
q2 n1 n2 n3 [n4] bjtmod 1.35 –> q2 n1 n2 n3 n4 bjtmod area=1.35
q3 1 2 3 4 bjtmod 1.45 –> q2 1 2 3 4 bjtmod area=1.45

• Check for double ’{{ }}’, replace the inner ’{’, ’}’ by ’(’, ’)’

• Limit for exp function (linear growth when exponent is larger than 14).

In ps or psa mode, ngspice will treat all .lib entries like .include. There is no hierarchically
library handling. So for reading HSPICE compatible libraries, you definitely have to unset the
ps mode, e.g. by not adding set ngbehavior=ps or disabling it by

unset ngbehavior=ps

12.14.6 LTSPICE Compatibility mode

If the variable (13.7) ngbehavior is set to ’lt’ or ’lta’ with the commands

set ngbehavior=lt

376 CHAPTER 12. STARTING NGSPICE

or

set ngbehavior=lta

in spinit or .spiceinit, ngspice will translate all files that have been read into ngspice netlist by
the .include command (lt) or the complete netlist (lta) from LTSPICE syntax to ngspice. This
feature allows reading of LTSPICE compatible device libraries or complete netlists.

Currently we offer only a subset of the documented or undocumented functions (uplim, dnlim,
uplim_tanh, dnlim_tanh). More user input is definitely required here!

This compatibility mode also adds a simple diode using the sidiode code model (8.2.32). The
diode model

d1 a k ds1
.model ds1 d(Roff=1000 Ron=0.7 Rrev=0.2 Vfwd=1
+ Vrev=10 Revepsilon=0.2 Epsilon=0.2 Ilimit=7 Revilimit=15)

is translated automatically to the equivalent code model diode

ad1 a k ads1
.model ads1 sidiode(Roff=1000 Ron=0.7 Rrev=0.2 Vfwd=1
+ Vrev=10 Revepsilon=0.2 Epsilon=0.2 Ilimit=7 Revilimit=15)

RKM code compatibility:

• In LT compatibility mode ngspice will follow the RKM code notation. In addition to the
standard notation, resistor (R) and capacitor (C) values may also be entered according to
the following listings (the internally translated value is given after the ;):

RKM code for resistors

R1 1 0 4K7 ; 4.7k
R2 1 0 4R7 ; 4.7
R3 1 0 R47 ; 0.47
R4 1 0 470R ; 470
R5 1 0 47K ; 47k
R6 1 0 47K3 ; 47.3k
R7 1 0 470K ; 470k
R8 1 0 4Meg7 tc1=1e-6 tc2=1e-9 dtemp=6

* ; 4.7Meg <-- Not defined in the RKM notation
R9 1 0 4L7 ; 4.7m
R10 1 0 470L ; 470m
R11 1 0 4M7 ; 4.7m <-- This deviates fom the RKM notation

https://en.wikipedia.org/wiki/RKM_code

12.14. COMPATIBILITY 377

RKM code for capacitors

C1 1 0 4p7 ; 4.7p
C2 1 0 4n7 ; 4.7n
C3 1 0 4u7 ; 4.7u
C4 1 0 4m7 ; 4.7m
C5 1 0 4F7 ; 4.7f <-- This deviates fom the RKM notation
C6 1 0 47p3 ; 4.73p
C7 1 0 470p ; 470p
C8 1 0 4u76 tc1=1e-6 tc2=1e-9 dtemp=6

* ; 4.76u
C9 1 0 4m7 ; 4.7m
C10 1 0 470nF ; 470n
C11 1 0 47fF ; 47f <-- This deviates fom the RKM notation

There are some exceptions to the RKM code notation:

• all letters may be entered upper or lower case, and will internally be transformed to lower
case.

• m, M always denote milli (1e-3).

• f, F denote femto (1e-15), fF will be again femto

• meg, Meg denotes mega (1e6)

12.14.7 LTSPICE/PSPICE Compatibility mode

If the variable (13.7) ngbehavior is set to ’ltps’ or ’ltpsa’ with the commands

set ngbehavior=ltps

or

set ngbehavior=ltpsa

in spinit or .spiceinit, ngspice will translate all files that have been read into ngspice netlist by
the .include command (ltps) or the complete netlist (ltpsa) 12.14.6, 12.14.5 from LTSPICE and
PSPICE syntax to ngspice. This feature allows reading of LTSPICE and PSPICE compatible
device libraries or complete netlists.

12.14.8 KiCad Compatibility mode

KiCad will generate vector names containing ’/’. If the variable (13.7) ngbehavior is set to ki
with the command

set ngbehavior=ki

is set in .spiceinit (or plot line flag kicad is given 13.5.56), ngspice will place " around this
vector name. The mathematical operation ’division’ in the plot command will then work only
if spaces are placed around the division operator /.

378 CHAPTER 12. STARTING NGSPICE

12.14.9 Spectre Compatibility mode

If the variable (13.7) ngbehavior is set to spe with the command

set ngbehavior=spe

is set in .spiceinit Spectre compatibility mode is enabled. True compatibility today is still
far away. The only action available for now is the use of the MOS device instance parameter
nf. If nf is given and larger than 1 and Spectre (or HSPICE) compatibility is enabled, nf is
used as a divisor to the transistor width W given on the instance line. The resulting W/nf is now
used to select the suitable device model in the binning process. This procedure is of interest for
a multi-gate transistor, which has a total width of W, but each finger is model according to the
model given for W/nf.

12.14.10 HSPICE Compatibility mode

If the variable (13.7) ngbehavior is set to hs with the command

set ngbehavior=hs

is set in .spiceinit HSPICE compatibility mode is enabled. This mode allows to read libraries
with the .lib command in a recursive fashion, as is required by HSPICE compatible process
development kits (PDKs) In addition the nf flag is enabled, as described in 12.14.9 .

12.15 Tests

The ngspice distribution is accompanied by a suite of test input and output files, located in the
directory ngspice/tests. Originally this suite was meant to see if ngspice with all models was
made and installed properly. It is started by

$ make check

from within your compilation and development shell. A sequence of simulations is thus started,
its outputs compared to given output files by comparisons string by string. This feature is mo-
mentarily used to check for some basic procedures and the XSPICE extension (8) as a regres-
sion test. Several other input files located in directory ngspice/tests may serve as light-weight
examples for invoking devices and simple circuits.

Today’s very complex device models (BSIM3 (7.6.3.3), BSIM4 (see 7.6.3.4), HiSIM (see 7.6.6)
and others) require a different strategy for verification. Under development for ngspice is the
CMC Regression test by Colin McAndrew, which accompanies every new model. These tests
cover a large range of different DC, AC and noise simulations with different geometry ranges
and operating conditions and are more meaningful the transient simulations with their step size
dependencies. A major advantage is the scalability of the diff comparisons, which check for
equality within a given tolerance. A set of Perl modules cares for input, output and comparisons
of the models. Currently BSIM3, BSIM4, BSIMSOI4, HICUM2, HiSIM, and HiSIM_HV
models implement the QA test. You may invoke it by running the command given above or by

12.16. TOOLS FOR DEBUGGING A CIRCUIT NETLIST 379

$ make -i check 2>&1 | tee results

-i will cause make to ignore any errors, and tee will provide console output as well as printing
to file ’results’. Be aware that under MS Windows you will need the console binary (see 28.2.4)
to run the CMC tests, and you have to have Perl installed!

As these tests may consume a considerable amount of CPU time, there is a configure option
--enable-shortcheck 28.1.8.1 available, providing a strongly reduced runtime, because be-
sides some regression tests only BSIM3 and BSM4 devices are checked.

Other tests have been developed, there are also some benchmark circuit compilations available.
Please have a look at our Tests and Quality Assurance web page.

12.16 Tools for debugging a circuit netlist

This a chapter only in its initial state. Not all circuits will simulate immediately and easily. The
netlist may contain a bug. The netlist may be o.k., but then ngspice may not find an operating
point. If the operating point has been found, the transient simulation will just yield the famous
error message ’transient time step too small’. Unfortumately there are many reasons for failure,
on the other hand there is a lot of literature available to traet non-convergence.

So for now there will be listed here only a few ’tools’ offered by ngspice to aid debugging.

12.16.1 options and initial conditions

If ngspice has trouble finding the operating point, setting some initial conditions by adding
.nodeset (11.2.1) or .ic (11.2.2) for critical nodes may help. The variation of some op option
parameters may help as well (see 11.1.2). If there are nodes without dc connection to ground
(e.g. two capacitors in series connection), finding the operating point will fail. Here the option
RSHUNT may be of help by adding are (typically large) resistor from each node to ground.
Convergence may be improved by the RSERIES option that add a (typically small) resistor in
series to each inductor.

Transient simulations are governed by another set of options (see 11.1.4). Careful variation of
the parameters, as described in the literature, may enable convergence in incritical situations
(not guaranteed, however).

12.16.2 set debug

If set in .spiceinit (or spice.rc), the command set debug will yield an analysis of each com-
mand which is run from .spiceinit and .control.

12.16.3 set ngdebug

The command set ngdebug, if set in .spiceinit (spice.rc) provides some additional warning
messages. If ngspice has write access to the current directory, 3 or 4 files are saved to that
directory, showing the netlist at specific stages during parsing. Each file contain two parts,

http://ngspice.sourceforge.net/applic.html#test

380 CHAPTER 12. STARTING NGSPICE

the netlist without comment lines, followed by the same netlist including all comment lines.
debug-out.txt is available after pre-processing the netlist. debug-out2.txt shows the netlist
after parameter and subcircuit expansion. debug-out3.txt lists the final netlist. debug-out-
mc.txt is issued, when the netlist is reloaded after a reset or mc_source command.

During a transient simulation a vector ’speedcheck’ is generated in the current tran plot. The
independent variable is the scale vector ’time’, the dependent variable is the wall clock time
with a resolution of about 100 ms. So you may monitor the simulation progress of a (lengthy)
transient simulation and detect critical (simulated) times where the simulation may be slowed
down.

When ngspice is used as a shared library (15), the complete netlist sent to ngspice by the calling
process is returned to the caller by the callback function printfcn. Also return each command
received by the caller.

12.16.4 miscellaneous

Debugging the equations of a B source are described in chapt. 5.4.

Compiling ngspice with the ./configure flag --enable-ftedebug or (for MS Visual Studio:
adding a preprocessor flag FTEDEBUG) will enable some additional warning messages.

Compiling ngspice with the ./configure flag --enable-stepdebug or (for MS Visual Studio:
adding a preprocessor flag STEPDEBUG) yields a very powerful tool for analysing the steps of
a transient simulation. The amount of messages printed however is overwhelming and may be
interpreted by an insider only.

12.17 Reporting bugs and errors

Ngspice is a complex piece of software. The source code contains over 1500 files. Various
models and simulation procedures are provided, some of them not used and tested intensively.
Therefore errors may be found, some still evolving from the original spice3f5 code, others
introduced during the ongoing code enhancements.

If you happen to experience an error during the usage of ngspice, please send a report to the
development team. Ngspice is hosted on SourceForge, the preferred place to post a bug report
is the ngspice bug tracker. We would prefer to have your bug tested against the actual source
code available at Git, but of course a report using the most recent ngspice release is welcome!
Please provide the following information with your report:

Ngspice version

Operating system

Small input file to reproduce the bug

Actual output versus the expected output

http://sourceforge.net/tracker/?group_id=38962&atid=423915

Chapter 13

Interactive Interpreter

13.1 Introduction

The simulation flow in ngspice (input, simulation, output) may be controlled by dot commands
(see Chapt. 11 and 12.4.1) in batch mode. There is, however, a much more powerful control
scheme available in ngspice, traditionally coined ‘Interactive Interpreter’, but being much more
than just that. In fact there are several ways to use this feature, truly interactively by typing
commands to the input, but also running command sequences as scripts or as part of your input
deck in a quasi batch mode.

You may type in expressions, functions (13.2) or commands (13.5) into the input console to
elaborate on data already achieved from the interactive simulation session.

Sequences of commands, functions and control structures (13.6) may be assembled as a script
(13.8) into a file, and then activated by just typing the file name into the console input of an
interactive ngspice session.

Finally, and most useful, is to add a script to the input file, in addition the the netlist and dot
commands. This is achieved by enclosing the script into .controlendc (see 12.4.3,
and 13.8.8 for an example). This feature enables a wealth of control options. You may set
internal (13.7) and other variables, start a simulation, evaluate the simulation output, start a new
simulation based on these data, and finally make use of many options for outputting the data
(graphically or into output files).

Historical note: The final releases of Berkeley Spice introduced a command shell and scripting
possibilities. The former releases were not interactive. The choice for the scripting language
was an early version of ‘csh’, the C-shell, which was en vogue back then as an improvement
over the ubiquitous Bourne Shell. Berkeley Spice incorporated a modified csh source code that,
instead of invoking the unix ‘exec’ system call, executed internal SPICE C subroutines. Apart
from bug fixes, this is still how ngspice works.

One important difference from C-shell is that ngspice does not support multiple commands on
one line, separated by ’;’. In ngspice, semi-colons introduce a comment.

The csh-like scripting language is active in .control sections. It works on ‘strings’, and does
string substitution of ‘environment’ variables. You see the csh at work in ngspice with set foo
= "bar"; set baz = "bar$foo", and in if, repeat, for, ... constructs. However, ngspice
processes mainly numerical data, and support for this was not available in the c-sh implementa-
tion. Therefore, Berkeley implemented an additional type of variables, with different syntax, to

381

382 CHAPTER 13. INTERACTIVE INTERPRETER

access double and complex double vectors (possibly of length 1). This new variable type is mod-
ified with let, and can be used without special syntax in places where a numerical expression is
expected: let bar = 4 * 5; let zoo = bar * 4 works. Unfortunately, occasionally one
has to cross the boundary between the numeric and the string domain. For this purpose the $&
construct is available – it queries a variable in the numerical let domain, and expands it to a
c-sh string denoting the value. This lets you do do something like set another = "this is
$&bar". It is important to remember that set can only operate on (c-sh) strings, and that let
operates only on numeric data contained in vectors. Convert from numeric to string with $&,
and from string to numeric with $.

13.2 Expressions, Functions, and Constants

Ngspice stores data in the form of vectors: time, voltage, etc. Each vector has a type, and
vectors can be operated on and combined algebraically in ways consistent with their types.
Vectors are normally created as the output of a simulation, or when a data file (output raw file)
is read in again (ngspice using the the load command 13.5.48), or when the initial data-file is
loaded directly into ngnutmeg. They can also be created with the let command (13.5.45).

An expression is an algebraic formula involving vectors and scalars (a scalar is a vector of
length 1) and the following operations:

+ - * / ^ % ,

% is the modulo operator, and the comma operator has two meanings: if it is present in the
argument list of a user definable function, it serves to separate the arguments. Otherwise, the
term x , y is synonymous with x + j(y). Also available are the logical operations & (and),
| (or), ! (not), and the relational operations <, >, >=, <=, =, and <> (not equal). If used in an
algebraic expression they work like they would in C, producing values of 0 or 1. The relational
operators have the following synonyms:

Operator Synonym
gt >
lt <
ge >=
le <=
ne <>

and &
or |
not !
eq =

The operators are useful when < and > might be confused with the internal IO redirection (see
13.4, which is almost always happening). It is however safe to use < and > with the define
command (13.5.19).

The following functions are available:

13.2. EXPRESSIONS, FUNCTIONS, AND CONSTANTS 383

Name Function
mag(vector) Magnitude of vector (same as abs(vector)).
ph(vector) Phase of complex vector, in radians.
cph(vector) Phase of complex vector, in radians. Continuous values, no

discontinuity at ±π .
unwrap(vector) Phase of vector with real phase vector in degrees as input

and output. Continuous values, no discontinuity at ±180.
j(vector) i (sqrt(-1)) times vector.

real(vector) The real component of vector.
imag(vector) The imaginary part of vector.
conj(vector) The complex conjugate of a vector
db(vector) 20 log10(mag(vector)).

log10(vector) The logarithm (base 10) of vector.
log(vector) The natural logarithm (base e) of vector.
ln(vector) The natural logarithm (base e) of vector.

exp(vector) e to the vector power.
abs(vector) The absolute value of vector (same as mag).
sqrt(vector) The square root of vector.
sin(vector) The sine of vector.
cos(vector) The cosine of vector.
tan(vector) The tangent of vector.
atan(vector) The inverse tangent of vector.
sinh(vector) The hyperbolic sine of vector.
cosh(vector) The hyperbolic cosine of vector.
tanh(vector) The hyperbolic tangent of vector.
atanh(vector) The inverse hyperbolic tangent of vector.
floor(vector) Largest integer that is less than or equal to vector.
ceil(vector) Smallest integer that is greater than or equal to vector.

norm(vector) The vector normalized to 1 (i.e, the largest magnitude of
any component is 1).

mean(vector) The result is a scalar (a length 1 vector) that is the mean of
the elements of vector (elements values added, divided by
number of elements).

avg(vector) The average of a vector.
Returns a vector where each element is the mean of the
preceding elements of the input vector (including the
actual element).

stddev(vector) The result is a scalar (a length 1 vector) that is the standard
deviation of the elements of vector .

group_delay(vector) Calculates the group delay −d phase[rad]/dω[rad/s].
Input is the complex vector of a system transfer function
versus frequency, resembling damping and phase per
frequency value. Output is a vector of group delay values
(real values of delay times) versus frequency.

vector(number) The result is a vector of length number, with elements 0, 1,
... number - 1. If number is a vector then just the first
element is taken, and if it isn’t an integer then the floor of
the magnitude is used.

384 CHAPTER 13. INTERACTIVE INTERPRETER

Name Function
cvector(number) Return a vector of length number, containing complex

elements, with the real part values increasing from 0 to
number-1, the imaginary values are set to 0.

unitvec(number) The result is a vector of length number, all elements having
a value 1.

integ(vector) Integrates over the given vector (versus the real component
of the scale vector), using the trapeziodal method. The
result is another vector, showing the integral up to the
current scale value. See also 11.4.8 for measuring the
integral sum for a section of a vector, and 8.2.17 for
integration on the fly during a transient simulation.

deriv(vector) Calculates the derivative of the given vector. This uses
numeric differentiation by interpolating a polynomial. The
degree of the polynomal may be set by the variable
dpolydegree (default is 2). The procedure may not
produce satisfactory results (particularly with iterated
differentiation). The implementation only calculates the
derivative with respect to the real component of that
vector’s scale.

vecd(vector) Compute the differential of a vector.
vecmin(vector) Returns the value of the vector element with minimum

value. Same as minimum.
minimum(vector) Returns the value of the vector element with minimum

value. Same as vecmin.
vecmax(vector) Returns the value of the vector element with maximum

value. Same as maximum.
maximum(vector) Returns the value of the vector element with maximum

value. Same as vecmax.
fft(vector) fast fourier transform (13.5.33)
ifft(vector) inverse fast fourier transform (13.5.33)

sortorder(vector) Returns a vector with the positions of the elements in a real
vector after they have been sorted into increasing order
using a stable method (qsort).

timer(vector) Returns CPU-time minus the value of the first vector
element.

clock(vector) Returns wall-time minus the value of the first vector
element.

Several functions offering statistical procedures are listed in the following table:

13.2. EXPRESSIONS, FUNCTIONS, AND CONSTANTS 385

Name Function
rnd(vector) A vector with each component a random integer between 0

and the absolute value of the input vector’s corresponding
integer element value.

sgauss(vector) Returns a vector of random numbers drawn from a
Gaussian distribution (real value, mean = 0 , standard
deviation = 1). The length of the vector returned is
determined by the input vector. The contents of the input
vector will not be used. A call to sgauss(0) will return a
single value of a random number as a vector of length 1.

sunif(vector) Returns a vector of random real numbers uniformly
distributed in the interval [-1 .. 1[. The length of the vector
returned is determined by the input vector. The contents of
the input vector will not be used. A call to sunif(0) will
return a single value of a random number as a vector of
length 1.

poisson(vector) Returns a vector with its elements being integers drawn
from a Poisson distribution. The elements of the input
vector (real numbers) are the expected numbers λ .
Complex vectors are allowed, real and imaginary values
are treated separately.

exponential(vector) Returns a vector with its elements (real numbers) drawn
from an exponential distribution. The elements of the input
vector are the respective mean values (real numbers).
Complex vectors are allowed, real and imaginary values
are treated separately.

An input vector may be either the name of a vector already defined or a floating-point number
(a scalar). A scalar will result in an output vector of length 1. A number may be written in
any format acceptable to ngspice, such as 14.6Meg or -1.231e-4. Note that you can either use
scientific notation or one of the abbreviations like MEG or G, but not both. As with ngspice, a
number may have trailing alphabetic characters.

The notation expr [num] denotes the num’th element of expr. For multi-dimensional vectors,
a vector of one less dimension is returned. Also for multi-dimensional vectors, the notation
expr[m][n] will return the nth element of the mth subvector. To get a subrange of a vector, use
the form expr[lower, upper]. To reference vectors in a plot that is not the current plot (see the
setplot command, below), the notation plotname.vecname can be used. Either a plotname or
a vector name may be the wildcard all. If the plotname is all, matching vectors from all plots
are specified, and if the vector name is all, all vectors in the specified plots are referenced. Note
that you may not use binary operations on expressions involving wildcards - it is not obvious
what all + all should denote, for instance. Some (contrived) examples of expressions are shown
below.

386 CHAPTER 13. INTERACTIVE INTERPRETER

Expressions examples:

cos(TIME) + db(v(3))
sin(cos(log([1 2 3 4 5 6 7 8 9 10])))
TIME * rnd(v(9)) - 15 * cos(vin#branch) ^ [7.9e5 8]
not ((ac3.FREQ[32] & tran1.TIME[10]) gt 3)
(sunif(0) ge 0) ? 1.0 : 2.0
mag(fft(v(18)))

Vector names in ngspice may look like @dname[param], where dname is either the name of
a device instance or of a device model. The vector contains the value of the parameter of the
device or model. See Appendix, Chapt. 27 for details of which parameters are available. The
returned value is a vector of length 1. Please note that finding the value of device and device
model parameters can also be done with the show command (e.g. show v1 : dc).

There are a number of pre-defined constants in ngspice, which you may use by their name. They
are stored in plot (13.3) const and are listed in the table below:

Name Description Value
pi π 3.14159...
e e (the base of natural logarithms) 2.71828...
c c (the speed of light) 299,792,458 m/sec

i i (the square root of -1)
√
−1

kelvin (absolute zero in centigrade) -273.15◦C
echarge q (the charge of an electron) 1.60219e-19 C

boltz k (Boltzmann’s constant) 1.38062e-23J/K

planck h (Planck’s constant) 6.62607e-34 J s
yes boolean 1
no boolean 0

TRUE boolean 1
FALSE boolean 0

These constants are all given in MKS units. If you define another variable with a name that
conflicts with one of these then it takes precedence.

Additional constants may be generated during circuit setup (see .csparam, 2.13).

13.3 Plots

The output vectors of any analysis are stored in plots, a traditional SPICE notion. A plot is a
group of vectors. A first tran command will generate several vectors within a plot tran1. A
subsequent tran command will store their vectors in tran2. Then a linearize command will
linearize all vectors from tran2 and store them in tran3, which then becomes the current plot. A
fft will generate a plot spec1, again now the current plot. The display command always will
show all vectors in the current plot. Echo $plots followed by Return lists all plots generated
so far. Setplot followed by Return will show all plots and ask for a (new) plot to become
current. A simple Return will end the command. Setplot name will change the current plot to
’name’ (e.g. setplot tran2 will make tran2 the current plot). A sequence name.vector may
be used to access the vector from a foreign plot.

13.4. COMMAND INTERPRETATION 387

You may generate plots by yourself: setplot new will generate a new plot named unknown1,
set curplottitle=”a new plot” will set a title, set curplotname=myplot will set its name
as a short description, set curplotdate=”Sat Aug 28 10:49:42 2010” will set its date.
Note that strings with spaces have to be given with double quotes.

Of course the notion ’plot’ will be used by this manual also in its more common meaning,
denoting a graphics plot or being a plot command. Be careful to get the correct meaning.

13.4 Command Interpretation

13.4.1 On the console

On the ngspice console window (or into the Windows GUI) you may directly type in any com-
mand from 13.5. Within a command sequence, Input/output redirection is available (see Chapt.
13.8.9 for an example) - the symbols >, >>, >&, >>&, and < have the same effects as in the
C-shell. This I/O-redirection is internal to ngspice commands, and should not be mixed up with
the ‘external’ I/O-redirection offered by the usual shells (Linux, MSYS etc.), see 13.5.80.

13.4.2 Scripts

If a word is typed as a command, and there is no built-in command with that name, the direc-
tories in the sourcepath list are searched in order for a file with the name given by the word.
If it is found, it is read in as a input file (as if it were sourced). Such a file will often be a pure
script containing only interpreter commands. Such files can be written to externd the command
set. Full details of scripting are in (13.8).

There are various command scripts installed in /usr/local/lib/spice/scripts (or what-
ever the path is on your machine), and the default sourcepath (13.7) includes this directory,
so you can use these command files (almost) like built-in commands.

13.4.3 Add-on to circuit file

Probably the most common way to invoke the commands described in the following Chapt.
13.5 is to add a .controlendc section to the circuit input file (see 12.4.3).

388 CHAPTER 13. INTERACTIVE INTERPRETER

Example:

.control
pre_set strict_errorhandling
unset ngdebug

*save outputs and specials
save x1.x1.x1.7 V(9) V(10) V(11) V(12) V(13)
run
display

* plot the inputs, use offset to plot on top of each other
plot v(1) v(2)+4 v(3)+8 v(4)+12 v(5)+16 v(6)+20 v(7)+24 v(8)+28

* plot the outputs, use offset to plot on top of each other
plot v(9) v(10)+4 v(11)+8 v(12)+12 v(13)+16
.endc

13.5 Commands

Commands marked with a * are only available in standard ngspice, not in shared ngspice. Those
marked with ** are available in shared ngspice only.

13.5.1 Ac: Perform an AC, small-signal frequency response analysis

General Form:

ac (DEC | OCT | LIN) N Fstart Fstop

Do an small signal ac analysis (see also Chapt. 11.3.1) over the specified frequency range.

DEC decade variation, and N is the number of points per decade.

OCT stands for octave variation, and N is the number of points per octave.

LIN stands for linear variation, and N is the number of points.

fstart is the starting frequency, and fstop is the final frequency.

Note that in order for this analysis to be meaningful, at least one independent source must have
been specified with an ac value.

In this ac analysis all non-linear devices are linearized around their actual dc operating point.
Each Ls and Cs gets its imaginary value based on the actual frequency step. Each output vector
will be calculated relative to the input voltage (current) given by the ac value (Iin equals to 1
in the example below). The resulting node voltages (and branch currents) are complex vectors.
Therefore you have to be careful using the plot command.

13.5. COMMANDS 389

Example:

* AC test
Iin 1 0 AC 1
R1 1 2 100
L1 2 0 1

.control
AC LIN 101 10 10K
plot v(2) $ real part !
plot mag(v(2)) $ magnitude
plot db(v(2)) $ same as vdb(2)
plot imag(v(2)) $ imaginary part of v(2)
plot real(v(2)) $ same as plot v(2)
plot phase(v(2)) $ phase in rad
plot cph(v(2)) $ phase in rad, continuous beyond pi
plot 180/PI*phase(v(2)) $ phase in degrees
set units = degrees
plot phase(v(2)) $ phase in degrees
.endc
.end

In addition to the plot examples given above you may use the variants of vxx(node) described in
Chapt. 11.6.2 like vdb(2). If you apply this notion to another plot ac3, the term vdb(ac3.2)
is o.k., however ac3.vdb(2) is not.

An option to suppress OP analysis before AC may be set for linear circuits (11.1.3).

Output parameters like @m1[cgs] or @r1[i] (see 27) are not supported during AC simulation.

13.5.2 Alias: Create an alias for a command

General Form:

alias [word] [text ...]

Causes word to be aliased to text. History substitutions may be used, as in C-shell aliases.

13.5.3 Alter: Change a device or model parameter

Alter changes the value for a device or a specified parameter of a device or model.

General Form:

alter dev = <expression>
alter dev param = <expression>
alter @dev[param] = <expression>

390 CHAPTER 13. INTERACTIVE INTERPRETER

<expression> must be real (complex isn’t handled right now, integer is fine though, but no
strings. For booleans, use 0/1).

Old style (pre 3f4):

alter device value
alter device parameter value [parameter value]

Using the old style, its first form is used by simple devices that have one principal value (resis-
tors, capacitors, etc.) where the second form is for more complex devices (bjt’s, etc.). Model
parameters can be changed with the second form if the name contains a ‘#’. For specifying a
list of parameters as values, start it with ‘[’, followed by the values in the list, and end with ‘]’.
Be sure to place a space between each of the values and before and after the ‘[’ and ‘]’.

Some examples are given below:

Examples (Spice3f4 style):

alter vd = 0.1
alter vg dc = 0.6
alter @m1[w]= 15e-06
alter @vg[sin] [-1 1.5 2MEG]
alter @Vi[pwl] = [0 1.2 100p 0]

alter may have vectors (13.8.2) or variables (13.8.1) as parameters.

Examples (vector or variable in parameter list):

let newfreq = 10k
alter @vg[sin] [-1 1.5 $&newfreq] $ vector
set newperiod = 150u
alter @Vi[pwl] = [0 1.2 $newperiod 0] $ variable

You may change a parameter of a device residing in a subcircuit, e.g. of MOS transistor msub1
in subcircuit xm1 (see also Chapt. 27.1).

Examples (parameter of device in subcircuit):

alter m.xm1.msub1 w = 20u
alter @m.xm1.msub1[w] = 20u

13.5. COMMANDS 391

13.5.4 Altermod: Change model parameter(s)

General form:

altermod mod param = <expression>
altermod @mod[param] = <expression>

Example:

altermod nc1 tox = 10e-9
altermod @nc1[tox] = 10e-9

Altermod operates on models and is used to change model parameters. The above example
will change the parameter tox in all devices using the model nc1, which is defined as

*** BSIM3v3 model
.MODEL nc1 nmos LEVEL=8 version = 3.2.2
+ acm = 2 mobmod = 1 capmod = 1 noimod = 1
+ rs = 2.84E+03 rd = 2.84E+03 rsh = 45
+ tox = 20E-9 xj = 0.25E-6 nch = 1.7E+17
+ ...

If you invoke the model by the MOS device

M1 d g s b nc1 w=10u l=1u

you might also insert the device name M1 for mod as in

altermod M1 tox = 10e-9

The model parameter tox will be modified, however not only for device M1, but for all devices
using the associated MOS model nc1!

If you want to run corner simulations within a single simulation flow, the following option of
altermod may be of help. The existing models are defined during circuit setup at start up of
ngspice. Model parameter sets have been included by .model statements (2.5) in your input
file or included by the .include command. The parameter set with name nc1 may be overrun
by the altermod command specifying a model file. All parameter values fitting to the existing
model nc1 will be modified. As usual the ’reset’ command (see 13.5.65) restores the original
values. The model file (see 2.5) has to use the standard specifications for an input file, the
.model section is the relevant part. However the first line in the model file will be ignored by
the input parser, so it should contain only some title information. The .model statement should
appear then in the second or any later line. More than one .model section may reside in the file.

392 CHAPTER 13. INTERACTIVE INTERPRETER

General form:

altermod mod1 [mod2 .. mod15] file = <model file name>
altermod mod1 [mod2 .. mod15] file <model file name>

Example:

altermod nc1 file = BSIM3_nmos.mod
altermod nc1 pc1 file BSIM4_mos.mod

Be careful that the new model file corresponds to the existing model selected by token nc1. In
the example given above, the models nc1 (or nc1 and pc1) have to be already included in the
netlist before calling altermod. If they are not found in the active circuit, ngspice will terminate
with an error message. The file BSIM3_nmos.mod has to include a .model line starting with
.MODEL nc1 nmos.... There is no checking however of the version and level parameters! So
you have to be responsible for offering model data of the same model name (nc1) and level
(e.g. level 8 for BSIM3). Thus no new model is selectable by altermod, but the parameters of
the existing model(s) (here nc1 and pc1) may be changed (partially, completely, temporarily).

13.5.5 Alterparam: Change value of a global parameter

General form:

alterparam paramname=pvalue
alterparam subname paramname=pvalue

Example (global, top level parameter):

.param npar = 5

...
alterparam npar = 7 $ change npar from 5 to 7
reset

Example (parameter in a subcircuit):

.subckt sname

.param subpar = 13

...

.ends

...
alterparam sname subpar = 11 $ change subpar from 13 to 11
reset

Alterparam operates on global parameters or on parameters in a subcircuit defined by the
.param ... statement. A subsequent call to reset (13.5.65) is required for the parameter
value change to become effective.

13.5. COMMANDS 393

13.5.6 Asciiplot: Plot values using old-style character plots

General Form:

asciiplot plotargs

Produce a line printer plot of the vectors. The plot is sent to the standard output, or you can
put it into a file with asciiplot args ... > file. The set options width, height, and nobreak
determine the width and height of the plot, and whether there are page breaks, respectively.
The ’more’ mode is the standard mode if printing to the screen, that is after a number of lines
given by height, and after a page break printing stops with request for answering the prompt
by <return>, ’c’ or ’q’. If everything shall be printed without stopping, put the command set
nomoremode into .spiceinit 12.6 (or spinit 12.5). Note that you will have problems if you try
to asciiplot something with an X-scale that isn’t monotonic (i.e, something like sin(TIME)
), because asciiplot uses a simple-minded linear interpolation. The asciiplot command
doesn’t deal with log scales or the delta keywords.

13.5.7 Aspice*: Asynchronous ngspice run

General Form:

aspice input-file [output-file]

Start an ngspice run, and when it is finished load the resulting data. The raw data is kept in
a temporary file. If output-file is specified then the diagnostic output is directed into that file,
otherwise it is thrown away.

13.5.8 Bg_ctrl**: suspend running controls until bg_run has finished

General Form:

bg_ctrl

Create a suspended thread to start any control commands only when bg_run has finished. This
may be achieved also by issuing set controlswait in the beginning of a .control section.

13.5.9 Bg_halt**: halt a run

General Form:

bg_halt

Halt a run which has been started by bg_run. There may be conditions where this command
cannot be executed immediately.

394 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.10 Bg_run**: Run analysis from the input file in the background
thread

General Form:

bg_run

Run the simulation as specified in the input file in the second (background) thread of shared
ngspice. If there were any of the control lines .ac, .op, .tran, or .dc, they are executed. The
output is available in plots and their vectors, and/or in the API via callback function SendData
(15.3.3.4).

13.5.11 Bug: Output URL for ngspice bug tracker

General Form:

bug

Get URL to file a bug report. Please go the the URL provided by this command when you have
a bug report to file. Include a short summary of the problem, the version number and name of
the operating system that you are running, the version of ngspice that you are running, and any
relevant ngspice input and output files.

13.5.12 Cd: Change directory

General Form:

cd [directory]

Change the current working directory to directory, or to the user’s home directory (Linux:
HOME, MS Windows: USERPROFILE), if none is given.

13.5.13 Cdump: Dump the control flow to the screen

General Form:

cdump

Dumps the control sequence to the screen (all statements inside the .controlendc struc-
ture before the line with cdump). Indentations show the structure of the sequence. The example
below is printed if you add cdump to /examples/Monte_Carlo/MonteCarlo.sp.

13.5. COMMANDS 395

Example (abbreviated):

let mc_runs=5
let run=0
...
define agauss(nom, avar, sig) (nom + avar/sig * sgauss(0))
define limit(nom, avar) (nom + ((sgauss(0) >=0) ? avar : -avar))
dowhile run < mc_runs
alter c1=unif(1e-09, 0.1)

...
ac oct 100 250k 10meg
meas ac bw trig vdb(out) val=-10 rise=1 targ vdb(out)

+ val=-10 fall=1
set run="$&run"

...
let run=run + 1

end
plot db({$scratch}.allv)
echo
print {$scratch}.bwh
cdump

13.5.14 Circbyline: Enter a circuit line by line

General Form:

circbyline line

Enter a circuit line by line. line is any circuit line, as found in the *.cir ngspice input files.
The first line is a title line. The entry will be finished by entering .end. Circuit parsing is then
started automatically.

Example:

circbyline test circuit
circbyline v1 1 0 1
circbyline r1 1 0 1
circbyline .dc v1 0.5 1.5 0.1
circbyline .end
run
plot i(v1)

396 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.15 Codemodel: Load an XSPICE code model library

General Form:

codemodel [library file]

Load a XSPICE code model shared library file (e.g. analog.cm ...). Only available if ngspice
is compiled with the XSPICE option (--enable-xspice) or with the Windows executable
distributed since ngspice21. This command has to be called from spinit (see Chapt. 12.5) (or
.spiceinit for personal code models, 12.6).

13.5. COMMANDS 397

13.5.16 Compose: Compose a vector

General form 1 - List of values:

compose name values value1 [value2 ...]

General forms 2 - Linearly spaced values:

compose name start=val stop=val step=val
compose name center=val span=val step=val
compose name lin=val center=val span=val
compose name lin=val <start=val> <stop=val> <step=val>

General forms 3 - Logarithmically spaced values:

compose name (log=val | dec=val | oct=val) start=val stop=val
compose name (log=val | dec=val | oct=val) center=val span=val

General form 4 - Gaussian distributed values:

compose name gauss=val <mean=val> <sd=val>

General forms 5 - Uniformly distributed values:

compose name unif=val <mean=val> <span=val>
compose name unif=val start=val stop=val

General form 6 - XSPICE node history:

compose event-node-name xspice

General form 7 - Make vector(s) from device parameters:

compose parameter-name device

The general form 1 takes the values and creates a new vector, where the values may be arbitrary
expressions. If negative numbers or expressions starting with ’-’ are to be entered, put them into
brackets, e.g. (-2.364) or (-5*PI).

The forms 2 - 5 create a new vector according the following possible parameters:

398 CHAPTER 13. INTERACTIVE INTERPRETER

start Value of name[0] (default: 0)
stop Last value of name
step Difference between successive elements of the linearly spaced vector (default: 1)
lin Number of points, linearly spaced
log Number of points, logarithmically spaced
dec Number of points per decade, logarithmically spaced
oct Number of points per octave, logarithmically spaced
center Where to center the range of points
span Size of the range of points (default for uniform distribution: 1)
gauss Number of points, Gaussian distributed
mean Mean value of the Gaussian (default 0) or uniform distribution (default 0.5)
sd Standard deviation for the Gaussian distribution (default 1)
unif Number of points, uniformly distributed

Form 6 creates a vector from the saved history of an XSPICE event node with similar results to
plotting or printing an event node.

13.5.17 Cutout: Cut out a section of all vectors in a tran plot

General Form:

let cut-tstart = time1
let cut-tstop = time2
cutout

Cut out part of each vector of the current tran plot, from times cut-tstart to cut-tstop and copy
these into a new tran plot. A new scale vector ’time’ will be generated as well. Vectors that are
shorter than the new scale vector will not be copied. If cut-start or cut-stop are not given,
the starting or end times of the current plot are used.

So the simple command cutout may be used to get rid of 0-length vectors in a new tran plot that
may occur if for example something like generating m1[id] is not served in an AC simulation.

13.5.18 Dc: Perform a DC-sweep analysis

General Form:

dc Source Vstart Vstop Vincr [Source2 Vstart2 Vstop2 Vincr2]

Do a dc transfer curve analysis. See the previous Chapt. 11.3.2 for more details. Several options
may be set (11.1.2).

13.5.19 Define: Define a function

General Form:

define function(arg1, arg2, ...) expression

13.5. COMMANDS 399

Define the function with the name function and arguments arg1, arg2, ... to be expression,
which may involve the arguments. When the function is later used, the arguments it is given
are substituted for the formal parameters when it was parsed. If expression is not present, any
existing definition for function is printed, and if there are no arguments then expressions for all
currently active definitions are printed. Note that you may have different functions defined with
the same name but different arities. Some useful definitions are

Example:

define max(x,y) (x > y) * x + (x <= y) * y
define min(x,y) (x < y) * x + (x >= y) * y
define limit(nom, avar) (nom + ((sgauss(0) >= 0) ? avar : -avar))

When defining the function, the tokens used (here x, y, nom, or avar) should not have been
defined elsewhere, e.g. as vectors. Otherwise strange errors may result.

13.5.20 Deftype: Define a new type for a vector or plot

General Form:

deftype [v | p] typename abbrev

defines types for vectors and plots. abbrev will be used to parse things like abbrev(name) and to
label axes with M<abbrev>, instead of numbers. Also, the command ‘deftype p plottype pattern
...’ will assign plottype as the name for any plot with one of the patterns in its Name: field.

Example:

deftype v capacitance F
settype capacitance moscap
plot moscap vs v(cc)

13.5.21 Delete: Remove a trace or breakpoint

General Form:

delete [debug-number ...]

Delete the specified saved nodes and parameters, breakpoints and traces. The debug numbers
are those shown by the status command (unless you do status > file, in which case the debug
numbers are not printed).

13.5.22 Destroy: Delete an output data set

General Form:

destroy [plotnames | all]

400 CHAPTER 13. INTERACTIVE INTERPRETER

Release the memory holding the output data (the given plot or all plots) for the specified runs.
The initial plot, "const", can not be destroyed.

13.5.23 Devhelp: information on available devices

General Form:

devhelp [-csv] [-type] [-flags] [device_name [parameter]]

Devhelp command shows the user information about the devices available in the simulator. If
called without arguments, it simply displays the list of available devices in the simulator. The
name of the device is the name used inside the simulator to access that device. If the user
specifies a device name, then all the parameters of that device (model and instance parameters)
will be printed. Parameter description includes the internal ID of the parameter (id#), the name
used in the model card or on the instance line (Name), the direction (Dir) and the description
of the parameter (Description). All the fields are self-explanatory, except the ‘direction’. Di-
rection can be in, out or inout and corresponds to a ‘write-only’, ‘read-only’ or a ‘read/write’
parameter. Read-only parameters can be read but not set, write only can be set but not read and
read/write can be both set and read by the user.

The -type option prints the type of each parameter, for example real, integer, string.
Values ending with vec indicate vectors.

The -csv option prints the fields, separated by a commas, for direct import into a spreadsheet.
This option is used to generate the simulator documentation.

The -flags option prints the internal Spice flags for each parameter. A specific string is ap-
pended to the result for each flag:

X the parameter is not used in sensitivity analysis.

Q the parameter must be non-zero for sensitivity analysis of the subsequent parameter.

Z the previous parameter must be non-zero for sensitivity analysis.

QO Like Q, but or-ed with the previous Q value.

A the parameter is significant for time-varying (non-DC) analyses.

P the parameter is a principal of the device. Used for naming output variables in sensitivity.

AA the parameter is significant for AC analyses only.

N the parameter is significant for noise analyses only.

U the parameter is not shown in the default show command output.

R redundant parameter name (e.g.vto vs.vt0).

13.5. COMMANDS 401

Example:

devhelp
devhelp resistor
devhelp capacitor ic
devhelp -flags -type bjt

13.5.24 Diff: Compare vectors

General Form:

diff plot1 plot2 [vec ...]

Compare all the vectors in the specified plots, or only the named vectors if any are given. If
there are different vectors in the two plots, or any values in the vectors differ significantly,
the difference is reported. The variables diff_abstol, diff_reltol, and diff_vntol are used to
determine a significant difference.

13.5.25 Display: List known vectors and types

General Form:

display [varname ...]

Prints a summary of currently defined vectors, or of the names specified. The vectors are sorted
by name unless the variable nosort is set. The information given is the name of the vector, the
length, the type of the vector, and whether it is real or complex data. Additionally, one vector
is labeled [scale]. When a command such as plot is given without a vs argument, this scale is
used for the X-axis. It is always the first vector in a rawfile, or the first vector defined in a new
plot. If you undefine the scale (i.e, let TIME = []), one of the remaining vectors becomes the
new scale (which one is unpredictable). You may set the scale to another vector of the plot with
the command setscale (13.5.77).

13.5.26 Echo: Print text

General Form:

echo [-n] [text | $variable | $&vector] ...

Echos all text, variables and vectors to the screen or the redirected output location. If -n included
as the first argument, a newline will not be printed. Otherwise one will be appended to the
output.

402 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.27 Edit*: Edit the current circuit

General Form:

edit [file-name]

Print the current ngspice input file into a file, call up the editor on that file and allow the user to
modify it, and then read it back in, replacing the original file. If a file-name is given, then edit
that file and load it, making the circuit the current one. The editor may be defined in .spiceinit
or spinit by a command line like

set editor=emacs

Using MS Windows, to allow the edit command calling an editor, you will have to add the
editor’s path to the PATH variable of the command prompt windows (see here). edit then calls
cmd.exe with e.g. notepad++ and file-name as parameter, if you have set

set editor=notepad++.exe

in .spiceinit or spinit.

13.5.28 Edisplay: Print a list of all the event nodes

General Form:

edisplay

Print the node names, node types, and number of events per node of all event driven nodes
generated or used by XSPICE ’A’ devices. See eprint, eprvcd, and 23.2.2 for an example.

13.5.29 Eprint: Print an event driven node

General Form:

eprint node [node]
eprint node [node] > nodeout.txt $ output redirected

Print an event driven node generated or used by an XSPICE ’A’ device. These nodes are vectors
not organized in plots. See edisplay, eprvcd, and Chapt. 23.2.2 for an example. Output
redirection into a file is available.

13.5.30 Eprvcd: Dump nodes in VCD format

General Form:

eprvcd [-t unit][-a] node1 node2 .. noden [> filename]

Dump the data of the specified event driven nodes and others to a .vcd file (see also 14.6.1.4).
Such files may be viewed with an vcd viewer, for example gtkwave. Values for analog nodes and

http://en.wikipedia.org/wiki/Environment_variable#Examples_of_DOS_environment_variables
http://gtkwave.sourceforge.net/

13.5. COMMANDS 403

expressions (as for plot) may be included, but expressions may not contain spaces. Option
“-t” sets the VCD file’s time unit; values are rounded to a negative power of 10. If not used
the unit is chosen to fit the simulation’s maximum timestep. Analog values are examined only
when a recorded XSPICE event value changes, unless option “-a” is used to dump them at each
timestep. Also see edisplay, eprint.

13.5.31 Esave: Save a set of event node outputs

General Form:

esave all | none | node ...

Save a set of event node outputs, discarding the rest (if keyword all is not given). May be used
to dramatically reduce memory (RAM) requirements when only a few useful nodes’ events are
saved.

For backward compatibility, if there are no esave commands given, all outputs are saved. If you
want to eprint (13.5.29) or eprvcd (13.5.30) a node, you have to save it explicitly, except for
all given or no save command at all.

Don’t save anything:

esave none

Useful if you do not need to examine the event data separately from the normal plot.

13.5.32 Fclose: close an open file handle

General Form:

fclose handle

This command closes an open file identified by the integer ’handle’. It ignores values less than
3 and any file that was not opened by fopen or read by fread.

13.5.33 FFT: fast Fourier transform of vectors

General Form:

fft vector1 [vector2] ...

This analysis provides a fast Fourier transform of the input vector(s) in forward direction. fft
is much faster than spec (13.5.88) (about a factor of 50 to 100 for larger vectors).

The fft command will create a new plot consisting of the Fourier transforms of the vectors
given on the command line. Each vector given should be a transient analysis result, i.e. it
should have time as a scale. You will have gotten these vectors by the tran Tstep Tstop
Tstart command.

404 CHAPTER 13. INTERACTIVE INTERPRETER

The vector should have a linear equidistant time scale. Therefore linearization using the linearize
command is recommended before running fft. Be careful selecting a Tstep value small
enough for good interpolation, e.g. much smaller than any signal period to be resolved by
fft (see linearize command). The Fast Fourier Transform will be computed using a optional
window function as given with the specwindow variable. A new plot named specN will be
generated with a new vector (having the same name as the input vector, see command above)
containing the transformed data.

Ngspice has two FFT implementations:

1. Standard code is based on the FFT function provided by John Green ‘FFTs for RISC 2.0‘,
downloaded 2012, now to be found here. These are a power-of-two routines for fft and
ifft. If the input size doesn’t fit this requirement the remaining data will be zero padded
up to the next 2N field size. You have to take care of the correlated change in the scale
vector.

2. If available on the operating system (see Chapter 28) ngspice can be linked to the famous
FFTW-3 package, found here. This high performance package has advantages in speed
and accuracy compared to most of the freely available FFT libraries. It makes arbitrary
size transforms for even and odd data.

How to compute the fft from a transient simulation output:

ngspice 8 -> setplot tran1
ngspice 9 -> linearize V(2)
ngspice 9 -> set specwindow=blackman
ngspice 10 -> fft V(2)
ngspice 11 -> plot mag(V(2))

Linearize will create a new vector V(2) in a new plot tran2. The command fft V(2) will
create a new plot spec1 with vector V(2) holding the resulting data.

The variables listed in the following table control operation of the fft command. Each can be
set with the set command before calling fft.

specwindow: This variable is set to one of the following strings, which will determine the
type of windowing used for the Fourier transform in the spec and fft command. If not set, the
default is hanning.

All window functions have a rms value of 1. That means: No amplitude correction for the result
is needed after applying the functions to the time domain input signal.

none No windowing

rectangular Rectangular window

bartlet Bartlett (also triangle) window

hanning Hanning (also hann or cosine) window

blackman Blackman window

http://hyperarchive.lcs.mit.edu/HyperArchive/Archive/dev/src/ffts-for-risc-2-c.hqx
http://www.fftw.org/

13.5. COMMANDS 405

blackmanharris Blackman-Harris window

hamming Hamming window

gaussian Gaussian window

flattop Flat top window

Figure 13.1: Spec and FFT window functions (Gaussian order = 4)

specwindoworder: This can be set to an integer in the range 2-8. This sets the order when
the Gaussian window is used in the spec and fft commands. If not set, order 2 is used.

13.5.34 Fopen: open a text file

General Form:

fopen handle file_name [mode]

The named file is opened and a numeric handle is returned in variable ’handle’, or -1 on error.
This is a simple wrapper around the standard C-library function with the same name, so the
meaning of string ’mode’ is as defined by your OS documentation. By default the file is opened
for reading only. If interpreter variable "silent_fileio" is set, no message is printed on error.

13.5.35 Fourier: Perform a Fourier transform

General Form:

fourier fundamental_frequency [expression ...]

406 CHAPTER 13. INTERACTIVE INTERPRETER

Fourier is used to analyze the output vector(s) of a preceding transient analysis (see 13.5.98).
It does a Fourier analysis of each of the given values, using the first 10 multiples of the fun-
damental frequency (or the first nfreqs multiples, if that variable is set (see 13.7). The printed
output is like that of the .four ngspice line (Chapt. 11.6.4). The expressions may be any valid
expression (see 13.2), e.g. v(2). The evaluated expression values are interpolated onto a fixed-
space grid with the number of points given by the fourgridsize variable, or 200 if it is not set.
The interpolation is of degree polydegree if that variable is set, or 1 otherwise. If polydegree
is 0, then no interpolation is done. This is likely to give erroneous results if the time scale is not
monotonic.

The fourier command not only issues a printout, but also generates vectors, one per expression.
The size of the vector is 3 x nfreqs (per default 3 x 10). The name of the new vector is fouriermn,
where m is set by the mth call to the fourier command, n is the nth expression given in the actual
fourier command. fouriermn[0] is the vector of the 10 (nfreqs) frequency values, fouriermn[1]
contains the 10 (nfreqs) magnitude values, fouriermn[2] the 10 (nfreqs) phase values of the
result. Vector generation may be suppressed by setting the ’fournosave’ variable.

Example:

* do the transient analysis
tran 1n 1m

* do the fourier analysis
fourier 3.34e6 v(2) v(3) $ first call
fourier 100e6 v(2) v(3) $ second call

* get individual values
let newt1 = fourier11[0][1]
let newt2 = fourier11[1][1]
let newt3 = fourier11[2][1]
let newt4 = fourier12[0][4]
let newt5 = fourier12[1][4]
let newt6 = fourier12[2][4]

* plot magnitude of second expression (v(3))

* from first call versus frequency
plot fourier12[1] vs fourier12[0]

The plot command from the example plots the vector of the magnitude values, obtained by
the first call to fourier and evaluating the first expression in this call, against the vector of the
frequency values.

13.5.36 Fread: read into a variable from a text file

General Form:

fread result handle [length]

This command sets the string variable ’result’ by reading one line from the open file specified
by the integer ’handle’. Terminating characters are stripped and the length returned in variable
’length’, if given. The handle will usually have been set by the fopen command, but any valid
file descriptor may be used.

13.5. COMMANDS 407

The length will be -1 if attempting to read at end-of-file or -2 on error. If interpreter variable
"silent_fileio" is set, no message is printed on error.

13.5.37 Getcwd: Print the current working directory

General Form:

getcwd

Print the current working directory.

13.5.38 Gnuplot: Graphics output via gnuplot

General Form:

gnuplot file plotargs

Like plot, but using gnuplot for graphics output and further data manipulation. ngspice creates
a file called file.plt containing the gnuplot command sequence, a file called file.data containing
the data to be plotted. On Linux, gnuplot may be called directly or via called via xterm, and
offers a Gnuplot console to manipulate the data. On Windows, a plot window is opened and the
command console window is available with a mouse click. Of course you have to have gnuplot
installed on your system. Please see chapter 14.7 for more details.

13.5.39 Hardcopy: Save a plot to a file for printing

General Form:

hardcopy file plotargs

Just like plot, except that it creates a file called file containing the plot. Various output formats
are available, depending on the variable hcopydevtype. It may be set to postscript or svg.
See also Chapt. 14.6 for more details (color etc.).

13.5.40 Help: Print summaries of Ngspice commands

Prints help. This help information, however, is spice3f5-like, stemming from 1991 and thus is
outdated. If commands are given, descriptions of those commands are printed. Otherwise help
for only a few major commands is printed. On Windows, this help command only provides a
link to documentation. Spice3f5 compatible help may be found in the Spice 3 User manual. For
ngspice, please use this manual.

https://web.archive.org/web/20180221111839/http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/

408 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.41 History: Review previous commands

General Form:

history [-r] [number]

Print out the history of the last (first if -r is specified) number commands typed at the keyboard.

A history substitution enables you to reuse a portion of a previous command as you type the
current command. History substitutions save typing. This feature is disabled by default, as it
may interfere with use of ’!’ in expressions. To enable, set variable histsubst. A history
substitution normally starts with a ’!’. A history substitution has three parts: an event that
specifies a previous command, a selector that selects one or more words of the event, and some
modifiers that modify the selected words. The selector and modifiers are optional. A history
substitution has the form ![event][:]selector[:modifier] . . .] The event is required
unless it is followed by a selector that does not start with a digit. The ’:’ can be omitted before
the selector if this selector does not begin with a digit. History substitutions are interpreted
before anything else -- even before quotations and command substitutions. The only way to
quote the ’!’ of a history substitution is to escape it with a preceding backslash. A ’!’ need
not be escaped if it is followed by whitespace, ’=’, or ’(’.

Ngspice saves each command that you type in a history list, provided that the command contains
at least one word. The commands in the history list are called events. The events are numbered,
with the first command that you issue when you start Ngspice being number one. The history
variable specifies how many events are retained in the history list.

These are the forms of an event in a history substitution:

!! The preceding event. Typing ’!!’ is an easy way to reissue the previous command.
!n Event number n.
!-n The nth previous event. For example, !-1 refers to the immediately preceding event and

is equivalent to !!.

!str The unique previous event whose name starts with str.
!?str[?] The unique previous event containing the string str. The closing ’?’ can be omitted if it

is followed by a newline.

You can modify the words of an event by attaching one or more modifiers. Each modifier must
be preceded by a colon. The following modifiers assume that the first selected word is a file
name:

13.5. COMMANDS 409

:r Removes the trailing .str extension from the first selected word.
:h Removes a trailing path name component from the first selected word.
:t Removes all leading path name components from the first selected word.
:e Remove all but the trailing suffix.
:p Print the new command but do not execute it.
s/old/new Substitute new for the first occurrence of old in the event line. Any delimiter may be

used in place of ‘/’. The delimiter may be quoted in old and new with a single backslash.
If ‘&’ appears in new, it is replaced by old. A single backslash will quote the ‘&’. The
final delimiter is optional if it is the last character on the input line.

& Repeat the previous substitution.
g a Cause changes to be applied over the entire event line. Used in conjunction with ‘s’, as

in gs/old/new/, or with ‘&’.
G Apply the following ‘s’ modifier once to each word in the event.

For example, if the command ls /usr/elsa/toys.txt has just been executed, then the command
echo !!^:r !!^:h !!^:t !!^:t:r produces the output /usr/elsa/toys /usr/elsa toys.txt toys . The ’^’
command is explained in the table below.

You can select a subset of the words of an event by attaching a selector to the event. A history
substitution without a selector includes all of the words of the event. These are the possible
selectors for selecting words of the event:

:0 The command name
[:]^ The first argument
[:]$ The last argument
:n The nth argument (n ≥ 1)
:n1-n2 Words n1 through n2
[:]* Words 1 through $
:x* Words x through $
:x- Words x through ($ - 1)
[:]-x Words 0 through x
[:]% The word matched by the last ?str? search used

The colon preceding a selector can be omitted if the selector does not start with a digit.

The following additional special conventions provide abbreviations for commonly used forms
of history substitution:

• An event specification can be omitted from a history substitution if it is followed by a
selector that does not start with a digit. In this case the event is taken to be the event
used in the most recent history reference on the same line if there is one, or the preceding
event otherwise. For example, the command echo !?qucs?^ !$ echoes the first and last
arguments of the most recent command containing the string qucs .

• If the first non-blank character of an input line is ’^’, the ’^’ is taken as an abbreviation
for !:s^ . This form provides a convenient way to correct a simple spelling error in the
previous line. For example, if by mistake you typed the command cat /etc/lasswd you
could re-execute the command with lasswd changed to passwd by typing ^l^p .

• You can enclose a history substitution in braces to prevent it from absorbing the following
characters. In this case the entire substitution except for the starting ’!’ must be within

410 CHAPTER 13. INTERACTIVE INTERPRETER

the braces. For example, suppose that you previously issued the command cp accounts
../money . Then the command !cps looks for a previous command starting with cps
while the command !{cp}s turns into a command cp accounts ../moneys .

Some characters are handled specially as follows:

~ Expands to the home directory
* Matches any string of characters in a filename
? Matches any single character in a filename
[] Matches any of the characters enclosed in a filename
- Used within [] to specify a range of characters. For example, [b-k] matches on any

character between and including ‘b’ through to ‘k’.
^ If the ^ is included within [] as the first character, then it negates the following characters

matching on anything but those. For example, [^agm] would match on anything other
than ‘a’, ‘g’ and ‘m’. [^a-zA-Z] would match on anything other than an alphabetic
character.

The wildcard characters *, ?, [, and] can be used, but only if you unset noglob first. This
makes them rather useless for typing algebraic expressions, so you should set noglob again
after you are done with wildcard expansion.

When the environment variable HOME exists (on Unix, Linux, or CYGWIN), history per-
manently stores previous command lines in the file $HOME/._ngspice_history. When this
variable does not exist (typically on Windows when the readline library is not officially in-
stalled), the history file is called .history and put in the current working directory.

The history command is part of the readline or editline package. The readline program pro-
vides a command line editor that is configurable through the file .inputrc. The path to this con-
figuration file is either found in the shell variable INPUTRC, or it is (on Unix/Linux/CYGWIN)
the file ~/.inputrc in the user’s home directory. On Windows systems, the configuration file is
/Users/<username>/.inputrc, unless the readline library was officially installed. In that case
the filename is taken from the Windows registry and points to a location that the user specified
during installation. See https://web.archive.org/web/20190527085247/https://tiswww.case.edu/php/chet/readline/rltop.html
for detailed documentation. Some useful commands are below.
Left/Right arrow Move one character to the left or right
Home/End Move to beginning or end of line
Up/Down arrow Cycle through the history buffer
C-_- Undo last editing command
C-r Incremental search backward
TAB completion of a file name
C-ak Erase the command line (kill)
C-y Retrieve last kill (yank)
C-u Erase from cursor to start of line

13.5.42 Inventory: Print circuit inventory

General Form:

inventory

https://web.archive.org/web/20190527085247/https://tiswww.case.edu/php/chet/readline/rltop.html

13.5. COMMANDS 411

This commands accepts no argument and simply prints the number of instances of a particular
device in a loaded netlist.

13.5.43 Iplot*: Incremental plot

General Form:

iplot [-d delay] [-w width] [-o] [node ...]

Incrementally plot the values of the nodes while ngspice runs. The iplot command can be
used with the where command to find trouble spots in a transient simulation. The “-d” options
sets the delay (in simulation steps) between the start of the simulation and the appearance of
the window. It can be used to suppress flicker when new values cause rapid resizing at the start
of the simulation. The “-w” option sets a fixed width for the window in simulation units (time,
frequency etc). When the output does not fit, only the latest output values are shown.

Node expressions are not supported, except that a fixed offset may be applied to event nodes
(usually digital) to separate traces vertically.

The “-o” option gives automatic separation, similar to the “digitop” keyword for “plot”. Explicit
and automatic offsets may be combined:

iplot -o controlx4 d_d+4.5 d_u

The @name[param] notation (27.1) does not work yet.

13.5.44 Jobs*: List active asynchronous ngspice runs

General Form:

jobs

Report on the asynchronous ngspice jobs currently running. Ngnutmeg checks to see if the
jobs are finished every time you execute a command. If it is done then the data is loaded and
becomes available.

13.5.45 Let: Assign a value to a vector

General Form:

let name = expr

Creates a new vector called name with the value specified by expr, an expression as described
above. If expr is [] (a zero-length vector) then the vector becomes undefined. Individual ele-
ments of a vector may be modified by appending a subscript to name (ex. name[0]). If there are
no arguments, let is the same as display.

412 CHAPTER 13. INTERACTIVE INTERPRETER

The command let creates a vector in the current plot. Use setplot (13.5.76) to create a new plot.

There is no straightforward way to initialize a new vector. In general, one might want to have
let initialize a slice (i.e. name[4:4,21:23] = [1 2 3]) of a multi-dimensional matrix of arbitrary
type (i.e. real, complex ..), where all values and indexes are arbitrary expressions. This will
fail. The procedure is to first allocate a real vector of the appropriate size with either vector(),
unitvec(), or [n1 n2 n3 ...]. The second step is to optionally change the type of the
new vector (to complex) with the j() function. The third step reshapes the dimensions, and the
final step (re)initializes the contents, like so:

let a = j(vector(10))

reshape a [2][5]

let a[0][0] = (pi,pi)

Initialization of real vectors can be done quite efficiently with compose:

compose a values (pi, pi) (1,1) (2,sqrt(7)) (boltz,e)

reshape a [2][2]

See also unlet (13.5.102), compose (13.5.16).

13.5.46 Linearize: Interpolate to a linear scale

General Form:

linearize vec ...

Create a new plot with all of the vectors in the current plot, or only those mentioned as argu-
ments to the command, all data linearized onto an equidistant time scale.

How to compute the fft from a transient simulation output:

ngspice 8 -> setplot tran1
ngspice 9 -> linearize V(2)
ngspice 9 -> set specwindow=blackman
ngspice 10 -> fft V(2)
ngspice 11 -> plot mag(V(2))tstep

Linearize will redo the vectors vec or renew all vectors of the current plot (e.g. tran3) if no
arguments are given and store them into a new plot (e.g. tran4). The new vectors are interpolated
onto a linear time scale, which is determined by the values of tstep, tstart, and tstop in
the currently active transient analysis. The currently loaded input file must include a transient
analysis (a tran command may be run interactively before the last reset, alternately), and the
current plot must be from this transient analysis. The length of the new vector is floor((tstop
- tstart) / tstep + 1.5). This command is needed for example if you want to do an FFT
analysis (13.5.33). Please note that the parameter tstep of your transient analysis (see Chapt.
11.3.10) has to be small enough to get adequate resolution, otherwise the command linearize

13.5. COMMANDS 413

will do sub-sampling of your signal. If no circuit is loaded and the data have been acquired
by the load (13.5.48) command, Linearize will take time data from transient analysis scale
vector.

The linearize command may be used to create a linearized cutout of the original vector by
defining the vectors lin-tstart, lin-tstop, and lin-tstep before issuing the linearize
command. At least lin-tstart or lin-tstop has to be defined. This may be used to plot just
a portion of a vector, or to prepare a better fft by skipping the start-up phase of a ring oscillator.

Excerpt from the ring oscillator example soi/ring51_40.sp:

* original time scale by .tran command is from 0 to 16ns
save out25 out50
run
plot out25 out50
let lin-tstart = 4n $ skip the start-up phase
let lin-tstop = 14n $ end earlier(just for demonstration)
let lin-tstep = 5p
linearize out25 out50
plot out25 out50

The linearize command should explicitly name the vectors of interest. Otherwise warning
messages pop up that the vectors lin-tstart etc cannot be linearized.

13.5.47 Listing: Print a listing of the current circuit

General Form:

listing [logical] [physical] [deck] [expand] [runnable] [param]

If the logical argument is given, the listing is with all continuation lines collapsed into one line,
and if the physical argument is given the lines are printed out as they were found in the file.
The default is logical. A deck listing is just like the physical listing, except without the line
numbers it recreates the input file verbatim (except that it does not preserve case). If the word
expand is present, the circuit is printed with all subcircuits expanded. Argument runnable will
list the circuit netlist expanded, but without additional line numbers, ready to be sourced again
and run in ngspice. The option param allows printing all parameters and their actual values.

Example:

source d:\myngspice\inputs\decade_counter.cir
listing r > $inputdir/decade_counter_runnable.cir

All options (except for param) may be invoked by just entering their first letter. The example
sources a ngspice netlist, the listing r command will save the expanded netlist (all param-
eters evaluated, subcircuits flattened, .control sections removed) into a file within the same
directory.

If you are using CIDER (26), listing r will not create a runnable netlist, because some data
lines which have been created internally are missing.

414 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.48 Load: Load rawfile data

General Form:

load [filename] ...

Loads either binary or ascii format rawfile data from the files named. The default file name is
rawspice.raw, or the argument to the -r flag if there was one.

13.5.49 Mc_source: Reload the circuit netlist from an internal storage

General Form:

mc_source

Upon reading a netlist, after its preprocessing is finished, the modified netlist is stored internally.
This command will reload this netlist and create a new circuit inside ngspice. This command is
used in conjunction with the alterparam command.

13.5.50 Meas: Measurements on simulation data

General Form (example):

MEAS {DC|AC|TRAN|SP} result TRIG trig_variable VAL=val <TD=td>
<CROSS=# | CROSS=LAST> <RISE=#|RISE=LAST> <FALL=#|FALL=LAST>
<TRIG AT=time> TARG targ_variable VAL=val <TD=td>
<CROSS=# | CROSS=LAST> <RISE=#|RISE=LAST>
<FALL=#|FALL=LAST> <TRIG AT=time>

Most of the input forms found in 11.4 may be used here with the command meas instead of
.meas(ure). Using meas inside the .controlendc section offers additional features
compared to the .meas use. meas will print the results as usual, but in addition will store
its measurement result (typically the token result given in the command line) in a vector.
This vector may be used in following command lines of the script as an input value of another
command. For details of the command see Chapt. 11.4. The measurement type SP is only
available here, because a fft command will prepare the data for SP measurement. Option
autostop (11.1.4) is not available.

Unfortunately par(’expression’) (11.4.10, 11.6.6) and param (11.4.9) will not work here, i.e.
inside the .control section. You may use an expression by the let command (13.5.45) instead,
giving let vec_new = expression.

Replacement for par (’expression’) in meas inside the .control section

let vdiff = v(n1)-v(n0)
meas tran vtest find vdiff at=0.04e-3

*the following will not do here:

*meas tran vtest find par(’v(n1)-v(n0)’) at=0.04e-3

13.5. COMMANDS 415

13.5.51 Mdump: Dump the matrix values to a file (or to console)

General Form:

mdump <filename>

If <filename> is given, the output will be stored in file <filename>, otherwise dumped to your
console.

13.5.52 Mrdump: Dump the matrix right hand side values to a file (or to
console)

General Form:

mrdump <filename>

If <filename> is given, the output will be appended to file <filename>, otherwise dumped to
your console.

Example usage after ngspice has started:

* Dump matrix and RHS values after 10 and 20 steps

* of a transient simulation
source rc.cir
step 10
mdump m1.txt
mrdump mr1.txt
step 10
mdump m2.txt
mrdump mr2.txt

* just to continue to the end
step 10000

You may create a loop using the control structures (Chapt. 13.6).

13.5.53 Noise: Noise analysis

See the .NOISE analysis (11.3.4) for details.

The noise command will generate two plots (typically named noise1 and noise2) with Noise
Spectral Density Curves and Integrated Noise data. To write these data into output file(s), you
may use the following command sequence:

416 CHAPTER 13. INTERACTIVE INTERPRETER

Command sequence for writing noise data to file(s):

.control
tran 1e-6 1e-3
write test_tran.raw
noise V(out) vinp dec 333 1 1e8 16
print inoise_total onoise_total

*first option to get all of the output (two files)
setplot noise1
write test_noise1.raw all
setplot noise2
write test_noise2.raw all

* second option (all in one raw-file)
write testall.raw noise1.all noise2.all
.endc

13.5.54 Op: Perform an operating point analysis

General Form:

op

Do an operating point analysis. See Chapt. 11.3.5 for more details.

13.5.55 Option: Set a ngspice option

General Form:

option [option=val] [option=val] ...

Set any of the simulator variables as listed in Chapt. 11.1. See this chapter also for more
information on the available options. The option command without any argument lists the
current options set in the simulator. It shows the current options, while new values are set to be
used in the next analysis run. That means that changed options will not be visible immediately.
Multiple options may be set in a single line.

The following example demonstrates a control section, which may be added to your circuit file
to test the influence of variable trtol on the number of iterations and on the simulation time.

13.5. COMMANDS 417

Command sequence for testing option trtol:

.control
set noinit

option trtol=1
echo
echo trtol=1
run
rusage traniter trantime
reset
option trtol=3
echo
echo trtol=3
run
rusage traniter trantime
reset
option trtol=5
echo
echo trtol=5
run
rusage traniter trantime
reset
option trtol=7
echo
echo trtol=7
run
rusage traniter trantime
plot tran1.v(out25) tran1.v(out50) v(out25) v(out50)
.endc

13.5.56 Plot*: Plot vectors on the display

General Form:

plot expr1 [vs scale_expr1] [expr2 [vs scale_expr2]] ...
[ylimit ylo yhi] [xlimit xlo xhi] [xindices xilo xihi]
[xcompress comp] [xdelta xdel] [ydelta ydel]
[xlog] [ylog] [loglog] [nogrid]
[linplot] [combplot] [pointplot] [nointerp] [retraceplot]
[polar] [smith] [smithgrid]
[xlabel word] [ylabel word] [title word]
[samep] [linear] [kicad] [plainplot] [digitop]
[all] [allv] [alli] [ally] [alle]

Plot the given vectors or exprs on the screen (if you are on a graphics terminal). The xlimit
and ylimit arguments determine the high and low x- and y-limits of the axes, respectively. The

418 CHAPTER 13. INTERACTIVE INTERPRETER

xindices arguments determine what range of points are to be plotted - everything between the
xilo’th point and the xihi’th point is plotted. The xcompress argument specifies that only
one out of every comp points should be plotted. If an xdelta or a ydelta parameter is present,
it specifies the spacing between grid lines on the X- and Y-axis. These parameter names may
be abbreviated to xl, yl, xind, xcomp, xdel, and ydel respectively.

The scal_expr argument(s) are expressions to use as the scale on the x-axis instead of the de-
fault scale for the plot. If xlog or ylog are present, then the X or Y scale, respectively, are
logarithmic (loglog is the same as specifying both). The xlabel and ylabel arguments cause
the specified labels to be used for the X and Y axes, respectively.

If samep is given, the values of the other parameters from the previous plot, hardcopy, or
asciiplot command are used even if they are redefined on the command line.

The title argument is used in the headline of the plot window and replaces the default text,
which is ‘actual plot: first line of input file’.

The linear keyword is used to override a default logscale plot (as in the output for an AC
analysis).

The keywords linplot, combplot and pointplot select different plot styles. The keyword
nointerp turns off interpolation of the vector data, nogrid suppresses the drawing of grid-
lines. retraceplot may be required if the scale vector (the x axis) has values which do not
grow monothonically (e.g. plotting a circle or the hyseresis loop of a memristor). Without this
keyword retracing values (x values moving forth and back) are suppressed.

Finally, the keyword polar generates a polar plot. To produce a Smith plot, use the keyword
smith. Note that the data is transformed, so for Smith plots you will see the data a + jb trans-
formed to

a = (a2 +b2 −1)/((a+1)2 +b2) (13.1)

b = (2∗b)/((a+1)2 +b2) (13.2)

To produce a polar plot with a Smith grid but without performing the Smith transform, use the
keyword smithgrid.

Keyword retraceplot may be useful if the x-axis values are non-monotonic. Whereas time
is always growing monotonically, during plotting ynew vs xnew xnew may partially increase,
then decrease again. If this occurs, plotting is suppressed as per default. retraceplot will
enable plotting all data.

If you specify plot all, all vectors (including the scale vector) are plotted versus the scale
vector (see commands display (13.5.25) or setscale (13.5.77) on viewing the vectors of the
current plot). The command plot ally will not plot the scale vector, but all other ’real’ y
values. The command plot alli selects all current vectors, the command plot allv all
voltage vectors.

If the vector name to be plotted contains - , / or other tokens that may be taken for operators of
an expression, and plotting fails, try enclosing the name in double quotes, e.g. plot “/vout”.

Plotting of complex vectors, as may occur after an ac simulation, requires special considera-
tions. Please see Chapt. 13.5.1 for details.

13.5. COMMANDS 419

Keyword kicad will enable plotting vectors with leading character / (see 12.14.8) by placing
double quotes around the token, keyword plainplot will allow this by suppressing the eval-
uation of any expression containing such characters. vc1 vs vc2 is not supported with using
plainplot. The same effect may be generated by setting the variable plainplot.

digitop will assemble all digital (event) nodes into a single graph, arranged on top of each
other.

Plot all analog nodes [all], all voltage nodes only [allv], all current nodes, [alli], all nodes
except for the scale [ally], all event nodes [alle].

13.5.57 Pre_<command>: execute commands prior to parsing the circuit

General Form:

pre_<command>

All commands in a .controlendc section are executed after the circuit has been parsed.
If you need command execution before circuit parsing, you may add these commands to the
general spinit or local .spiceinit files. Another possibility is adding a leading pre_ to a com-
mand within the .control section of an ordinary input file, which forces the command to be
executed before circuit parsing. Basically <command> may be any command listed in Chapt.
13.5, however only a few commands are indeed useful here. Some examples are given below:

Examples:

pre_unset ngdebug
pre_set strict_errorhandling
pre_codemodel mymod.cm

pre_<command> is available only in the .control mode (see 12.4.3), not in interactive mode,
where the user may determine when a circuit is to be parsed, using the source command
(13.5.86) .

13.5.58 Pre_OSDI: load a *.osdi compact device model shared library

Compact device models, written in Verilog-A HDL and compiled with OpenVAF (see9.2) are
loaded dynamically at runtime. Several models may be loaded for a single simulation run.
Please add these commands at the beginning of the .control section.

Examples:

pre_osdi osdi_libs/bsimbulk107.osdi osdi_libs/psp103.osdi

13.5.59 Print: Print values

General Form:

print [col] [line] expr ...

420 CHAPTER 13. INTERACTIVE INTERPRETER

Prints the vector(s) described by the expression expr. If the col argument is present, print
the vectors named side by side. If line is given, the vectors are printed horizontally. col
is the default, unless all the vectors named have a length of one, in which case line is the
default. The options width (default 80) and height (default 24) are effective for this command
(see asciiplot 13.5.6). The ’more’ mode is the standard mode if printing to the screen, that
is after a number of lines given by height, and after a page break printing stops with request
for answering the prompt by <return> (print next page), ’c’ (print rest) or ’q’ (quit printing).
If everything shall be printed with stopping after each page (only useful in interactive mode,
because need manual continuation), use the command set moremode before printing or put
it into .spiceinit 12.6 (or spinit 12.5). If the expression is all, all of the vectors available
are printed. Thus print col all > filename prints everything into the file filename in
SPICE2 format. The scale vector (time, frequency) is always in the first column unless the
variable noprintscale is true. You may use the vectors alli, allv, ally with the print
command, but then the scale vector will not be printed.

Examples:

print all
set width=300
print v(1) > outfile.out

13.5.60 Psd: power spectral density of vectors

General Form:

psd ave vector1 [vector2] ...

Calculate the single sided power spectral density of signals (vectors) resulting from a transient
analysis. Windowing is available as described in the fft command (13.5.33). The FFT data are
squared, summarized, weighted and printed as total noise power up to Nyquist frequency, and
as noise voltage or current.

ave is the number of points used for averaging and smoothing in a postprocess, useful for noisy
data. A new plot vector is created that holds the averaged results of the FFT, weighted by the
frequency bin. The result can be plotted and has the units V^2/Hz or A^2/Hz, depending on the
the input vector.

13.5.61 Quit: Leave Ngspice

General Form:

quit
quit [exitcode]

Quit ngspice. Ngspice will ask for an acknowledgment if parameters have not been saved. If
unset askquit is specified, ngspice will terminate immediately.

The optional parameter exitcode is an integer that sets the exit code for ngspice. This is useful
to return a success/fail value to the operating system.

13.5. COMMANDS 421

13.5.62 Rehash: Reset internal hash tables

General Form:

rehash

Recalculate the internal hash tables used when looking up UNIX commands, and make all
UNIX commands in the user’s PATH available for command completion. This is useless unless
you have set unixcom first (see above).

13.5.63 Remcirc: Remove the current circuit

General Form:

remcirc

This command removes the current circuit from the list of circuits sourced into ngspice. To se-
lect a specific circuit, use setcirc (13.5.75). To load another circuit, refer to source (13.5.86).
The new active circuit will be the circuit on top of the list of the remaining circuits.

13.5.64 Remzerovec: Remove zero length vectors

General Form:

remzerovec

This command removes vectors of length zero from the current plot.

13.5.65 Reset: Reset an analysis

General Form:

reset

Throw out any intermediate data in the circuit (e.g, after a breakpoint or after one or more
analyses have been done), and re-parse the input file. The circuit can then be re-run from it’s
initial state, overriding the effect of any set or alter commands. These two need to be repeated
after the reset command.

Reset may be required in simulation loops preceding any run (or tran ...) command.

Reset is required after an alterparam command (13.5.5) for making the parameter change
effective.

422 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.66 Reshape: Alter the dimensionality or dimensions of a vector

General Form:

reshape vector vector ...
or
reshape vector vector ... [dimension, dimension, ...]
or
reshape vector vector ... [dimension][dimension] ...

This command changes the dimensions of a vector or a set of vectors. The final dimension
may be left off and it will be filled in automatically. If no dimensions are specified, then the
dimensions of the first vector are copied to the other vectors. An error message of the form
’dimensions of x were inconsistent’ can be ignored.

Example:

* generate vector with all (here 30) elements
let newvec=vector(30)

* reshape vector to format 3 x 10
reshape newvec [3][10]

* access elements of the reshaped vector
print newvec[0][9]
print newvec[1][5]
let newt = newvec[2][4]

Command reshape expects positive interger numbers to define the dimensions. Vectors (13.8.2)
or variables (13.8.1) are suitable, when transformed into numbers.

Example (using vectors and variables):

let ntasks=12 ; vector
set nparams=3 ; variable
let p=vector(36) ; new vector
reshape p[$&ntasks][$nparams] ; create format 12 x 3

13.5.67 Resume: Continue a simulation after a stop

General Form:

resume

Resume a simulation after a stop or interruption (control-C).

13.5. COMMANDS 423

13.5.68 Rspice*: Remote ngspice submission

General Form:

rspice <input file>

Runs a ngspice remotely taking the input file as a ngspice input file, or the current circuit if no
argument is given. Ngspice waits for the job to complete, and passes output from the remote
job to the user’s standard output. When the job is finished the data is loaded in as with aspice.
If the variable rhost is set, ngnutmeg connects to this host instead of the default remote ngspice
server machine. This command uses the rsh command and thereby requires authentication via
a .rhosts file or other equivalent method. Note that rsh refers to the ‘remote shell’ program,
which may be remsh on your system; to override the default name of rsh, set the variable
remote_shell. If the variable rprogram is set, then rspice uses this as the pathname to the
program to run on the remote system.

Note: rspice will not acknowledge elements that have been changed via the alter or altermod
commands.

13.5.69 Run: Run analysis from the input file

General Form:

run [rawfile]

Run the simulation as specified in the input file. If there were any of the control lines .ac, .op,
.tran, or .dc, they are executed. The output is put in rawfile if it was given, in addition to
being available interactively.

13.5.70 Rusage: Resource usage

General Form:

rusage [resource ...]

Print resource usage statistics. If any resources are given, just print the usage of that resource.
Most resources require that a circuit be loaded. Currently valid resources are

time Total Analysis Time

cputime The amount of time elapsed since the last rusage cputime call.

totalcputime Total elapsed time used so far.

decklineno Number of lines in deck

netloadtime Nelist loading time

netparsetime Netlist parsing time

424 CHAPTER 13. INTERACTIVE INTERPRETER

faults Number of page faults and context switches (BSD only).

space Data space used (output is depending on the operating system).

temp Operating temperature.

tnom Temperature at which device parameters were measured.

equations Number of circuit equations

totiter Total iterations

accept Accepted time-points

rejected Rejected time-points

loadtime Time spent loading the circuit matrix and RHS.

reordertime Matrix reordering time

lutime L-U decomposition time

solvetime Matrix solve time

trantime Transient analysis time

tranpoints Transient time-points

traniter Transient iterations

trancuriters Transient iterations for the last time point

tranlutime Transient L-U decomposition time

transolvetime Transient matrix solve time

everything All of the above.

all All of the above.

If rusage is given without any parameter, a sequence of outputs is printed using the following
rusage parameters: time, totalcputime, space.

13.5.71 Save: Save a set of outputs

General Form:

save [all | outvec ...]

Save a set of outputs, discarding the rest (if keyword all is not given). May be used to dramati-
cally reduce memory (RAM) requirements if only a few useful node voltages or branch currents
are saved.

13.5. COMMANDS 425

Node voltages may be saved by giving the nodename or v(nodename). Currents through an
independent voltage source are given by i(sourcename) or sourcename#branch. Internal de-
vice data (27.1) are accepted as @dev[param]. The syntax is identical to the .save command
(11.6.1).

Note: In the .controlendc section save must occur before the run or tran com-
mand to become effective.

If a node has been mentioned in a save command, it appears in the working plot after a run
has completed, or in the rawfile written by the write (13.5.107) command. For backward com-
patibility, if there are no save commands given, all outputs are saved. If you want to trace
(13.5.97) or plot (13.5.56) a node, you have to save it explicitly, except for all given or no save
command at all.

When the keyword all appears in the save command, all node voltages, voltage source currents
and inductor currents are saved in addition to any other vectors listed.

Save voltage and current:

save vd_node vs#branch v(vs_node) i(vs2)

Save allows storing and later access of internal device parameters. e.g. in a command like

Save internal parameters:

save all @mn1[gm]

saves all standard analysis output data plus gm of transistor mn1 to internal memory (see also
27.1).

save may store data from nodes or devices residing inside of a subcircuit:

Save voltage on node 3 (top level), node 8 (from inside subcircuit x2) and current through vmeas
(from subcircuit x1):

save 3 x1.x2.x1.x2.8 v.x1.x1.x1.vmeas#branch

Save internal parameters within subcircuit:

save @m.xmos3.mn1[gm]

Use commands listing expand (13.5.47, before the simulation) or display (13.5.25, after
simulation) to obtain a list of all nodes and currents available. Please see Chapt. 27 for an
explanation of the syntax for internal parameters.

Entering several save lines in a single .control section will accumulate the nodes and param-
eters to be saved. If you want to exclude a node, you have to get its number by calling status
(13.5.89) and then calling delete number (13.5.21).

Don’t save anything:

save none

426 CHAPTER 13. INTERACTIVE INTERPRETER

Useful if shared ngspice library is used and data are immediately transferred to the caller via
the shared ngspice interface.

Don’t save subcircuit internal nodes:

save nosub

Don’t save node vectors that are defined inside of a subcircuit. This may for example save a lot
of memory if you are not interested in the internals of a subcircuit device model.

Don’t save internal device nodes:

save nointernals

Don’t save internal device nodes issued by OpenVAF/OSDI Verilog-A models like PSP..

13.5.72 Sens: Run a sensitivity analysis

General Form:

sens output_variable [filter ...]
sens out_var [filter ...] ac (DEC|OCT|LIN) N Fstart Fstop

Perform a Sensitivity analysis: output_variable is either a node voltage (ex. v(1) or
v(A,out)) or a current through a voltage source (e.g. i(vtest)). The first form calculates
DC sensitivities, the second form AC sensitivities. The output values are in dimensions of
change in output per unit change of input (as opposed to percent change in output or per percent
change of input). See 11.3.7 for further details.

13.5.73 Set: Set the value of a variable

General Form:

set [word]
set [word = value] ...
set [word = (list of values)] ...

Set the value of word to value, if it is present. You can set any word to be any value: numeric,
string or list. If no value is given then the value is the Boolean ‘true’. If you enter a string,
you have to enclose it in double quotes. Set saves the lower case version of a word string but
the setcs variant of the command preserves case. If a variable is set to a list of values that are
enclosed in parentheses (which must be separated from their values by white space), the value
of the variable is the list.

The value of word may be inserted into a command by writing $word,or $word[index]for an
individual list element. The index may itself be a substitution: $word[$index].

The variables used by ngspice are listed in section 13.7.

13.5. COMMANDS 427

If a variable has the same name as a simulator option, setting it will also attempt to set the
option.

Set entered without any parameter will list all variables set, and their values, if applicable.

Be advised that set sets the lower case variant of word. An exceptions to this rule is the variable
sourcepath.

Set automatically tries to distinguish between values given as numbers, strings or lists. If a
string starts with a numerical value, like 2N5401_C and is not enclosed in double quotes, it is
interpreted as a real number 2n, i.e. 2e-9. The rest of the string is discarded.

A variable may be set to a value read from a file by I/O redirection.

Example:

set invar < infile.txt
echo $invar
echo $invar[2]
echo $invar[5]

With the input text file

infile.txt:

* testing set input from file
3
NeXt
4
5 and 7

you will get the output from echo

3 NeXt 4 5 and 7
NeXt
and

Lines starting with ’*’ are comment lines and will be ignored. Lines with multiple tokens are
stored as list vectors, lines with a single token as string.

Another option to set a variable from outside is the I/O redirection by backquotes or backticks
(see 13.10), if you run ngspice as a console application.

13.5.74 Setcs: Set the value of a variable, case preserved

General Form:

setcs [word]
setcs [word = value] ...

428 CHAPTER 13. INTERACTIVE INTERPRETER

Set the value of word to value, if it is present. You can set any word to be any value, numeric or
string. If no value is given then the value is the Boolean ‘true’. If you enter a string, you have
to enclose it in double quotes. Setcs keeps the case of a word string.

The value of word may be inserted into a command by writing $word. If a variable is set to
a list of values that are enclosed in parentheses (which must be separated from their values by
white space), the value of the variable is the list.

The variables used by ngspice are listed in section 13.7.

Setcs entered without any parameter will list all variables set, and their values, if applicable.

Setcs automatically tries to distinguish between values given as numbers, strings or lists. If a
string starts with a numerical value, like 2N5401_C and is not enclosed in double quotes, it is
interpreted as a real number 2n, i.e. 2e-9. The rest of the string is discarded.

13.5.75 Setcirc: Change the current circuit

General Form:

setcirc [circuit number]

The current circuit is the one that is used for the simulation commands below. When a circuit
is loaded with the source command (see below, 13.5.86) it becomes the current circuit.

Setcirc followed by ’return’ without any parameters lists all circuits loaded.

13.5.76 Setplot: Switch the current set of vectors

General Form:

setplot
setplot [plotname]
setplot previous
setplot next
setplot new

Set the current plot to the plot with the given name, or if no name is given, prompt the user
with a list of all plots generated so far. (Note that the plots are named as they are loaded, with
names like tran1 or op2. These names are shown by the setplot and display commands and
are used by diff, below.) If the ‘New’ item is selected, a new plot is generated that has no
vectors defined.

Note that here the word plot refers to a group of vectors that are the result of one ngspice run.
When more than one file is loaded in, or more than one plot is present in one file, ngspice keeps
them separate and only shows you the vectors in the current plot with the display (13.5.25)
command. setplot previous will show the previous plot in the plot list, if available, setplot
next the next plot. If not available, a warning is issued and the current plot stays active. Setplot
will also allow selecting the digital event nodes that have been created during the simulation
that made the analog plot.

13.5. COMMANDS 429

13.5.77 Setscale: Set the scale vector for the current plot

General Form:

setscale [vector1] [vector2]

The scale vector provides the values for the x-axis in a 2D plot. If no argument is given, the
current scale vector is printed. With one argument, defines the default scale vector for the
current plot. With two arguments, sets the specific scale vector of vector1 to be vector2. If
vector2 is “none” the scale vector for vector1 reverts to the plot’s default.

13.5.78 Setseed: Set the seed value for the random number generator

General Form:

setseed [number]

When this command is given, the seed value for the random number generator is set to number.
Number has to be an integer greater than 0. The random numbers retrieved after this command
are a sequence of pseudo random numbers with a huge period. Setting the seed value will
provide a reproducible sequence of random numbers, i.e. the same seed results in the same se-
quence. See also the options SEED and SEEDINFO in chapt. 11.1.1and chapt. 18 on statistical
circuit analysis..

13.5.79 Settype: Set the type of a vector

General Form:

settype type vector ...

Change the type of the named vectors to type. Type names can be found in the following table.

Type Unit Type Unit
notype - pole -
time s zero -

frequency Hz s-param -
voltage V temp-sweep Celsius
current A res-sweep Ohms

voltage-density V/
√

Hz impedance Ohms
current-density A/

√
Hz admittance S

voltage^2-density V²/Hz power W
current^2-density A²/Hz phase Degree

temperature Celsius decibel dB
charge C capacitance F

430 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.80 Shell: Call the command interpreter

General Form:

shell [command]

Call the operating system’s command interpreter; execute the specified command or call for
interactive use. The status returned by the command is stored in variable shellstatus.

13.5.81 Shift: Alter a list variable

General Form:

shift [varname] [number]

If varname is the name of a list variable, it is shifted to the left by number elements (i.e, the
number leftmost elements are removed). The default varname is argv, and the default number
is 1.

13.5.82 Show: List device state

General Form:

show devices [: parameters] , ...

The show command prints out tables summarizing the operating condition of selected devices.
If devices is missing, a default set of devices are listed, if devices is a single letter, devices
of that type are listed. A device’s full name may be specified to list only that device. Finally,
devices may be selected by model by using the form #modelname.

Because the output format is tabular, long strings, including device names, may be truncated.
The command “set altshow” selects an alternative output format without truncations.

If no parameters are specified, the values for a standard set of parameters are listed. If the list of
parameters contains a ‘+’, the default set of parameters is listed along with any other specified
parameters.

For both devices and parameters, the word all has the obvious meaning.

Note: there must be spaces around the ‘:’ that divides the device list from the parameter list.

13.5.83 Showmod: List model parameter values

General Form:

showmod models [: parameters] , ...

13.5. COMMANDS 431

The showmod command operates like the show command (above) but prints out model parameter
values. The applicable forms for models are a single letter specifying the device type letter (e.g.
m, or c), a device name (e.g. m.xbuf22.m4b), or #modelname (e.g. #p1).

Typical usage (e.g. for BSIM4 model):

showmod #cmosn #cmosp : lkvth0 vth0

Note: there must be spaces around the ‘:’ that divides the device list from the parameter list.

Obtain the default model parameters (e.g. for a BJT device):

netlist for default bipolar transistor
Q1 cc bb ee defbip
.model defbip npn
.control
op
showmod q1
.endc

op is required to set the data (otherwise all reported values are 0). The combination of the default
parameters and the parameters given in the .model line (This is what the simulator finally uses.)
are obtainable by showmod only after a simulation command (e.g. op).

13.5.84 Snload: Load the snapshot file

General Form:

snload circuit-file file

snload reads the snapshot file generated by snsave (13.5.85). circuit-file is the original circuit
input file. After reading, the simulation may be continued by resume (13.5.67).

An input script for loading circuit and intermediate data, resuming simulation and plotting is
shown below:

432 CHAPTER 13. INTERACTIVE INTERPRETER

Typical usage:

* SCRIPT: ADDER - 4 BIT BINARY

* script to reload circuit and continue the simulation

* begin with editing the file location

* to be started with ’ngspice adder_snload.script’

.control

* cd to where all files are located
cd D:\Spice_general\ngspice\examples\snapshot

* load circuit and snpashot file
snload adder_mos_circ.cir adder500.snap

* continue simulation
resume

* plot some node voltages
plot v(10) v(11) v(12)
.endc

Due to a bug we currently need the term ’script’ in the title line (first line) of the script.

13.5.85 Snsave: Save a snapshot file

General Form:

snsave file

If you run a transient simulation and interrupt it by e.g. a stop breakpoint (13.5.91), you may
resume simulation immediately (13.5.67) or store the intermediate status in a snapshot file by
snsave for resuming simulation later (using snload (13.5.84)), even with a new instance of
ngspice.

13.5. COMMANDS 433

Typical usage:

Example input file for snsave

* load a circuit (including transistor models and .tran command)

* starts transient simulation until stop point

* store intermediate data to file

* begin with editing the file location

* to be run with ’ngspice adder_mos.cir’

.include adder_mos_circ.cir

.control

*cd to where all files are located
cd D:\Spice_general\ngspice\examples\snapshot
unset askquit
set noinit

*interrupt condition for the simulation
stop when time > 500n

* simulate
run

* store snapshot to file
snsave adder500.snap
quit
.endc

.END

adder_mos_circ.cir is a circuit input file, including the netlist, .model and .tran statements.

Unfortunately snsave/snload will not work if you have XSPICE devices (or V/I sources with
polynomial statements) in your input deck.

13.5.86 Source: Read a ngspice input file

General Form:

source infile

For ngspice: read the ngspice input file infile, containing a circuit netlist. Ngspice control
commands may be included in the file, and must be enclosed between the lines .control and
.endc. These commands are executed immediately after the circuit is loaded, so a control
line of ac ... works the same as the corresponding .ac card. The first line in any input file
is considered a title line and not parsed but kept as the name of the circuit. Thus, a ngspice
command script in infile must begin with a blank line and then with a .control line. Also,
any line starting with the string ‘*#’ is considered as a control line (.control and .endc is
placed around this line automatically.). The exception to these rules are the files spinit (12.5)
and .spiceinit (12.6).

434 CHAPTER 13. INTERACTIVE INTERPRETER

For ngutmeg: reads commands from the file infile. Lines beginning with the character ‘*’ are
considered comments and are ignored.

The following search path is executed to find infile: current directory (OS dependent), <pre-
fix>/share/ngspice/scripts, env. variable NGSPICE_INPUT_DIR (if defined), see 12.7. This
sequence may be overridden by setting the internal sourcepath variable (see 13.7) before call-
ing source infile.

13.5.87 Sp: S-Parameter Analysis

General form:

sp dec nd fstart fstop <donoise>
sp oct no fstart fstop <donoise>
sp lin np fstart fstop <donoise>

Examples:

sp dec 10 1 10K
sp dec 10 1K 100MEG 1
sp lin 100 1 100HZ

For details please see chapter 11.3.8. the ports required are available as an option to the inde-
pendent voltage source VSRC (see4.1.11).

13.5.88 Spec: Create a frequency domain plot

General Form:

spec start_freq stop_freq step_freq vector [vector ...]

Calculates a new complex vector containing the Fourier transform of the input vector (typi-
cally the linearized result of a transient analysis). The default behavior is to use a Hanning
window, but this can be changed by setting the variables specwindow and specwindoworder
appropriately.

Typical usage:

ngspice 13 -> linearize
ngspice 14 -> set specwindow = "blackman"
ngspice 15 -> spec 10 1000000 1000 v(out)
ngspice 16 -> plot mag(v(out))

Possible values for specwindow are none, hanning, cosine, rectangular, hamming, triangle,
bartlet, blackman and gaussian. In the case of a Gaussian window specwindoworder is
a number specifying its order. For a list of window functions see 13.5.33.

13.5. COMMANDS 435

13.5.89 Status: Display breakpoint information

General Form:

status

Display all of the saved nodes and parameters, traces and breakpoints currently in effect.

13.5.90 Step: Run a fixed number of time-points

General Form:

step [number]

Iterate number times, or once, and then stop.

13.5.91 Stop: Set a breakpoint

General Form:

stop [after n] [when value cond value] ...

Set a breakpoint. The argument after n means stop after iteration number ‘n’, and the argument
when value cond value means stop when the first value is in the given relation with the
second value, the possible relations being

Symbol Alias Meaning
= eq equal to

<> ne not equal
> gt greater than
< lt less than

>= ge greater than or equal to
<= le less than or equal to

Symbol or alias may be used alternatively. All stop commands have to be given in the control
flow before the run command. The values above may be node names in the running circuit, or
real values. If more than one condition is given, e.g.

stop after 4 when v(1) > 4 when v(2) < 2,

the conjunction of the conditions is implied. If the condition is met, the simulation and control
flow are interrupted, and ngspice waits for user input.

In a transient simulation the ‘=’ or eq will only work with vector time in commands like

stop when time = 200n.

Internally, a breakpoint will be set at the time requested. Multiple breakpoints may be set. If the
first stop condition is met, the simulation is interrupted, the commands following run or tran
(e.g. alter or altermod) are executed, then the simulation may continue at the first resume

436 CHAPTER 13. INTERACTIVE INTERPRETER

command. The next breakpoint requires another resume to continue automatically. Otherwise
the simulation stops and ngspice waits for user input.

If you try to stop at

stop when V(1) eq 1

(or similar) during a transient simulation, you probably will miss this point, because it is not
very likely that at any time step the vector v(1) will have the exact value of 1. Then ngspice
simply will not stop.

13.5.92 Strcmp: Compare two strings

General Form:

strcmp _flag $string1 "string2"

The command compares two strings, either given by a variable (string1) or as a string in quotes
(‘string2’). _flag is set as an output variable to ’0’, if both strings are equal. A value greater
than zero indicates that the first character that does not match has a greater value in str1 than in
str2; and a value less than zero indicates the opposite (like the C strcmp function).

13.5.93 Strslice: Extract a substring

General Form:

strslice result input offset length

This command sets variable ’result’ to be a portion of string ’input’ starting at the given offset
and with the requested length. Offset and length should be integers. If offset is negative, it is
counted from the end of the input string.

13.5.94 Strstr: Find a substring

General Form:

strstr result "$haystack" needle

The command searches string variable ’haystack’ for a copy of string ’needle’. If successful,
variable ’result’ is set to the offset of the first match. Otherwise, the result is -1. As a special
case, if ’needle’ is the empty string, the result is the length of $haystack.

13.5.95 Sysinfo: Print system information

General Form:

sysinfo

13.5. COMMANDS 437

The command prints system information useful for sending bug report to developers. Informa-
tion consists of

• Name of the operating system,

• CPU type,

• Number of physical processors,

• Number of logical processors,

• Total amount of DRAM available,

• DRAM currently available.

The example below shows the use of this command.

ngspice 1 -> sysinfo
OS: CYGWIN_NT-5.1 1.5.25(0.156/4/2) 2008-06-12 19:34
CPU: Intel(R) Pentium(R) 4 CPU 3.40GHz
Logical processors: 2
Total DRAM available = 1535.480469 MB.
DRAM currently available = 984.683594 MB.
ngspice 2 ->

This command has been tested under Windows OS and Linux. It may not be available in your
operating system environment.

13.5.96 Tf: Run a Transfer Function analysis

General Form:

tf output_node input_source

The tf command performs a transfer function analysis, returning:

• the transfer function (output/input),

• output resistance,

• and input resistance

between the given output node and the given input source. The analysis assumes a small-signal
DC (slowly varying) input. The following example file

438 CHAPTER 13. INTERACTIVE INTERPRETER

Example input file:

* Tf test circuit
vs 1 0 dc 5
r1 1 2 100
r2 2 3 50
r3 3 0 150
r4 2 0 200

.control
tf v(3,5) vs
print all
.endc

.end

will yield the following output:

transfer_function = 3.750000e-001

output_impedance_at_v(3,5) = 6.662500e+001

vs#input_impedance = 2.000000e+002

13.5.97 Trace: Trace nodes

General Form:

trace [node ...]

For every step of an analysis, the value of the node is printed. Several traces may be active at
once. Tracing is not applicable for all analyses. To remove a trace, use the delete (13.5.21)
command.

13.5.98 Tran: Perform a transient analysis

General Form:

tran Tstep Tstop [Tstart [Tmax]] [UIC]

Perform a transient analysis. See Chapt. 11.3.10 of this manual for more details.

An interactive transient analysis may be interrupted by issuing a ctrl-c (control-C) command.
The analysis then can be resumed by the resume command (13.5.67). Several options may be
set to control the simulation (11.1.4).

13.5. COMMANDS 439

13.5.99 Transpose: Swap the elements in a multi-dimensional data set

General Form:

transpose vector vector ...

This command transposes a multidimensional vector. No analysis in ngspice produces multidi-
mensional vectors, although the DC transfer curve may be run with two varying sources. You
must use the reshape command to reform the one-dimensional vectors into two dimensional
vectors. In addition, the default scale is incorrect for plotting. You must plot versus the vec-
tor corresponding to the second source, but you must also refer only to the first segment of
this second source vector. For example (circuit to produce the transfer characteristic of a MOS
transistor):

How to produce the transfer characteristic of a MOS transistor:

ngspice > dc vgg 0 5 1 vdd 0 5 1
ngspice > plot i(vdd)
ngspice > reshape all [6,6]
ngspice > transpose i(vdd) v(drain)
ngspice > plot i(vdd) vs v(drain)[0]

13.5.100 Unalias: Retract an alias

General Form:

unalias [word ...]

Removes any aliases present for the words.

13.5.101 Undefine: Retract a definition

General Form:

undefine [function ...]
undefine *

Definitions for the named user-defined functions are deleted. If * is given, all user-defined
functions are deleted.

13.5.102 Unlet: Delete the specified vector(s)

General Form:

unlet [vector ...]

Delete the specified vector(s). See also let (13.5.45).

440 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.103 Unset: Clear a variable

General Form:

unset [word ...]
unset *

Clear the value of the specified variable(s) (word). If * is specified, all variables are cleared.

13.5.104 Version: Print the version of ngspice

General Form:

version [-s | -f | <version id>]

Print out the version of ngspice that is running, if invoked without argument or with -s or -f. If
the argument is a <version id> (any string different from -s or -f is considered a <version id>
), the command checks to make sure that the arguments match the current version of ngspice.
(This is mainly used as a Command: line in rawfiles.)

Options description:

• No option: The output of the command is the message you can see when running ngspice
from the command line, no more no less.

• -s(hort): A shorter version of the message you see when calling ngspice from the com-
mand line.

• -f(ull): You may want to use this option if you want to know what extensions are included
into the simulator and what compilation switches are active. A list of compilation options
and included extensions is appended to the normal (not short) message. May be useful
when sending bug reports.

The following example shows what the command returns in some situations:

13.5. COMMANDS 441

Use of the version command:

ngspice 10 -> version

** ngspice-39 : Circuit level simulation program

** The U. C. Berkeley CAD Group

** Copyright 1985-1994, Regents of the University
of California.

** Copyright 2001-2023, The ngspice team.

** Please get your ngspice manual from
https://ngspice.sourceforge.io/docs.html

** Please file your bug-reports at
https://ngspice.sourceforge.io/bugrep.html

** Creation Date: Mar 7 2023 17:25:48

ngspice 2 ->
ngspice 11 -> version 14
Note: rawfile is version 14 (current version is 39)
ngspice 12 -> version 39
ngspice 13 ->

Note for developers: The option listing returned when version is called with the
-f flag is built at compile time using #ifdef blocks. When new compile switches
are added, if you want them to appear on the list, you have to modify the code in
misccoms.c.

13.5.105 Where: Identify troublesome node or device

General Form:

where

When performing a transient or operating point analysis, the name of the last node or device to
cause non-convergence is saved. The where command prints out this information so that you
can examine the circuit and either correct the problem or generate a bug report. You may do this
either in the middle of a run or after the simulator has given up on the analysis. For transient
simulation, the iplot command can be used to monitor the progress of the analysis. When the
analysis slows down severely or hangs, interrupt the simulator (with control-C) and issue the
where command. Note that only one node or device is printed; there may be problems with
more than one node.

442 CHAPTER 13. INTERACTIVE INTERPRETER

13.5.106 Wrdata: Write data to a file (simple table)

General Form:

<set wr_singlescale>
<set wr_vecnames>
<option numdgt=7>
...
wrdata [file] [vecs]

Writes out the vectors to file.

This is a very simple printout of data in array form. Variables are written in pairs: scale vector,
value vector. If variable is complex, a triple is printed (scale, real, imag). If more than one
vector is given, the third column again is the default scale, the fourth the data of the second
vector. The default format is ASCII. All vectors have to stem from the same plot, otherwise a
segfault may occur. Setting wr_singlescale as variable, the scale vector will be printed only
once, if scale vectors are of the same length (you have to take care of that yourself). Setting
wr_vecnames as variable, scale and data vector names are printed on the first row. The number
of significant digits is set with option numdgt.

output example from two vectors:

0.000000e+00 -1.845890e-06 0.000000e+00 0.000000e+00
7.629471e+06 4.243518e-06 7.629471e+06 -4.930171e-06
1.525894e+07 -5.794628e-06 1.525894e+07 4.769020e-06
2.288841e+07 5.086875e-06 2.288841e+07 -3.670687e-06
3.051788e+07 -3.683623e-06 3.051788e+07 1.754215e-06
3.814735e+07 1.330798e-06 3.814735e+07 -1.091843e-06
4.577682e+07 -3.804620e-07 4.577682e+07 2.274678e-06
5.340630e+07 9.047444e-07 5.340630e+07 -3.815083e-06
6.103577e+07 -2.792511e-06 6.103577e+07 4.766727e-06
6.866524e+07 5.657498e-06 6.866524e+07 -2.397679e-06
....

If variable appendwrite is set, the data may be added to an existing file.

13.5.107 Write: Write data to a file (Spice3f5 format)

General Form:

write [file] [exprs]

Writes out the expressions to file.

First vectors are grouped together by plots, and written out as such (i.e. if the expression list
contained three vectors from one plot and two from another, then two plots are written, one
with three vectors and one with two). Additionally, if the scale for a vector isn’t present it is
automatically written out as well.

13.5. COMMANDS 443

The default format is a compact binary, but this can be changed to ASCII with the set file-
type=ascii command. The default file name is either rawspice.raw or the argument of the
optional -r flag on the command line, and the default expression list is all.

If variable appendwrite is set, the data may be added to an existing file. If variable nopadding
is set, fewer output values are written in each group as shorter vectors are exhausted. Otherwise
dummy zero values are inserted. The “dims=” flag in the header identifies vectors with non-
default length or dimensions. If variable keep#branch is set, vector names with “name#branch”
syntax are not converted to “i(name)” in the raw file header.

13.5.108 Wrnodev: Write node voltage values to a file (.ic=xx format)

General Form:

wrnodev [file]

Writes out the values of all voltage nodes to file. The format is .ic=xx. Thus the file may be
included into another simulation of the same circuit and deliver initial conditions for all voltage
nodes. For example you may start a transient simulation, stop it and use the current data to start
an ac simulation.

output example:

* Intermediate Transient Solution

* Circuit: KiCad schematic

* Recorded at simulation time: 3.9
.ic v(net-_d1a1-pad2_) = -31.2016
.ic v(-32) = -32
.ic v(out) = -0.267414
.ic v(net-_q5-pad2_) = -26.5798
.ic v(q5tj) = 132.521
.ic v(q5tc) = 105.091
...

The following control section snippet serves to save node voltage data at time 3.9 s and after
the end of the transient simulation.

usage example (write data):

stop when time=3.9
tran 20u 6
wrnodev $inputdir/F5ic1.txt
resume
wrnodev $inputdir/F5ic2.txt
...

The data may be reused by an .include command: The simulation now starts with the initial
condition given in the file.

444 CHAPTER 13. INTERACTIVE INTERPRETER

usage example (read data):

.include F5ic1.txt

...

13.5.109 Wrs2p: Write scattering parameters to file (Touchstone® for-
mat)

General Form:

wrs2p [file]

Writes out the s-parameters of a two-port to file.

In the active plot the following is required: vectors frequency, S_1_1, S_1_2, S_2_1, and
S_2_2, all having the same length and having complex values (as a result of an ac analysis), and
vector Rbase. For details how to generate these data see Chapt. 13.9.

The file format is Touchstone® Version 1, ASCII, frequency in Hz, real and imaginary parts of
S_n_n versus frequency.

The default file name is s-param.s2p.

output example:

!2-port S-parameter file
!Title: test for scattering parameters
!Generated by ngspice at Sat Oct 16 13:51:18 2010
Hz S RI R 50
!freq ReS11 ImS11 ReS21
2.500000e+06 -1.358762e-03 -1.726349e-02 9.966563e-01
5.000000e+06 -5.439573e-03 -3.397117e-02 9.867253e-01 ...

13.6 Control Structures

The following loops and examples are valid if put into a .controlendc section.

13.6.1 While - End

General Form:

while condition
statement
...
end

While condition, an arbitrary algebraic expression, is true, execute the statements.

13.6. CONTROL STRUCTURES 445

Example:

let loopindex = 0
while loopindex < 5
echo index is $&loopindex
let loopindex = loopindex + 1

end

Comment: let creates a vector. Convert vector loopindex to number (as required by echo) by
$&loopindex. The condition statement compares vectors.

13.6.2 Repeat - End

General Form:

repeat [number]
statement
...
end

Execute the statements number times, or forever if no argument is given.

Examples:

* plain number
repeat 3
echo How many loops? Count yourself!

end
echo

* variable
set loops = 7
repeat $loops
echo How many loops? $loops

end
echo

* vector
let loopvec = 4
repeat $&loopvec
echo How many loops? $&loopvec

end

Comment:

set creates a variable. repeat requires a number as parameter, either a plain number or con-
verted from vector by $&loopvec or converted from variable by $loops.

446 CHAPTER 13. INTERACTIVE INTERPRETER

13.6.3 Dowhile - End

General Form:

dowhile condition
statement
...
end

The same as while, except that the condition is tested after the statements are executed.

Example:

let loopindex = 0
dowhile loopindex <> 5
echo index is $&loopindex
let loopindex = loopindex + 1

end

13.6.4 Foreach - End

General Form:

foreach var value ...
statement
...
end

The statements are executed once for each of the values, each time with the variable var set to
the current value. (var can be accessed by the $var notation - see below).

Examples:

foreach val -40 -20 0 20 40
echo var is $val

end
echo
set myvariable = (-4 -2 0 2 4)
foreach var $myvariable
echo var is $var

end
echo
let myvec = vector(5)
foreach var $&myvec
echo var is $var

end

The values themselves may be set by a variable like myvariable or a vector like myvec.

13.6. CONTROL STRUCTURES 447

13.6.5 If - Then - Else

General Form:

if condition
statement
...
else
statement
...
end

If the condition is non-zero then the first set of statements are executed, otherwise the second
set. The else and the second set of statements may be omitted.

Example:

foreach val -40 -20 0 20 40
if $val < 0
echo variable $val is less than 0

else
echo variable $val is greater than or equal to 0

end
end
echo
let vec = 1
if vec = 1 ; if $&vec = 1 is possible as well
echo vec is $&vec

end

Comment: The condition may be evaluated by numbers or vectors. Variables have to be parsed
to numbers like $val.

13.6.6 Label

General Form:

label word

If a statement of the form goto word is encountered, control is transferred to this point, other-
wise this is a no-op.

13.6.7 Goto

General Form:

goto word

448 CHAPTER 13. INTERACTIVE INTERPRETER

If a statement of the form label word is present in the block or an enclosing block, control is
transferred there. Note that if the label is at the top level, it must be before the goto statement
(i.e, a forward goto may occur only within a block). A block to just include goto on the top
level may look like the following example.

Example noop block to include forward goto on top level:

if (1)
...
goto gohere
...
label gohere
end

13.6.8 Continue

General Form:

continue [n]

If there is a while, dowhile, or foreach block n levels of loops above the enclosing this
statement, control passes to the test controlling that loop, or in the case of foreach, the next
value for that loop is taken. If n is not specified, it is assumed to be 1 and acts on the loop
immediately enclosing the continue command. If the value of 0 is given, it treated as a no-op.

13.6.9 Break

General Form:

break [n]

If there is a while, dowhile, or foreach block n levels of loops above the enclosing this
statement, control passes out of the block. If n is not specified, it is assumed to be 1 and acts
on the loop immediately enclosing the break command. If the value of 0 is given, it treated as
a no-op.

Of course, control structures may be nested. When a block is entered and the input is the
terminal, the prompt becomes a number of >’s corresponding to the number of blocks the user
has entered. The current control structures may be examined with the debugging command
cdump (see 13.5.13).

13.7 Internally predefined variables

The operation of both ngutmeg and ngspice may be affected by setting variables with the set
command (13.5.73). In addition to the variables mentioned below, the set command also af-
fects the behavior of the simulator via the options previously described under the section on

13.7. INTERNALLY PREDEFINED VARIABLES 449

.OPTIONS (11.1). You also may define new variables or alter existing variables inside .control

... .endc for later use in a user-defined script (see Chapt. 13.8).

The following list is in alphabetical order. All of these variables are acknowledged by ngspice.
Frontend variables (e.g. on circuits and simulation) are not defined in ngnutmeg. The predefined
variables that may be set or altered by the set command are

addcontrol Set by ngspice if run with the -a command line parameter. When set, additional
lines are added to netlists to ensure that a simulation is run.

altshow When set, an alternate, non-tabular output format is used by the show and showmod
commands.

appendwrite Append to the file when a write command is issued, if one already exists.

askquit Check to make sure that there are circuits suspended or plots unsaved. ngspice warns
the user when he tries to quit if this is the case.brief If set to FALSE, the netlist will be
printed.

auto_bridge When set to zero, automatic insertion of bridging devices (8.7) is disabled.

auto_bridge_xxxx Variables of this general format are used to control insertion of automatic
bridging devices. See section 8.7.

batchmode Set by ngspice if run with the -b command line parameter. May be used in input
files to suppress plotting if ngspice runs in batch mode.

brief Suppresses automatic display of the processed netlist. It is set by default.

colorN These variables determine the colors used during plotting. Color values may be entered
as RGB values from 0 to 255 (hex or decimal) or stating a color name. The identification
number N may be an integer between 0 and 22. Color0 is the background, color1 is the
grid and text color, and color ids from 2 through 22 are used for graphs (vectors) plotted.
Hex color coding is done according to set colorN=rgb:r/g/b, where r, g, and b may
range from 00 to FF each. For example green is selected by set color3=rgb:00/FF/00.
Decimal coding is available as set colorN=rgbd:rd/gd/bd, where rd, gd, and bd may
range from 0 to 255. If X11 is being run (Linux, macOS, Cygwin), the value of the color
variables may be any of the standard X-Server color names, which may be found in file
/usr/lib/rgb.txt. ngspice GUI for Windows supports color names according to the
Naming Common Colors project. Details with more than 140 color names are to be found
in file wincolornames.h. An example is set color3=blue. If no color id is set, then
a predefined set of colors is applied automatically.

controlswait (only available with shared ngspice, chapt. 15.4.1.4) If the simulation is started
with the background thread (command bg_run), the .control section commands are exe-
cuted immediately after bg_run has been given, i.e. typically before the simulation has
finished. This often is not very useful because you want to evaluate the simulation results.
If controlswait is set in .spiceinit or spice.rc, the command execution is delayed until the
background thread has returned (aka the simulation has finished). If set controlswait
is given inside of the .control section, only the commands following this statement are
delayed.

https://www.codeproject.com/Articles/1276/Naming-Common-Colors

450 CHAPTER 13. INTERACTIVE INTERPRETER

cpdebug Print control debugging information.

csnumprec Allows setting the precision of values derived from vectors and variables (by $var,
$&vec) as arguments to functions listet in chapter 13.5. Default is 6, as has been standard
up to now. If functions are using directly a vector as input (without the tranfer to number
by $&), full double precision is used.

curplot (read only) Returns <type><no.> of the current plot. Type is one of tran, ac, op, sp,
dc, unknown, no. is a number, sequentially set internally. This information is used to
uniquely identify each plot.

curplotdate Sets the date of the current plot.

curplotname Sets the name of the current plot.

curplottitle Sets the title (a short description) of the current plot.

debug If set then a lot of debugging information is printed.

device The name (/dev/tty??) of the graphics device. If this variable isn’t set then the
user’s terminal is used. To do plotting on another monitor you probably have to set both
the device and term variables. (If device is set to the name of a file, nutmeg dumps the
graphics control codes into this file – this is useful for saving plots.)

diff_abstol The relative tolerance used by the diff command (default is 1e-12).

diff_reltol The relative tolerance used by the diff command (default is 0.001).

diff_vntol The absolute tolerance for voltage type vectors used by the diff command (default
is 1e-6).

digital_delay_type Controls the behaviour of XSPICE digital elements that support the
inertial_delay parameter.

echo Print out each command before it is executed.

editor The editor to use for the edit command.

enable_noisy_r A user definable variable (for .spiceinit) to enable noise calculation for all
behavioral resistors. May locally be switched off by instance parameter noisy=0. If
enable_noisy_r is not set, noise simulation may locally be enabled by instance param-
eter noisy=1.

filetype This can be either ascii or binary, and determines the format of the raw file (com-
pact binary or text editor readable ascii). The default is binary. CIDER output (26.14)
may be binary or ascii as well.

fourgridsize How many points to use for interpolating into when doing Fourier analysis.

fournosave suppresses vector generation from THD calculation with ’four’ (13.5.35) com-
mand.

13.7. INTERNALLY PREDEFINED VARIABLES 451

gridsize If this variable is set to an integer, this number is used as the number of equally
spaced points to use for the Y axis when plotting. Otherwise the current scale is used
(which may not have equally spaced points). If the current scale isn’t strictly monotonic,
then this option has no effect.

gridstyle Sets the grid during plotting with the plot command. Will be overridden by direct
entry of gridstyle in the plot command. A linear grid is standard for both x and y axis.
Allowed values are lingrid loglog xlog ylog smith smithgrid polar nogrid.

hcopydev If this is set, when the hardcopy command is run the resulting file is automatically
printed on the printer named hcopydev with the command lpr -Phcopydev -g file.

hcopyfont This variable specifies the font name for hardcopy output plots. The value is device
dependent.

hcopyfontsize This is a scaling factor for the font used in hardcopy plots.

hcopydevtype This variable specifies the type of the printer output to use in the hardcopy com-
mand. If hcopydevtype is not set, Postscript format is assumed. plot (5) is recognized
as an alternative output format. When used in conjunction with hcopydev, hcopydevtype
should specify a format supported by the printer.

hcopyscale This is a scaling factor for the font used in hardcopy plots (between 0 and 10).

hcopywidth Sets width of the hardcopy plot.

hcopyheight Sets height of the hardcopy plot.

hcopypscolor Sets the color of the hardcopy output. If not set, black & white plotting is
assumed with different linestyles for each output vector. A valid color integer value yields
a colored plot background (0: black 1: white, others see below). and colored solid lines.
This is valid for Postscript only.

hcopypstxcolor This variable sets the color of the text in the Postscript hardcopy output. If
not set, black on white background is assumed, else it will be white on black background.
Valid colors are 0: black 1: white 2: red 3: blue 4: orange 5: green 6: pink 7: brown 8:
khaki 9: plum 10: orchid 11: violet 12: maroon 13: turquoise 14: sienna 15: coral 16:
cyan 17: magenta 18: gray (for smith grid) 19: gray (for smith grid) 20: gray (for normal
grid).

height The length of the page for asciiplot and print col.

history The number of events to save in the history list.

histsubst Set to enable history substitution in the command interpreter (13.5.41).

inputdir The directory path of the last input file. It may be used to direct outputs into a
directory relative to the input (even the into the same directory) by e.g. the command
write $inputdir/outfile.raw vec1 vec2.

interactive If interactive is set, numparam error handling may be done manually with
user input from the console. If not, ngspice will exit upon a numparam error.

452 CHAPTER 13. INTERACTIVE INTERPRETER

keep#branch If keep#branch is set, the rawfile output for branch currents is 1 v1#branch
current for example, not 1 i(v1) current. This retains compatibility with software
like ICCAP.

lprplot5 This is a printf(3s) style format string used to specify the command to use for
sending plot(5)-style plots to a printer or plotter. The first parameter supplied is the
printer name, the second parameter is a file name containing the plot. Both parameters
are strings.

lprps This is a printf(3s) style format string used to specify the command to use for sending
Postscript plots to a printer or plotter. The first parameter supplied is the printer name,
the second parameter is the file name containing the plot. Both parameters are strings.

measoutfile Add command set measoutfile=<path/filename> to .spiceinit or to a .con-
trol section in the netlist to save .measure results from batch mode in a file.

modelcard The name of the model card (normally .MODEL)

moremode If moremode is set, whenever a large amount of data is being printed to the screen
(e.g, the print or asciiplot commands), the output is stopped every screenful and
continues when a carriage return is typed. If moremode is unset, then data scrolls off the
screen without pausing.

nfreqs The number of frequencies to compute in the Fourier command. (Defaults to 10.)

ngbehavior Sets the compatibility mode of ngspice. Default value is ’all’. To be set in spinit
(12.5) or .spiceinit (12.6). A value of ’all’ improves compatibility with commercial
simulators. Full compatibility is however not the intention of ngspice! The values ’ps’,
’psa’, ’lt’, ’lta’, ’hs’ and ’spice3’ are available. See Chapt. 12.14.

ngdebug enables several debugging printouts (see 12.16).

nginfo Enables a status report during simulation (currently available only with MS Windows
GUI version).

ng_nomodcheck Suppresses any model parameter check, if set.

no_auto_gnd Setting this boolean variable by set no_auto_gnd in spinit or .spiceinit, ngspice
will refrain from replacing all nodes named gnd by node 0. In using this setting, you will
have to take care of proper zeroing appropriate ground nodes. If you fail to do so, ngspice
may crash, or deliver wrong results.

nobreak Don’t have asciiplot and print col break between pages.

noasciiplotvalue Don’t print the first vector plotted to the left when doing an asciiplot.

nobjthack BJTs can have either 3 or 4 nodes, which makes it difficult for the subcircuit ex-
pansion routines to decide what to rename. If the fourth parameter has been declared as a
model name, then it is assumed that there are 3 nodes, otherwise it is considered a node.
To disable this, you can set the variablenobjthack and force BJTs to have 4 nodes (for
the purposes of subcircuit expansion, at least).

noclobber Don’t overwrite existing files when doing IO redirection.

13.7. INTERNALLY PREDEFINED VARIABLES 453

noglob Don’t expand the global characters ‘*’, ‘?’, ‘[’, and ‘]’. This is the default.

nolegend Don’t plot the legend, when using the plot command..

nonomatch If noglob is unset and a global expression cannot be matched, use the global char-
acters literally instead of complaining.

nopadding Don’t insert padding values in raw files.

noparse Don’t attempt to parse input files when they are read in (useful for debugging). Of
course, they cannot be run if they are not parsed.

noprintscale Don’t print the scale in the leftmost column when a print col command is
given.

nosavecurrents If set by ’set nosavecurrents’ and followed by ’reset’, the setting of
internal current vectors (.options savecurrents) is suppressed. This is useful in ac
simulation which does not support ’options savecurrents’ and you have a mix of
several simulations in a single script.

nosort Don’t let display sort the variable names.

nostepsizelimit The maximum step size during transient simulation is per default limited
to tstep given by .tran tstep tstop <tstart <tmax>> (11.3.10, 13.5.98). It may be over-
ridden and set to a value of (tstop - tstart)/50 by adding ’set nostepsizelimit’ to
.spiceinit. Both may be overriden by setting tmax on the .tran line.

nosubckt Don’t expand subcircuits.

notrnoise Switch off the transient noise sources (Chapt. 4.1.7).bg

nounits Plotting of the units token for the x and y axes of a graph is suppressed. Units may
be added manually to the y and x labels for SI conformity.

numdgt The number of digits to use when printing tables of data (print col). The default
precision is 6 digits. On the PC, approximately 16 decimal digits are available using
double precision, so p should not be more than 16. If the number is negative, one fewer
digit is printed to ensure constant widths in tables.

num_threads The number of of threads to be used if OpenMP (see Chapt. 12.10) is selected.
The default value is 2.

oscompiled is set during ngspice compilation and returns a number corresponding to the op-
erating environment used during compilation. 0 Other, 1 MINGW for MS Windows,
2 Cygwin for MS Windows, 3 FreeBSD, 4 OpenBSD, 5 Solaris, 6 Linux, 7 macOS, 8
Visual Studio for MS Windows .

osdi_enabled is set by ngspice upon start-up when the OSDI interface (9.2) is compiled in.

plainlet Command let (13.5.45) will executed without evaluating any expression in its com-
mand line. This is useful if characters like ’/’ are part of the vector names, e.g. as issued
by KiCad. Setting plainlet may be used to rename a vector including such math char-
acters into a vector using only standard characters. Then standard plot, print, and write
commands may be applied to this renamed vector.

454 CHAPTER 13. INTERACTIVE INTERPRETER

plainplot Command plot (13.5.56) will executed without evaluating any expression in its
command line. This is useful if characters like ’/’ are part of the vector names.

plainwrite Command write (13.5.107) will executed without evaluating any expression in
its command line. This is useful if characters like ’/’ are part of the vector names.

plotstyle This should be one of linplot, combplot, or pointplot. linplot, the default,
causes points to be plotted as parts of connected lines. combplot causes a comb plot to be
done. It plots vectors by drawing a vertical line from each point to the X-axis, as opposed
to joining the points. pointplot causes each point to be plotted separately.

pointchars Set a string as a list of characters to be used as points in a point plot. Standard is
‘ox*+#abcdefhgijklmnpqrstuvwyz’. Some characters are forbidden.

polydegree The degree of the polynomial that the plot command should fit to the data. If
polydegree is N, then ngspice fits a degree N polynomial to every set of N points and
draws 10 intermediate points in between each end point. If the points aren’t monotonic,
then ngspice tries to rotate the curve and reduce the degree until a fit is achieved.

polysteps The number of points to interpolate between every pair of points available when
doing curve fitting. The default is 10.

program The name of the current program (argv[0]).

prompt The prompt, with the character ‘!’ replaced by the current event number. Single quotes
’ ’ are required around the specified string unless you really want it expanded.

ps_scan_gates_optimize (default 1). If < 1, then turn off the optimizations in scan_gates.

rawfile The default name for created rawfiles.

remote_shell Overrides the name used for generating rspice runs (default is rsh).

renumber Renumber input lines when an input file has .includes.

rndseed Seed value for random number generator (used by sgauss, sunif, and rnd func-
tions). It is set by the option command ’option seed=val|random’.

rhost The machine to use for remote ngspice runs, instead of the default one (see the descrip-
tion of the rspice command, below).

rprogram The name of the remote program to use in the rspice command.

rsdiode A series resistance in all diodes models may be set, if none is given in the model
parameter set..

sharedmode Variable is set when ngspice runs in its shared mode (from ngspice.dll or ngspice_xx.so).
May be used in universal input files to suppress plotting because a graphics interface is
lacking.

shellstatus Contains the status returned by the last “shell” command.

silent_fileio If set, the fopen and fread commands do not print error messages. Errors are
still reported by setting a variable.

13.7. INTERNALLY PREDEFINED VARIABLES 455

sim_status will bet set to 0 when the simulation starts. If there is an error and the simulation
fails with ’xx simulation(s) aborted’, then sim_status is set to 1. The variable can be
used in scripted loops within a transient simulation to allow special handling e.g. in case
of non-convergence.

skywaterpdk will speed up the loading of large PDKs (tested with Skywater 130) by avoiding
some checks during library loading. When set, ngspice assumes that all MOS devices
have exactly 4 terminals. It does not look for unquoted parameters, so assumes that all
parameters are quoted correctly by { } or ’ ’.

sourcepath A list of the directories to search when a source command is given, or .include
or .lib is processed. The default is the current directory and the standard ngspice li-
brary (/usr/local/lib/ngspice, or whatever LIBPATH is #defined to in the ngspice
source). The command
setcs sourcepath = (e:/ D:/ . c:/Spice/Examples)
will overwrite the default. setcs is used to keep upper case letters. The search sequence
now is: current directory, e:/, D:/, current directory (again due to .), c:/Spice/Examples.
’Current directory’ is depending on the OS. The command
setcs sourcepath = (D:/mypath/input $sourcepath)
will add another path entry in front of the already existing list of paths. This feature may
be used with shared ngspice (15) to send a input path to code models which require file
input, like d_source. Only the first entry in the sourcepath list is sent to the code models,
however.

specwindow Windowing for commands spec (13.5.88) or fft (13.5.33). May be one of the
following: bartlet blackman cosine gaussian hamming hanning none rectangular
triangle.

specwindoworder Integer value 2 - 8 (default 2), used by commands spec or fft.

spicepath The program to use for the aspice command. The default is /cad/bin/spice.

sqrnoise If set, noise data outputs will be given as V 2/Hz or A2/Hz, otherwise as the usual
V/

√
Hz or A/

√
Hz.

strict_errorhandling If set by the user, an error detected during circuit parsing will imme-
diately lead ngspice to exit with exit code 1 (see 14.5). May be set in files spinit (12.5) or
.spiceinit (12.6) only.

subend The card to end subcircuits (normally .ends).

subinvoke The prefix to invoke subcircuits (normally X).

substart The card to begin subcircuits (normally .subckt).

term The mfb name of the current terminal.

ticchar A character applied as a tic mark (replaces the default ’x’).

ticmarks An integer value n, every n data points a tic (default: a small ’x’) will be set on your
graph.

456 CHAPTER 13. INTERACTIVE INTERPRETER

ticlist A list of integers, e.g. (4 14 24), selects data points to set tics (small ’x’) on your
graph.

units If this is degrees, then all the trig functions will use degrees instead of radians.

unixcom If a command isn’t defined, try to execute it as a UNIX command. Setting this option
has the effect of giving a rehash command, below. This is useful for people who want to
use ngspice as a login shell.

wfont Set the font for the graphics plot in MS Windows. Typical fonts are courier, times,
arial and all others found on your machine. Default is courier.

wfont_size The size of the windows font. The default depends on system settings.

width The width of the page for asciiplot and print col (see also 11.6.7).

win_console is set when ngspice runs in a console under Windows.

wr_onespace Command wrdata: Print data with one space only in between, not by collumns
with fixed width.

wr_singlescale Command wrdata: The scale vector will be printed only once, if all scale
vectors are of the same length.

wr_vecnames Command wrdata: Scale and data vector names are printed on the first row.

x11lineararcs Some X11 implementations have poor arc drawing. If you set this option,
ngspice will plot using an approximation to the curve using straight lines.

xbrushwidth Linewidth for graph (see xgridwidth for border and grid). Valid for MS Win-
dows GUI, X11, gnuplot and Postscript.

xgridwidth Linewidth for border and grid. Valid for MS Windows GUI, X11, gnuplot and
Postscript.

xfont Set the font for text (x and y labels, axis values) in the graphics plot in X11 (Linux,
Cygwin, macOS etc.). The command fc-list | cut -f2 -d: | sort -u | less
-r lists the font names that are installed on the computer and are suited for this variable.
Use xfont with the setcs command to keep lower case and upper case characters, e.g. in
setcs xfont=’Noto Sans CJK JP’. The’Noto Sans’ font family is very well suited,
covering Western and Asian fonts. Also valid for gnuplot and Postscript.

xfont_size The size of the X11 font. The default depends on system settings.

xspice_enabled is set by ngspice upon start-up, when the XSPICE option (II) for using code
models is compiled in.

xtrtol Set trtol, e.g. to 7, to avoid the default speed reduction (accuracy increase) for
XSPICE (see 12.9). Be aware of potential precision degradation or convergence issues
using this option.

https://www.google.com/get/noto/

13.8. SCRIPTS 457

13.8 Scripts

Ngspice is started in batch or interactive mode with an input file on the command line. Input
files may also be sourced later with the source command or by using the script name as a
command. The ngspice input file contains the usual circuit netlist, model cards, and may also
contain a command script, enclosed in a .control .. .endc section. Expressions, functions,
constants, commands, variables, vectors, and control structures may be assembled into such
scripts.

Scripting allows automation of any ngspice task: simulations to perform, output data to analyze,
repeat simulations with modified parameters, assemble output plot vectors. The ngspice script-
ing language is not very powerful, but well integrated into the simulation flow. After reading
the input file, any command sequences are immediately processed. Variables or vectors set by
previous commands may be referenced by the commands following them. Data can be stored,
plotted or grouped into new vectors for either plotting or other means of data evaluation.

An input file may contain only a title and the .control .. .endc section: it is a pure script.
The need for a title (that may be blank) is an unfortunate result of the source command being
used for both circuit input and command file execution. Note that this does allow the user to
merely type the name of a circuit file as a command and it is automatically run. The commands
are executed immediately, without running any analyses that may be specified in the circuit (to
execute the analyses before the script executes, include a run command in the script).

An alternative way to indicate a pure script is to put *ng_script in the first line, the rest
of the file is then treated as if it were inside a control section. As a special case, if a script
file begins with *ng_script_with_params and it was the first non-option argument on the
ngspice command line, then remaining command arguments are treated as script arguments,
not additional netlists.

Before a script is read, the variables argc and argv are set to the number of words following
the file-name on the command line, and a list of those words respectively. Individual script
arguments may be accessed as $1, $2 etc. After the file is finished, these variables are unset.
Note that if a command file calls another, it must save its argv and argc since they are altered.
Also, command files may not be re-entrant since there are no local variables. Of course, the
procedures may explicitly manipulate a stack ...; that way one can write scripts analogous to
shell scripts for ngspice.

13.8.1 Variables

Variables are defined and initialized with the set command (13.5.73). set output=10 defines
the variable output and sets it to the number 10. Predefined variables, which are used inside
ngspice for specific purposes, are listed in Chapt. 13.7. Variables are accessible globally. The
values of variables may be used in commands by writing $varname where the value of the
variable is to appear, e.g. $output. If a variable is substituted that is not defined internally, but
is defined in the program environment, then the external value is used. The special variable $$
refers to the process ID of the program. With $< a line of input is read from the terminal.

If a variable is assigned with $&word, then word must be a vector (see below), and word’s
numeric value is taken to be the new value of the variable.

Variables may have a value that is a list of values. If foo is a valid variable, and is of type
list, then the expression $foo[low-high] expands to a range of elements. Either the upper or

458 CHAPTER 13. INTERACTIVE INTERPRETER

lower index may be left out, and in addition to slicing also reversing of a list is possible through
$foo[len-0] (len is the length of the list, the first valid index is always 1).

Furthermore, the notation $?foo evaluates to 1 if the variable foo is defined, 0 otherwise, and
$#foo evaluates to the number of elements in foo if it is a list, 1 if it is a number or string, and
0 if it is a Boolean variable.

13.8.2 Vectors

Ngspice data is in the form of vectors: time, voltage, etc. Each vector has a type, and vectors
can be operated on and combined algebraically in ways consistent with their types. Vectors are
normally created as a result of a transient or dc simulation. They are also established when a
data file is read in (see the load command 13.5.48), or they are created with the let command
13.5.45 inside a script. If a variable x is assigned something of the form $&word, then word has
to be a vector, and the numeric value of word is transferred into the variable x.

13.8.3 Assessing vectors in subcircuits

Node voltages and branch currents from within a subcircuit may be read with a special syntax.
After circuit parsing, subcircuits are expanded, their names have become part of each node
name.

Input file example with nested subcircuits:

* test node names from subcircuits
Xsub1 a b sub1

.subckt sub1 n11 n12
Xsub2 n11 n12 sub2
R11 n11 int1 1k
R12 n12 int1 1k
.ends

.subckt sub2 n21 n22
R21 n21 int2 1k
R22 n22 int2 1k
.ends

.end

Subcircuit instance Xsub1 calls subcircuit sub1 which contains a subcircuit instance Xsub2
calling sub2 which contains node int2.

Internal circuit resulting from subcircuit expansion:

r.xsub1.xsub2.r21 a xsub1.xsub2.int2 1k
r.xsub1.xsub2.r22 b xsub1.xsub2.int2 1k
r.xsub1.r11 a xsub1.int1 1k
r.xsub1.r12 b xsub1.int1 1k

13.8. SCRIPTS 459

After expansion the subcircuits have disappeared. We now have extended node (aka vector)
names like xsub1.int1 or xsub1.xsub2.int2. The top level subcircuit call name is followed
by node name, separated by a dot. Or the top level subcircuit call name is followed second level
subciruit call name, then followed by node name, each again separated by a dot. You may now
assess the node int2 values in a script by

print v(xsub1.xsub2.int2)

Also the device instances have got their subcircuit information added to their names in a similar
way. In addition the type identifier letter (e.g. R for resistor) has been put in front. So the
resistor instances now are called r.xsub1.r11 or r.xsub1.xsub2.r22.

13.8.4 Commands

Commands have been described in Chapt. 13.5.

13.8.5 control structures

Control structures have been described in Chapt. 13.6. Some simple examples will be given
below.

460 CHAPTER 13. INTERACTIVE INTERPRETER

Control structure examples:

Test sequences for ngspice control structures

*vectors are used (except foreach)

*start in interactive mode

.control

* test sequence for while, dowhile
let loop = 0
echo
echo enter loop with "$&loop"
dowhile loop < 3
echo within dowhile loop "$&loop"
let loop = loop + 1

end
echo after dowhile loop "$&loop"
echo
let loop = 0
while loop < 3
echo within while loop "$&loop"
let loop = loop + 1

end
echo after while loop "$&loop"
let loop = 3
echo
echo enter loop with "$&loop"
dowhile loop < 3
echo within dowhile loop "$&loop" $ output expected
let loop = loop + 1

end
echo after dowhile loop "$&loop"
echo
let loop = 3
while loop < 3
echo within while loop "$&loop" $ no output expected
let loop = loop + 1

end
echo after while loop "$&loop"

13.8. SCRIPTS 461

Control structure examples (continued):

* test for while, repeat, if, break
let loop = 0
while loop < 4
let index = 0
repeat
let index = index + 1
if index > 4
break

end
end
echo index "$&index" loop "$&loop"
let loop = loop + 1

end

* test sequence for foreach
echo
foreach outvar 0 0.5 1 1.5
echo parameters: $outvar $ foreach parameters are variables,

$ not vectors!
end

* test for if ... else ... end
echo
let loop = 0
let index = 1
dowhile loop < 10
let index = index * 2
if index < 128
echo "$&index" lt 128

else
echo "$&index" ge 128

end
let loop = loop + 1

end

* simple test for label, goto
echo
let loop = 0
label starthere
echo start "$&loop"
let loop = loop + 1
if loop < 3
goto starthere

end
echo end "$&loop"

462 CHAPTER 13. INTERACTIVE INTERPRETER

Control structure examples (continued):

* test for label, nested goto
echo
let loop = 0
label starthere1
echo start nested "$&loop"
let loop = loop + 1
if loop < 3
if loop < 3
goto starthere1

end
end
echo end "$&loop"

* test for label, goto
echo
let index = 0
label starthere2
let loop = 0
echo We are at start with index "$&index" and loop "$&loop"
if index < 6
label inhere
let index = index + 1
if loop < 3
let loop = loop + 1
if index > 1
echo jump2
goto starthere2

end
end
echo jump
goto inhere

end
echo We are at end with index "$&index" and loop "$&loop"

13.8. SCRIPTS 463

Control structure examples (continued):

* test goto in while loop
let loop = 0
if 1 $ outer loop to allow nested forward label ’endlabel’
while loop < 10
if loop > 5
echo jump
goto endlabel

end
let loop = loop + 1

end
echo before $ never reached
label endlabel
echo after "$&loop"

end

* test for using variables, simple test for label, goto
set loop = 0
label starthe
echo start $loop
let loop = $loop + 1 $ expression needs vector at lhs
set loop = "$&loop" $ convert vector contents to variable
if $loop < 3
goto starthe

end
echo end $loop

.endc

13.8.6 Example script ’spectrum’

A typical example script named spectrum is delivered with the ngspice distribution. Even if
it is made obsolete by the internal spec command (see 13.5.88), and especially by the much
faster fft command (see 13.5.33), it is a good example for getting acquainted with the ngspice
control (and post-processor) language.

As a suitable input for spectrum you may run a ring-oscillator, delivered with ngspice in e.g.
test/bsim3soi/ring51_41.cir. For an adequate resolution a simulation time of 1µs is needed. A
small control script starts ngspice by loading the R.O. simulation data and executing spectrum.

Small script to start ngspice, read the simulation data and start spectrum:

* test for script ’spectrum’
.control
load ring51_41.out
spectrum 10MEG 2500MEG 1MEG v(out25) v(out50)
.endc

464 CHAPTER 13. INTERACTIVE INTERPRETER

13.8. SCRIPTS 465

13.8.7 Example script for random numbers

Generation and test of random numbers with Gaussian distribution

* agauss test in ngspice

* generate a sequence of gaussian distributed random numbers.

* test the distribution by sorting the numbers into

* a histogram (buckets)
.control
define agauss(nom, avar, sig) (nom + avar/sig * sgauss(0))
let mc_runs = 200
let run = 0
let no_buck = 8 $ number of buckets
let bucket = unitvec(no_buck) $ each element contains 1
let delta = 3e-11 $ width of each bucket, depends

$ on avar and sig
let lolimit = 1e-09 - 3*delta
let hilimit = 1e-09 + 3*delta

dowhile run < mc_runs
let val = agauss(1e-09, 1e-10, 3) $ get the random number
if (val < lolimit)

let bucket[0] = bucket[0] + 1 $ ’lowest’ bucket
end
let part = 1
dowhile part < (no_buck - 1)
if ((val < (lolimit + part*delta)) &

+ (val > (lolimit + (part-1)*delta)))
let bucket[part] = bucket[part] + 1

break
end
let part = part + 1

end
if (val > hilimit)

* ’highest’ bucket
let bucket[no_buck - 1] = bucket[no_buck - 1] + 1

end
let run = run + 1

end

let part = 0
dowhile part < no_buck
let value = bucket[part] - 1
set value = "$&value"

* print the bucket’s contents
echo $value
let part = part + 1

end

.endc

.end

466 CHAPTER 13. INTERACTIVE INTERPRETER

13.8.8 Parameter sweep

While there is no direct command to sweep a device parameter during simulation, you may use
a script to emulate such behavior. The example input file contains of an resistive divider with
R1 and R2, where R1 is swept from a start to a stop value inside of the control section, using
the alter command (see 13.5.3).

Input file with parameter sweep

parameter sweep

* resistive divider, R1 swept from start_r to stop_r
VDD 1 0 DC 1

R1 1 2 1k
R2 2 0 1k

.control
let start_r = 1k
let stop_r = 10k
let delta_r = 1k
let r_act = start_r

* loop
while r_act le stop_r
alter r1 r_act
op
print v(2)
let r_act = r_act + delta_r

end
.endc

.end

13.8.9 Output redirection

The console outputs delivered by commands like print (13.5.59), echo (13.5.26), or others may
be redirected into a text file. ’print vec > filename’ will generate a new file or overwrite
an existing file named ’filename’, ’echo text >> filename’ will append the new data to the
file ’filename’. Output redirection may be mixed with commands like wrdata.

13.8. SCRIPTS 467

Input file with output redirection > and >>

** MOSFET Gain Stage (AC):

** Benchmarking Implementation of BSIM4.0.0

** by Weidong Liu 5/16/2000.

** output redirection into file

M1 3 2 0 0 N1 L=1u W=4u
Rsource 1 2 100k
Rload 3 vdd 25k
Vdd vdd 0 1.8
Vin 1 0 1.2 ac 0.1

.control
ac dec 10 100 1000Meg
plot v(2) v(3)
let flen = length(frequency) $ length of the vector
let loopcounter = 0
echo output test > text.txt $ start new file test.txt

* loop
while loopcounter lt flen
let vout2 = v(2)[loopcounter] $ generate a single point

$ complex vector
let vout2re = real(vout2) $ generate a single point

$ real vector
let vout2im = imag(vout2) $ generate a single point

$ imaginary vector
let vout3 = v(3)[loopcounter] $ generate a single

$ point complex vector
let vout3re = real(vout3) $ generate a single point

$ real vector
let vout3im = imag(vout3) $ generate a single point

$ imaginary vector
let freq = frequency[loopcounter] $ generate a single point vector
echo bbb "$&freq" "$&vout2re" "$&vout2im"

+ "$&vout3re" "$&vout3im" >> text.txt
$ append text and
$ data to file
$ (continued from line above)

let loopcounter = loopcounter + 1
end
.endc

.MODEL N1 NMOS LEVEL=14 VERSION=4.8.1 TNOM=27

.end

468 CHAPTER 13. INTERACTIVE INTERPRETER

13.9 Scattering parameters (S-parameters)

13.9.1 Intro

ngspice supports calculating, printing and plotting of the scattering parameters in two fash-
ions.

Intrinsic commands (.sp, see 11.3.8 and sp, see 13.5.87) will generate S-parameters versus
frequency from any suitable multi-port circuit at varying frequencies. Besides the s matrix
(with S_1_1, S_2_1, S_1_2, and S_2_2 for a two-port circuit), the Y and T matrix vector values
are calculated and saved as well.

A command line script, available from the ngspice distribution at examples/control_structs/s-
param.cir, creates S-parameters S_1_1, S_2_1, S_1_2, and S_2_2 of any two port circuit.

The printed output using wrs2p (see Chapt. 13.5.109) is a Touchstone® version 1 format file.
The file follows the format according to The Touchstone File Format Specification, Version 2.0,
available from here. An example is given as number 13 on page 15 of that specification.

13.9.2 S-parameter measurement basics

S-parameters allow a two-port description not just by permuting I1, U1, I2, U2, but using a
superposition, leading to a power view of the port (We only look at two-ports here, because
multi-ports are not (yet?) implemented.).

You may start with the effective power, being negative or positive

P = u · i (13.3)

The value of P may be the difference of two real numbers, with K being another real number.

ui=P= a2−b2 = (a+b)(a−b) = (a+b)(KK−1)(a−b) = {K(a+b)}
{

K−1(a−b)
}

(13.4)

Thus you get

K−1u = a+b (13.5)

Ki = a−b (13.6)

and finally

a =
u+K2i

2K
(13.7)

b =
u−K2i

2K
(13.8)

http://www.eda.org/ibis/touchstone_ver2.0/

13.9. SCATTERING PARAMETERS (S-PARAMETERS) 469

By introducing the reference resistance Z0 :=K2 > 0 we get finally the Heaviside transformation

a =
u+Z0i
2
√

Z0
, b =

u−Z0i
2
√

Z0
(13.9)

In case of our two-port we subject our variables to a Heaviside transformation

a1 =
U1 +Z0I1

2
√

Z0
b1 =

U1 −Z0I1

2
√

Z0
(13.10)

a2 =
U2 +Z0I2

2
√

Z0
b2 =

U2 −Z0I2

2
√

Z0
(13.11)

The s-matrix for a two-port then is(
b1
b2

)
=

(
s11 s12
s21 s22

)(
a1
a2

)
(13.12)

Two obtain s11 we have to set a2 = 0. This is accomplished by loading the output port exactly
with the reference resistance Z0, which sinks a current I2 =−U2/Z0 from the port.

s11 =

(
b1

a1

)
a2=0

(13.13)

s11 =
U1 −Z0I1

U1 +Z0I1
(13.14)

Loading the input port from an ac source U0 via a resistor with resistance value Z0, we obtain
the relation

U0 = Z0I1 +U1 (13.15)

Entering this into 13.14, we get

s11 =
2U1 −U0

U0
(13.16)

For s21 we obtain similarly

s21 =

(
b2

a1

)
a2=0

(13.17)

s21 =
U2 −Z0I2

U1 +Z0I1
=

2U2

U0
(13.18)

Equations 13.16 and 13.18 now tell us how to measure s11 and s21: Measure U1 at the input port,
multiply by 2 using an E source, subtracting U0, which for simplicity is set to 1, and divide by
U0. At the same time measure U2 at the output port, multiply by 2 and divide by U0. Biasing and
measuring is done by subcircuit S_PARAM. To obtain s22 and s12, you have to exchange the
input and output ports of your two-port and do the same measurement again. This is achieved
by switching resistors from low (1mΩ) to high (1T Ω) and thus switching the input and output
ports.

470 CHAPTER 13. INTERACTIVE INTERPRETER

13.9.3 Usage of .sp and sp

Please have a look at the intrinsic commands (.sp, see 11.3.8 and sp, see 13.5.87) for generating
S-parameters versus frequency.

13.9.4 Usage of the script

Copy and then edit s-param.cir. You will find this file in directory /examples/control_structs
of the ngspice distribution.

The reference resistance (often called characteristic impedance) for the measurements is added
as a parameter

.param Rbase=50

The bias voltages at the input and output ports of the circuit are set as parameters as well:

.param Vbias_in=1 Vbias_out=2

Place your circuit at the appropriate place in the input file, e.g. replacing the existing example
circuits. The input port of your circuit has two nodes in, 0. The output port has the two nodes
out, 0. The bias voltages are connected to your circuit via the resistances of value Rbase at the
input and output respectively. This may be of importance for the operating point calculations if
your circuit draws a large dc current.

Now edit the ac commands (see 13.5.1) according to the circuit provided, e.g.

ac lin 100 2.5MEG 250MEG $ use for Tschebyschef

Be careful to keep both ac lines in the .controlendc section the same and only change
both in equal measure!

Select the plot commands (lin/log, or smithgrid) or the ’write to file’ commands (write,
wrdata, or wrs2p) according to your needs.

Run ngspice in interactive mode

ngspice s-param.cir

13.10 Using shell variables

You may use the shell command (13.5.80) to execute a command in the shell. Its return value
is printed at the ngspice prompt.

Example:

shell echo $HOME
/home/holger

The following is valid only if you are working with ngspice as a console app (Linux, Cygwin).
In interactive mode or from a .control section you may transfer the return of a command from
the shell into an ngspice variable by backquote or backtick substitution. Any text between
backquotes is replaced by the result of executing the text as a command to the shell.

13.11. MISCELLANEOUS 471

Example:

set myvar2=‘/bin/bash -c "echo $HOME"‘
echo $myvar2
/home/holger

13.11 MISCELLANEOUS

C-shell type quoting with ’ and " may be used. Within single quotes, no further substitution
(like history substitution) is done, and within double quotes, the words are kept together but
further substitution is done.

History substitutions, similar to C-shell history substitutions, are also available - see the C-
shell manual page for all of the details. The characters ~, @{, and @} have the same effects as
they do in the C-Shell, i.e., home directory and alternative expansion. It is possible to use the
wildcard characters *, ?, [, and] also, but only if you unset noglob first. This makes them rather
useless for typing algebraic expressions, so you should set noglob again after you are done with
wildcard expansion. Note that the pattern [^abc] matches all characters except a, b, and c.

If X is being used, the cursor may be positioned at any point on the screen when the window
is up and characters typed at the keyboard are added to the window at that point. The window
may then be sent to a printer using the xpr(1) program.

13.12 Bugs

When defining aliases like alias pdb plot db(!:1 - !:2) you must be careful to quote the
argument list substitutions in this manner. If you quote the whole argument it might not work
properly.

In a user-defined function, the arguments cannot be part of a name that uses the plot.vec syntax.
For example: define check(v(1)) cos(tran1.v(1)) does not work.

472 CHAPTER 13. INTERACTIVE INTERPRETER

Chapter 14

Ngspice User Interfaces

ngspice offers a variety of user interfaces. For an overview (several screen shots) please have a
look at the ngspice web page.

14.1 MS Windows Graphical User Interface

If compiled properly (e.g. using the --with-wingui flag for ./configure under MINGW),
ngspice for Windows offers a simple graphical user interface. In fact this interface does not
offer much more for data input than a console would offer, e.g. command line inputs, command
history and program text output. First of all it applies the Windows API for data plotting. If you
run the sample input file given below, you will get an output as shown in Fig. 14.1.

Input file:

***** Single NMOS Transistor (Id-Vd), BSIM3V3

*
*** circuit description ***
m1 2 1 3 0 n1 L=0.6u W=10.0u
vgs 1 0 3.5
vds 2 0 3.5
vss 3 0 0

*
.control
dc vds 0 3.5 0.05 vgs 0 3.5 0.5
plot vss#branch
.endc

*
* UCB parameters BSIM3v3.2
.include ../Exam_BSIM3/Modelcards/modelcard.nmos
.include ../Exam_BSIM3/Modelcards/modelcard.pmos

*
.end

The GUI consists of an I/O port (lower window) and a graphics window, created by the plot
command.

473

http://sourceforge.net/project/screenshots.php?group_id=38962

474 CHAPTER 14. NGSPICE USER INTERFACES

Figure 14.1: MS Windows GUI

The output window displays messages issued by ngspice. You may scroll the window to get
more of the text. The input box (white box) may be activated by a mouse click to accept any
of the valid ngspice commands. The lower left output bar displays the actual input file. ngspice
progress during setup and simulation is shown in the progress window (--ready--). The Stop
button will interrupt the current simulation. Data may be analysed, simulation resumed by the
command resume. However, if ngspice is running in a flow or loop from within a .control
section, this flow or loop stays interrupted, only the current simulation job will be finished by
resume. The Quit button allows exiting ngspice. If ngspice is actively simulating, due to
using only a single thread, this interrupt has to wait until the window is accessible from within
ngspice, e.g. during an update of the progress window.

In the plot window there is the upper left button, which activates a drop down menu. You may

14.1. MS WINDOWS GRAPHICAL USER INTERFACE 475

select to print the plot window shown (a simple printer interface), set up any of the printers
available on your computer, or issue a postscript file or a SVG file of the active plot window.

A left-click in the plot window will print the coordinates of that point in the text window,
allowing data to be captured from the plot. Click, drag and release will show both start and
end points, as well as the slope of the line joining them. Click and drag with the right button
outlines a rectangle; on release a new window opens with a“zoomed” plot of that rectangular
area.

Instead of plotting with black background, you may set the background to any other color,
preferably to ‘white’ using the command shown below.

Input file modification for white background:

.control
run

* white background
set color0=white

* black grid and text (only needed with X11, automatic with MS Win)
set color1=black

* wider plot lines
set xbrushwidth=2
plot vss#branch
.endc

Figure 14.2: Plotting with white background

Many more set command options are available to customize the plot window. To name a few

476 CHAPTER 14. NGSPICE USER INTERFACES

(please see 13.7 for details): colorN, gridsize, gridstyle, plotstyle, pointchars, ticchar, ticmarks,
ticlist, wfont1, wfont_size, xbrushwidth, xgridwidth, xfont2, xfont_size.

As ngspice supports UNICODE text, fonts supporting other letterings than plain English may
be selected, e.g. Korean, Japanese, Chinese, Cyrillic, Arabic etc..

14.2 MS Windows Console

If the --with-wingui flag for ./configure under MINGW is omitted (see 28.2.4) or con-
sole_debug or console_release is selected in the MS Visual Studio configuration manager, then
ngspice will compile without any internal graphical input or output capability. This may be use-
ful if you apply ngspice in a pipe inside the MSYS window, or use it being called from another
program, and just generating output files from a given input. The plot (13.5.56) command will
not work and leads to an error message. In the MS Windows release of ngspice its binary is
distributed as ngspice_con.exe.

Only on the ngspice console binary in MS Windows input/output redirection is possible, if
ngspice is called (e.g. within a MSYS shell or from a shell script) like

$ ngspice_con < input.

This feature is used in the new CMC model test suite (to be described elsewhere), thus requires
a console binary.

You still may generate graphics output plots or prints by gnuplot (13.5.38), if installed properly
(14.7), or by selecting a suitable printing option (14.6).

14.3 Linux

The standard user interface is a console for input and the X11 graphics system for output with
the interactive plot (13.5.56) command. If ngspice is compiled with the –without-x flag for
./configure, a console application without graphical interface results. For more sophisticated
input user interfaces please have a look at Chapt. 14.8.

The X11 UI has buttons to save the plot in formats suitable for printing or inclusion in a web
page. The mouse actions in the plot window are the same as the Windows UI. In addition, when
the pointer is in the plot, keyboard input is inserted at the pointer position so that the plot can
be annotated. Annotations are included in saved files.

14.4 CygWin

The CygWin interface is similar to the Linux interface (14.3), i.e. console input and X11 graph-
ics output. To avoid the warning of a missing graphical user interface, you have to start the X11
window manager by issuing the commands

$ export DISPLAY=:0.0

1Win GUI only
2X11 only

14.5. ERROR HANDLING 477

$ xwin -multiwindow -clipboard &

inside of the CygWin window before starting ngspice.

14.5 Error handling

Error messages and error handling in ngspice have grown over the years, include a lot of ‘tradi-
tional’ behavior and thus are not very systematic and consistent.

Error messages may occur with the token ‘Error:’. Often the errors are non-recoverable and will
lead to exiting ngspice with error code 1. Sometimes, however, you will get an error message,
but ngspice will continue, and may either bail out later because the error has propagated into
the simulation, sometimes ngspice will continue, deliver wrong results and exit with error code
0 (no error detected!).

In addition ngspice may issue warning messages like ‘Warning: ...’. These should cover recov-
erable errors only.

So there is still work to be done to define a consistent error messaging, recovery or exiting. A
first step is the user definable variable strict_errorhandling. This variable may be set in files
spinit (12.5) or .spiceinit (12.6) to immediately stop ngspice, after an error is detected during
parsing the circuit. An error message is sent, the ngspice exit code is 1. This behavior deviates
from traditional SPICE error handling and thus is introduced as an option only.

XSPICE error messages are explained in Chapt. 25.

14.6 Output-to-file options

ngspice offers a large variety of writing simulation results into a file. This chapter will give a
short summary of the available options.

14.6.1 Graphics files

14.6.1.1 SVG

How to prepare a plot
Various SVG settings are given by setting the following two variables:

svg_intopts Sets the plot parameters by numbers "svgwidth", "svgheight", "svgfont-size",
"svgfont-width", "svguse-color", "svgstroke-width", "svggrid-width", .

svg_stropts Sets the plot parameters by strings "svgbackground", "svgfont-family", "svg-
font" . Use command setcs to keep upper and lower case.

Usage

.control
set svg_intopts = (512 384 20 0 1 2 0)
setcs svg_stropts = (blue Arial Arial)
.endc

478 CHAPTER 14. NGSPICE USER INTERFACES

The following variables may override some of the above mentioned parameters or provide more
details.

hcopyfont This variable specifies the font name for hardcopy output plots. The value is device
dependent.

hcopyfontsize This is a scaling factor for the font used in hardcopy plots.

hcopydevtype The variable specifies the type of the printer output to use in the hardcopy
command. It has to be set to set hcopydevtype=svg.

hcopyscale This is a scaling factor for the font used in hardcopy plots (between 0 and 10).

hcopywidth Sets width of the hardcopy plot.

hcopyheight Sets height of the hardcopy plot.

colorN These variables determine the colors used during plotting. Color values may be entered
as RGB values from 0 to 255 (hex or decimal) or stating a color name. The identification
number N may be an integer between 0 and 20. Color0 is the background, color1 is the
grid and text color, and color ids from 2 through 20 are used for graphs (vectors) plotted.
The available color strings are (use the string inside of the hyphens): "black", "white",
"red", "blue", "#FFA500" (orange), "green", "#FFC0C5" (pink), "#A52A2A" (brown),
"#F0E68C" (khaki), "#DDA0DD" (plum), "#DA70D6" (orchid), "#EE82EE" (violet),
"#B03060" (maroon); "#40E0D0" (turqoise), "#A0522D" (sienna), "#FF7F50" (coral),
"cyan", "magenta", "#666" (gray for smith grid), "#949494" (gray for smith grid), "#888"
(gray for normal grid). Examples are set color3=blue or set color3="#EE82EE".
If no color id is set, then the above mentioned, predefined set of colors is applied auto-
matically.

xbrushwidth Linewidth for graph (see xgridwidth for border and grid). Valid for MS Win-
dows GUI, X11, gnuplot and Postscript.

xgridwidth Linewidth for border and grid. Valid for MS Windows GUI, X11, gnuplot and
Postscript.

The plot-to-file command

hardcopy file vector <vectors> <title text> <xlabel text> <ylabel text>

14.6. OUTPUT-TO-FILE OPTIONS 479

Usage

.control

* simulation commands here
set hcopydevtype = svg
set svg_intopts = (512 384 20 0 1 2 0)
setcs svg_stropts = (yellow Arial Arial)
set color1=blue
set color2=green
hardcopy plot_1.svg vss#branch title ’Plot no. 4’
+ xlabel ’Drain voltage’ ylabel ’Drain current’

* plot to screen commands here
.endc

Plot-to-screen
The file contents may be plotted to the screen. For MS Windows you may use the Internet
Explorer or EDGE, linked to the .svg file extension. Under Cygwin or Linux you may install
the program feh for plotting with the following commands:

Plot to screen commands

* for MS Windows only
if $oscompiled = 1 | $oscompiled = 8
shell Start plot_1.svg

else

* for CYGWIN, Linux
shell feh --magick-timeout 1 plot_1.svg &

end

14.6.1.2 PostScript

How to prepare a plot
Variables to modify the PostScript plot are listed below. Background and text colors may be

set. The colors of the graphs are then chosen automatically, starting with red. Valid colors are
0: black 1: white 2: red 3: blue 4: orange 5: green 6: pink 7: brown 8: khaki 9: plum 10:
orchid 11: violet 12: maroon 13: turquoise 14: sienna 15: coral 16: cyan 17: magenta 18: gray
(for smith grid) 19: gray (for smith grid) 20: gray (for normal grid).

hcopypscolor Sets the color of the hardcopy output byselecting a integer number. If not set,
black & white plotting is assumed with different linestyles for each output vector. A valid
color integer value yields a colored plot background (0: black 1: white, others see above).
and colored solid lines.

hcopypstxcolor This variable sets the color of the text in the Postscript hardcopy output. If
not set, black on white background is assumed, if the background is colored or black,
white text is printed.

480 CHAPTER 14. NGSPICE USER INTERFACES

hcopyfont This variable specifies the font name for hardcopy output plots. The value is device
dependent.

hcopyfontsize This is a scaling factor for the font used in hardcopy plots.

hcopydevtype The variable specifies the type of the printer output to use in the hardcopy
command. It has to be set to set hcopydevtype=svg.

hcopyscale This is a scaling factor for the font used in hardcopy plots (between 0 and 10).

hcopywidth Sets width of the hardcopy plot.

hcopyheight Sets height of the hardcopy plot.

xbrushwidth Linewidth for graph (see xgridwidth for border and grid). Valid for MS Win-
dows GUI, X11, gnuplot and Postscript.

xgridwidth Linewidth for border and grid. Valid for MS Windows GUI, X11, gnuplot and
Postscript.

The corresponding input file for the examples given below is listed in Chapt. 17.1. Just add the
.control section to this file and run in interactive mode by

$ ngspice xspice_c1_print.cir

One way is to setup your printing like this will yield a black&white plot:

.control
set hcopydevtype=postscript
op
run
plot vcc coll emit
hardcopy temp.ps vcc coll emit
.endc

Then print the postscript file temp.ps to the screen. This may be done by a ngspice shell com-
mand, depending on the operating system and the installed viewer tools (like gv or others):

* for MS Windows only
if $oscompiled = 1 | $oscompiled = 8

shell Start /B temp.ps

* for CYGWIN
else

shell gv temp.ps &
end

You can add color traces to it if you wish:

14.6. OUTPUT-TO-FILE OPTIONS 481

.control
set hcopydevtype=postscript

* allow color and set background color if set to value >= 0
set hcopypscolor=1 ; white
set hcopypstxcolor = 3 ; blue

* The colors of the graphs are set automatically.
set xgridwidth=2
set xbrushwidth=3
run
hardcopy temp.ps vcc coll emit
.endc

Then print the postscript file temp.ps to a postscript printer.

You can also direct your output directly to a designated printer (not available in MS Windows):

.control
set hcopydevtype=postscript

*send output to the printer kec3112-clr
set hcopydev=kec3112-clr
hardcopy out.tmp vcc coll emit
.endc

14.6.1.3 PNG

There is no png driver integrated into ngspice. One may use the gnuplot interface (see 14.7) to
create a png file.

Usage

.control

* simulation commands here
set gnuplot_terminal=png/quit
gnuplot plot_1 vss#branch vss2#branch
+ title ’Drain current versus drain voltage’
+ xlabel ’Drain voltage / V’ ylabel ’Drain current / uA’

* plot to screen commands here
.endc

This command sequence will generate a png file plot_1.png in the current directory. You will
need to have gnuplot installed.

A few remarks are due: Generally you should use a text editor for the input files that allows
to set the character encoding to utf-8. you may give a true µA in the label text, not only the
uA. Otherwise a µ in the input file may lead ngspice to fail the utf-8 syntax test. For sake of
having not enough characters per line available in the final pdf manual to fitting the gnuplot
command, the line continuation is used in the above example with a + character in the first
column. Unfortunately this has a strange side effect in a real ngspice input file, in that all letters
become lower case in the continuation lines. So better create a single (long) line containing the
complete gnuplot command.

482 CHAPTER 14. NGSPICE USER INTERFACES

Plotting the png file to the screen can be achieved from within the .control section by

Plot to screen commands

* for MS Windows only
if $oscompiled = 1 | $oscompiled = 8
shell Start c:\"program files"\irfanview\i_view64.exe plot_1.png

else

* for CYGWIN, Linux
shell feh --magick-timeout 1 plot_1.png &

end

You will need to install a suitable viewer program (e.g. irfanview or feh).

14.6.1.4 VCD

Value Change Dump (VCD) (also known less commonly as "Variable Change Dump") is an
ASCII-based format for dumpfiles generated by event based logic simulation. The eprvcd com-
mand is used by ngspice to print out the digital event nodes and real-valued expressions versus
time.

General Form:

eprvcd [-t unit][-a] node1 node2 .. noden [> filename]

Example usage:

eprvcd 1 2 3 4 5 6 7 8 s0 s1 s2 s3 c3 > adder_x.vcd

Values for analog nodes and expressions (as for plot) may be included, but expressions may
not contain spaces. Option “-t” sets the VCD file’s time unit; values are rounded to a negative
power of 10. If not used the unit is chosen to fit the simulation’s maximum timestep. Analog
values are examined only when an XSPICE event values changes unless option “-a” is used to
dump them at each timestep.

The file addr_x.vcd may be displayed by the following .control section (gtkwave has to be
installed):

Plot to screen commands

* plotting the vcd file (e.g. with GTKWave)

* For Windows: returns control to ngspice
if $oscompiled = 1 | $oscompiled = 8
shell start gtkwave adder_x.vcd --script nggtk.tcl

else

* for CYGWIN, Linux, others
shell gtkwave adder_x.vcd --script nggtk.tcl &

end

with the tcl script to control gtkwave

14.6. OUTPUT-TO-FILE OPTIONS 483

nggtk.tcl

tcl script for gtkwave: show vcd file data created by ngspice
set nfacs [gtkwave::getNumFacs]
for {set i 0} {$i < $nfacs } {incr i} {

set facname [gtkwave::getFacName $i]
set num_added [gtkwave::addSignalsFromList $facname]

}
gtkwave::/Edit/UnHighlight_All
gtkwave::/Time/Zoom/Zoom_Full

14.6.2 Tabulated files

14.6.2.1 Rawfile

This is the traditional spice-compatible output file for simulation data. It will be generated
during simulation if ngspice is started in batch mode (12.4.1) like

ngspice -b -r mysim.raw -o mysim.log myinput.cir

where mysim.raw, following the -r flag, is the rawfile. It may be created as well from inside a
control section using the write command (13.5.107) like

write mysim.raw all

If not all result vetcors are to be stored in the rawfile, the .save command (11.6.1) will limit
the number of vectors to the ones liste after the command. One also may limit their numbers if
the vectors are explicitely stated in the write command

write mysim.raw v(node1) v2#branch

The rawfile consists of an ascii header, followed by the data, either in ascii or binary format.

filetype This can be either ascii or binary, and determines the format of the raw file (com-
pact binary or text editor readable ascii). The default is binary.

All simulations (e.g. if .tran follow .ac) will be saved consecutively. If using the write com-
mand, setting variable appendwrite will allow storing several sim outputs in a single file.

appendwrite Append to the file when a write command is issued, if one already exists.

484 CHAPTER 14. NGSPICE USER INTERFACES

14.6.2.2 Command wrdata

wrdata generates a file containing simulation data in a tabular fashion. For details please see
13.5.106. The following variables and options are aknowledged:

appendwrite Append to the file when a write command is issued, if one already exists.

numdgt The number of digits to use when printing tables of data (print col). The default
precision is 6 digits. On the PC, approximately 16 decimal digits are available using
double precision, so p should not be more than 16. If the output number is negative, one
digit less is printed to ensure constant widths in tables.

wr_singlescale The scale vector will be printed only once, if all scale vectors are of the same
length.

wr_vecnames Scale and data vector names are printed on the first row.

14.6.2.3 Command wrs2p, Touchstone File Format Version 1

wrs2ps allows to write a file, containing S parameter data, in the Touchstone File Format
Version 1. For details please see 13.5.109 for the command and 13.9 for generating the S-
parameters.

14.6.2.4 Output redirection

Anything that is printable to the console by a control section command, may be redirected into
a file. See also 13.4.1.

Example usage:

* create a new file and write to it
echo new file > nfile.txt

* append line to existing file
echo second line >> nfile.txt

The following variable is recognized:

noclobber Don’t overwrite existing files when doing IO redirection.

14.6.2.5 Command echo

Echos all text, variables and vectors to the screen or the redirected output location (see also
13.5.26).

14.6. OUTPUT-TO-FILE OPTIONS 485

Example usage:

* variable
setcs myvar=great
set empty=""

* vector
let lineno=1

* empty line
echo

* vectors and variables may be included
echo This is a $myvar output with $&lineno line(s).

* no line feed, empty var to allow blank
echo -n This is still a $myvar output $empty
echo with $&lineno line(s).

14.6.2.6 Command print

General Form:

print [col] [line] expr ...

Prints the vector(s) described by the expression expr. Please see 13.5.59 for details. Expression
expr. may be a list of vectors, but also a mathematical expression combining vectors and
constants according to 13.2.

Example:

print v(1) 3*v(2)

The following variables and options are aknowledged:

appendwrite Append to the file when a write command is issued, if one already exists.

moremode If moremode is set, whenever a large amount of data is being printed to the screen
(e.g, the print or asciiplot commands), the output is stopped every screenful and
continues when a carriage return is typed. If moremode is unset, then data scrolls off the
screen without pausing.

noprintscale Don’t print the scale in the leftmost column when a print col command is
given.

numdgt The number of digits to use when printing tables of data (print col). The default
precision is 6 digits. On the PC, approximately 16 decimal digits are available using
double precision, so p should not be more than 16. If the output number is negative, one
digit less is printed to ensure constant widths in tables.

14.6.2.7 Command eprint

Prints event driven nodes to the console (or a file when using output redirection). See 13.5.29
and 23.2.2 for an example.

486 CHAPTER 14. NGSPICE USER INTERFACES

14.7 Gnuplot

14.7.1 Using Gnuplot to produce 1D graphs of (electrical) simulation re-
sults

Plotting with Gnuplot is directly available from the ngspice .control section or interactive com-
mand. Install Gnuplot (on Linux available from the distribution, on Windows available here).
On Windows, expand the zip file to a directory of your choice, add the path <any direc-
tory>/gnuplot/bin to the PATH variable, and off you go... The command to invoke Gnuplot
(13.5.38) is limited to x/y plots (no polar etc.).

General Form:

gnuplot file plotargs

plotargs is a list of vectors to be plotted. file may either be temp or tmp or a file name
(without file extension).

Plot window only:

gnuplot temp vss#branch vss2#branch
+ title ’Drain current versus drain voltage’
+ xlabel ’Drain voltage / V’ ylabel ’Drain current / uA’

ngspice generates temporary data and command files for Gnuplot, calls Gnuplot for openening
the plot windows and then discards the temporary files.

Plot window plus command and data files:

gnuplot newplot vss#branch vss2#branch
+ title ’Drain current versus drain voltage’
+ xlabel ’Drain voltage / V’ ylabel ’Drain current / uA’

Gnuplot command file newplot.plt and data file newplot.data are generated to stay in the current
directory. The command file may be modified to alter the plot, and then called by gnuplot
newplot.plt to draw the modified plot.

The following variables are aknowledged by the gnuplot command:

gnuplot_terminal May be one of the following: png (write png file and plot to screen),
png/quit (write png file but no plot, see 14.6.1.3), eps (write PostScript file and plot
to screen), eps/quit (write PostScript file, but no plot), xterm (open gnuplot in an
xterm window).

xbrushwidth Linewidth for graph (see xgridwidth for border and grid). Valid for MS Win-
dows GUI, X11, gnuplot and Postscript.

xgridwidth Linewidth for border and grid. Valid for MS Windows GUI, X11, gnuplot and
Postscript.

https://sourceforge.net/projects/gnuplot/files/latest/download

14.7. GNUPLOT 487

plotstyle This should be one of linplot, combplot, or pointplot. linplot, the default,
causes points to be plotted as parts of connected lines. combplot causes a comb plot to be
done. It plots vectors by drawing a vertical line from each point to the X-axis, as opposed
to joining the points. pointplot causes each point to be plotted separately.

nolegend Don’t plot the legend, when using the plot command.

14.7.2 Using gnuplot to produce 2D contour plots for Cider

The gnuplot command to generate 2D x/y contour plots from Cider models is:

General Form:

gnuplot file xycontour expr

The xycontour switch is ignored if the data is not from a 2D Cider model. expr is a single
plotarg expression which specifies the vector to be plotted. file has the same meaning as
in section 14.7.1 previously. The only variable which affects the gnuplot xycontour option is
gnuplot_terminal.

Before a plot can be created, the Cider solution file containing the data you are interested in must
be loaded with the LOAD (13.5.48) command. The example later in this section demonstrates
the steps to be followed.

The Cider OUTPUT command (see 26.14) explains how to get solution files for a Cider model. It
is important to include a ’rootfile’ parameter in the OUTPUT command which specifies a subdi-
rectory to hold the solution files themselves. Depending on the analysis type, solution files have
a prefix OP, DC, or TR. There can be many of these files created, one per DC sweep value or
per TR time step, so it is essential the ’rootfile’ subdirectory is created prior to running ngspice
to generate the solution files. In addition, device instances D*, Q*, and M* of Cider models
need to have the ’SAVE’ parameter set.

The 2D Cider models are NUMD level 2 (see 26.17), NBJT level 2 (see 26.18), and NUMOS
(see 26.19). 1D Cider models are level 1 NUMD and NBJT. The solution files for 1D models
can be plotted as the normal curves using PLOT (13.5.56) and GNUPLOT (without xycontour,
13.5.38 and 14.7.1).

14.7.2.1 Example of a 2D jfet

File jfet1.cir, is run as follows from a bash console window (Linux, or MSYS2):

mkdir ./j1root

ngspice -b jfet1.cir

Filenames will need to be modified appropriately for Windows.

Notes relating to the jfet1.cir file:

1. The QJ1 instance line has the ’SAVE’ parameter, and the ’rootfile’ subdirectory is speci-
fied on the output statement.

488 CHAPTER 14. NGSPICE USER INTERFACES

2. A Cider solution file is loaded after the simulation has run and before the gnuplot com-
mands:
load ./j1root/DC.12.qj1
The currently active vectors are listed after the load.

3. The sleep commands (or timeout /t on Windows) give the display time to draw the con-
tours. This is only necessary when executing a batch script; for an interactive session they
are not required.

4. The contours of a single vector phin are plotted by:
gnuplot gplot1 xycontour phin

5. The contours of the electric field magnitude are plotted by:
gnuplot gplot2 xycontour sqrt((ex * ex) + (ey * ey))

6. The gnuplot_terminal variable controls the output from gnuplot:
set gnuplot_terminal=png/quit

7. Following this, gnuplot commands will send the plot to a .png file.

14.7. GNUPLOT 489

JFET example netlist jfet1.cir:

****** jfet1.cir ******
*Two-dimensional Junction Field-Effect Transistor (JFET)
VDD 1 0 0.5V
VGG 2 0 -1.0v AC 1V
VSS 3 0 0.0V
QJ1 1 2 3 M_NJF AREA=1 SAVE
.MODEL M_NJF NBJT LEVEL=2
+ options jfet defw=10.0um
+ output rootfile="./j1root/" psi n.conc p.conc phin phip equ.psi vac.psi
+ x.mesh w=0.2 h.e=0.001 r=1.8
+ x.mesh w=0.8 h.s=0.001 h.m=0.1 r=2.0
+ x.mesh w=0.8 h.e=0.001 h.m=0.1 r=2.0
+ x.mesh w=0.2 h.s=0.001 r=1.8
+ y.mesh w=0.2 h.e=0.01 r=1.8
+ y.mesh w=0.8 h.s=0.01 h.m=0.1 r=1.8
+
+ domain num=1 mat=1
+ material num=1 silicon
+
+ elec num=1 x.l=0.0 x.h=0.0 y.l=0.0 y.h=1.0
+ elec num=2 x.l=0.5 x.h=1.5 y.l=0.0 y.h=0.0
+ elec num=3 x.l=2.0 x.h=2.0 y.l=0.0 y.h=1.0
+
+ doping unif n.type conc=3.0e15
+ doping unif p.type conc=2.0e17 x.l=0.2 x.h=1.8 y.h=0.2
+
+ models bgn srh auger conctau concmob fieldmob ^aval
.option bypass=1 temp=27

.control
dc vgg 0.0 -2.0001 -0.1
print i(vss)
load ./j1root/DC.12.qj1
shell ’sleep 1’
gnuplot gplot1 xycontour phin
shell ’sleep 1’
gnuplot gplot2 xycontour sqrt((ex * ex) + (ey * ey))
shell ’sleep 1’
set gnuplot_terminal=png/quit
gnuplot gplot3 xycontour phin
shell ’sleep 1’
gnuplot gplot4 xycontour sqrt((ex * ex) + (ey * ey))
shell ’sleep 1’
quit
.endc

.end

490 CHAPTER 14. NGSPICE USER INTERFACES

The two contour graphs thus simulated are shown here:

Figure 14.3: Potential

Figure 14.4: Electrical field

14.8. INTEGRATION WITH CAD SOFTWARE AND ‘THIRD PARTY’ GUIS 491

14.8 Integration with CAD software and ‘third party’ GUIs

In this chapter you will find some links and comments on GUIs for ngspice offered from other
projects and on the integration of ngspice into a circuit development flow. The data given rely
mostly on information available from the web and thus is out of our control. It also may be far
from complete. For a list of actual links with more than 20 entries please have a look at the
ngspice web pages. Some open source tools are listed here. The GUIs MSEspice and GNUS-
piceGUI help you to navigate the commands to need to perform your simulation. XCircuit and
the GEDA tools gschem and gnetlist offer integrating schematic capture and simulation. KiCad
offers a complete design environment for electronic circuits. Xschem focusses on IC design,
supporting all the open source PDKs.

14.8.1 KiCad

KiCad is a cross platform and open source electronics design automation suite. Its schematic
editor Eeschema fully integrates shared ngspice (see Chapt. 15) as the simulation tool. The tar-
get audience is PCB circuit designers, using discrete devices, ICs and passives. On the ngspice
web pages there is a tutorial available which presents an introduction to using ngspice from
within KiCad. Simulation examples are presented at KiCad/ngspice simulation examples 1 and
KiCad/ngspice simulation examples 2.

14.8.2 Xschem

Xschem is a schematic capture program, it allows to create a hierarchical representation of
circuits with a top down approach . By focusing on interconnections, hierarchy and properties
a complex system (IC) can be described in terms of simpler building blocks. A VHDL, Verilog
or ngspice netlist can be generated from the drawn schematic, allowing the simulation of the
circuit. The target audience is IC designers, especially the open source PDKs from Skywater,
Google and IHP are supported. An excellent video introduces the design and simulation of a
CMOS comparator.

14.8.3 Qucs-S

Qucs-S is a circuit simulation program based on the Qucs circuit simulator. The "S" letter
indicates SPICE. The purpose of the Qucs-S project is to use free SPICE circuit simulation
kernels with the GUI based on Qt toolkit. It merges the power of SPICE and the simplicity of
the Qucs GUI. Qucs-S is not a simulator by itself, but it requires to use an external simulation
backend, e.g. ngspice, with it. Quc-S is strong when simulating RF devices and circuits.

14.8.4 GNU Spice GUI

A GUI, to be found at https://sourceforge.net/projects/gspiceui/. It aids in viewing, modifying,
and simulating SPICE CIRCUIT files.

https://ngspice.sourceforge.io/resources.html
https://www.kicad.org/
https://ngspice.sourceforge.io/ngspice-eeschema.html
https://forum.kicad.info/t/simulation-examples-for-kicad-eeschema-ngspice/34443
https://forum.kicad.info/t/more-simulation-examples-for-kicad-eeschema-ngspice/45546
https://xschem.sourceforge.io/stefan/index.html
https://www.youtube.com/watch?v=bYbkz8FXnsQ
https://ra3xdh.github.io/
https://sourceforge.net/projects/gspiceui/

492 CHAPTER 14. NGSPICE USER INTERFACES

14.8.5 XCircuit

CYGWIN and especially Linux users may find XCircuit valuable to establish a development
flow including schematic capture and circuit simulation.

14.8.6 GEDA

The gEDA project is developing a full GPL‘d suite and toolkit of Electronic Design Automation
tools for use with a Linux. Ngspice may be integrated into the development flow. Two web sites
offer tutorials using gschem and gnetlist with ngspice:

http://geda-project.org/wiki/geda:csygas

http://geda-project.org/wiki/geda:ngspice_and_gschem

14.8.7 MSEspice

A graphical front end to ngspice, using the Free Pascal cross platform RAD environment
MSEide+MSEgui.

14.8.8 GNU Octave

GNU Octave is a high-level language, primarily intended for numerical computations. An
interface to ngspice is available here.

http://opencircuitdesign.com/xcircuit/
http://opencircuitdesign.com/xcircuit/tutorial/tutorial2.html
http://www.geda-project.org/
http://geda-project.org/wiki/geda:csygas
http://geda-project.org/wiki/geda:ngspice_and_gschem
https://sourceforge.net/projects/mseuniverse/
https://mseide-msegui.sourceforge.io/
https://octave.org/
https://www.dsprelated.com/showarticle/707.php

Chapter 15

ngspice as shared library or dynamic link
library

ngspice may be compiled as a shared library. This allows adding ngspice to an application
that then gains control over the simulator. The shared module offers an interface that exports
functions controlling the simulator and callback functions for feedback.

So you may send an input ‘file’ with a netlist to ngspice, start the simulation in a separate thread,
read back simulation data at each time point, stop the simulator depending on some condition,
alter device or model parameters and then resume the simulation. Specific node values may be
controlled during simulation by EXTERNAL voltage or current sources (4.1.9). The simulator
calls back to the user program at each simulation step to request new values (15.3.3.11).

Shared ngspice does not have any user interface. The calling process is responsible for this. It
may offer a graphical user interface, add plotting capability or any other interactive element.
You may develop and optimize these user interface elements without a need to alter the ngspice
source code itself, using a console application or GUIs like gtk, Delphi, Qt or others.

15.1 Compile options

15.1.1 How to get the sources

Currently (as of ngspice-27 being the actual release), you will have to use the direct loading of
the sources from the git repository (see Chapt. 28.1.2).

15.1.2 Linux, MINGW, CYGWIN

Compilation is done as described in Chapts. 28.1 or 28.2.2. Use the configure option --with-ngshared
instead of --with-x or --with-wingui. In addition you might add (optionally) --enable-relpath
to avoid absolute paths when searching for code models. For MINGW you may edit compile_min.sh
accordingly and compile using this script in the MSYS2 window.

Other operation systems (Mac OS, BSD, ...) have not been tested so far. Your input is welcome!

493

494 CHAPTER 15. NGSPICE AS SHARED LIBRARY OR DYNAMIC LINK LIBRARY

15.1.3 MS Visual Studio

Compilation is similar to what has been described in Chapt. 28.2.1. However, there is a ded-
icated project file coming with the source code to generate ngspice.dll. Go to the directory
visualc and start the project with double clicking on sharedspice.vcxproj.

15.2 Linking shared ngspice to a calling application

Basically there are two methods (as with all *.so, *.dll libraries). The caller may link to a (small)
library file during compiling/linking, and then immediately search for the shared library upon
being started. It is also possible to dynamically load the ngspice shared library at runtime using
the dlopen/LoadLibrary mechanisms.

15.2.1 Linking during creating the caller

While creating the ngspice shared lib, not only the *.so (*.dll) file is created, but also a small
library file, which just includes references to the exported symbols. Depending on the OS,
these may be called libngspice.dll.a, ngspice.lib. Linux and MINGW also allow linking to the
shared object itself. The shared object is not included into the executable component but is tied
to the execution.

15.2.2 Loading at runtime

dlopen (Linux) or LoadLibrary (MS Windows) will load libngspice.so or ngspice.dll into
the address space of the caller at runtime. The functions return a handle that may be used to
acquire the pointers to the functions exported by libngspice.so. Detaching ngspice at runtime
is equally possible (using dlclose/FreeLibrary), after the background thread has been stopped
and all callbacks have returned.

15.3 Shared ngspice API

The sources for the ngspice shared library API are contained in a single C file (sharedspice.c)
and a corresponding header file sharedspice.h. The type and function declarations are con-
tained in sharedspice.h, which may be directly added to the calling application, if written in
C or C++.

15.3.1 structs and types defined for transporting data

pvector_info is returned by the exported function ngGet_Vec_Info (see 15.3.2.8). Addresses of
the vector name, type, real or complex data are transferred and may be read asynchronously
during or after the simulation.

15.3. SHARED NGSPICE API 495

vector_info

typedef struct vector_info {
char *v_name; /* Same as so_vname */
int v_type; /* Same as so_vtype */
short v_flags; /* Flags (a combination of VF_*) */
double *v_realdata; /* Real data */
ngcomplex_t *v_compdata;/* Complex data */
int v_length; /* Length of the vector */

} vector_info, *pvector_info;

The next two structures are used by the callback function SendInitData (see 15.3.3.5). Each time
a new plot is generated during simulation, e.g. when a sequence of op, ac or tran is used, or
commands like linearize or fft are invoked, the function is called once by ngspice. Among
its parameters you find a pointer to a struct vecinfoall, which includes an array of vecinfo, one
for each vector. Pointers to the struct dvec, containing the vector, are included.

vecinfo

typedef struct vecinfo
{

int number; /* number of the vector, its position in the
linked list of vectors, starts with 0 */

char *vecname; /* name of the vector */
bool is_real; /* TRUE if the vector has real data */
void *pdvec; /* a void pointer to struct dvec *d,

containing the data array of the vector */
void *pdvecscale; /* a void pointer to struct dvec *ds,

the scale vector */
} vecinfo, *pvecinfo;

vecinfoall

typedef struct vecinfoall
{

/* the plot */
char *name;
char *title;
char *date;
char *type;
int veccount;

/* the data as an array of vecinfo with
length equal to the number of vectors
in the plot */

pvecinfo *vecs;

} vecinfoall, *pvecinfoall;

496 CHAPTER 15. NGSPICE AS SHARED LIBRARY OR DYNAMIC LINK LIBRARY

The next two structures are used by the callback function SendData (see 15.3.3.4). Each time a
new data point (e.g. time value and simulation output value(s)) is added to the vector structure
of the current plot, the function SendData is called by ngspice, among its parameters the actual
pointer pvecvaluesall, which contains an array of pointers to pvecvalues, one for each vector.
Logic return values are of type NG_BOOL, which is typedefed to int.

vecvalues

typedef struct vecvalues {
char* name; /* name of the vector */
double creal; /* data value added to the vector */
double cimag; /* data value added to the vector */
NG_BOOL is_scale; /* if ’name’ is the scale vector */
NG_BOOL is_complex; /* if the data are complex numbers */

} vecvalues, *pvecvalues;

Pointer vecvaluesall to be found as parameter to callback function SendData.

vecvaluesall

typedef struct vecvaluesall {
int veccount; /* number of vectors in plot */
int vecindex; /* current index for all vectors in

the plot, being equal to the
number of accepted data points */

pvecvalues *vecsa; /* access to each vector in the plot,
indexed from 0 to veccount - 1 */

} vecvaluesall, *pvecvaluesall;

When a new simulation (op, dc, ac, tran etc.) is started, a new ’plot’ structure (see 13.3) with
its vectors is set up. Several data structures, as described above, are set up as well, belonging
to this ’plot’: pvecinfo with vecinfo for each vector, vecinfoall, vecvaluesall, pvecvalues, and
vecvalues for each vector. Their pointers are kept constant during the current simulation, they
are created anew when another simulation is executed.

15.3.2 Exported functions

The functions listed in this chapter are the (only) symbols exported by the shared library.

15.3.2.1 int ngSpice_Init(SendChar*, SendStat*, ControlledExit*, SendData*, SendInit-
Data*, BGThreadRunning*, void*)

After caller has loaded ngspice.dll, the simulator has to be initialized by calling ngSpice_Init(...).
Address pointers of several callback functions (see 15.3.3), which are to be defined in the caller,
are sent to ngspice.dll. The int return value is not used.

Pointers to callback functions (details see 15.3.3):

15.3. SHARED NGSPICE API 497

SendChar* callback function for reading printf, fprintf, fputs (NULL allowed)

SendStat* callback function for reading status string and percent value (NULL allowed)

ControlledExit* callback function for transferring a flag to caller, generated by ngspice upon
a call to function controlled_exit. May be used by caller to detach ngspice.dll, if dynam-
ically loaded or to try any other recovery method, or to exit. (required)

SendData* callback function for sending an array of structs containing data values of all vec-
tors in the current plot (simulation output) (NULL allowed)

SendInitData* callback function for sending an array of structs containing info on all vectors
in the current plot (immediately before simulation starts) (NULL allowed)

BGThreadRunning* callback function for sending a boolean signal (true if thread is running)
(NULL allowed)

void* Using the void pointer, you may send the object address of the calling function (’self’ or
’this’ pointer) to ngspice.dll. This pointer will be returned unmodified by any callback
function (see the *void pointers in Chapt. 15.3.3). Callback functions are to be defined
in the global section of the caller. Because they now have got the object address of the
calling function, they may direct their actions to the calling object.

15.3.2.2 int ngSpice_Init_Sync(GetVSRCData* , GetISRCData* , GetSyncData* , int*,
void*)

Request additional callbacks to obtain values for externally controlled sources and for special-
ized synchronisation and control of the transient analysis time-stepping loop.

Pointers to callback functions:

GetVSRCData* callback function for retrieving a voltage source value from caller (details at
15.3.3.11, NULL allowed)

GetISRCData* callback function for retrieving a current source value from caller (details at
15.3.3.12, NULL allowed)

GetSyncData* callback function for synchronization (details at 15.6.3.1, NULL allowed)

More pointers

int* pointer to integer unique to this shared library (defaults to 0)

void* pointer to user-defined data, will not be modified, but handed over back to caller dur-
ing Callback, e.g. address of calling object. If NULL is sent here, userdata info from
ngSpice_Init() will be kept, otherwise userdata will be overridden by new value from
here.

498 CHAPTER 15. NGSPICE AS SHARED LIBRARY OR DYNAMIC LINK LIBRARY

15.3.2.3 int ngSpice_Init_Evt(SendEvtData*, SendInitEvtData*, void*)

Request callbacks that report on event nodes.

Pointers to callback functions (details see 15.3.3.8):

SendEvtData* callback function to receive a report of the data for a specific event node at each
time ’step’

SendInitEvtData* callback function to receive entries from the event node list during initiali-
sation

void* pointer to user-defined data, will not be modified, but handed over back to caller during
Callback, e.g. address of calling object.

15.3.2.4 int ngSpice_Raw_Evt(const char* , SendRawEvtData* , void*)

Request callbacks that report all events for a specific event node. The callback function may
be called multiple times at each timestep, making the full event history available for specific
nodes.

Pointers to callback functions and other arguments (details see 15.3.3.10):

Node name of an event node

SendRawEvtData* callback funtion to receive a report of a single event on a specific event
node at each time ’step’

void* pointer to user-defined data, will not be modified, but handed over back to caller during
Callback, e.g. address of calling object.

15.3.2.5 int ngSpice_Reset(void)

Reset the complete shared library: remove all data like using the ’quit’ command, then also
undo all initializations. Any allocated memory is freed. To restart ngspice, a new initialization
(15.3.2.1) is required.

15.3.2.6 int ngSpice_Command(char*)

Send a valid command (see the control or interactive commands) from caller to ngspice.dll.
Will be executed immediately (as if in interactive mode). Some commands are rejected (e.g.
’plot’, because there is no graphics interface). Command ’quit’ will remove internal data, and
then send a notice to caller via ngexit(). The function returns a ’1’ upon error, otherwise ’0’.

Sending ngSpice_Command(NULL) will clear the internal control structures. Each command
sent to ngspice is stored in the control structures. If you run scripts with 10.000 or more com-
mands, sending NULL from time to time will release this memory.

15.3. SHARED NGSPICE API 499

15.3.2.7 bool ngSpice_running (void)

Checks if ngspice is running in its background thread (returning ’true’).

15.3.2.8 pvector_info ngGet_Vec_Info(char*)

uses the name of a vector (may be in the form ’vectorname’ or <plotname>.vectorname) as
parameter and returns a pointer to a vector_info struct. The caller may then directly assess the
vector data (but better should not modify them).

15.3.2.9 int ngSpice_Circ(char**)

sends an array of null-terminated char* to ngspice.dll. Each char* contains a single line of a
circuit (Each line is like it is found in an input file *.sp.). The last entry to char** has to be
NULL. Upon receiving the array, ngspice.dll will immediately parse the input and set up the
circuit structure (as if the circuit is loaded from a file by the ’source’ command). The function
returns a ’1’ upon error, otherwise ’0’.

15.3.2.10 char* ngSpice_CurPlot(void)

returns to the caller a pointer to the name of the current plot. For a definition of the term ’plot’
see Chapt. 13.3.

15.3.2.11 char** ngSpice_AllPlots(void)

returns to the caller a pointer to an array of all plots (listed by their typename).

15.3.2.12 char** ngSpice_AllVecs(char*)

returns to the caller a pointer to an array of all vector names in the plot named by the string in
the argument.

15.3.2.13 bool ngSpice_SetBkpt(double)

see Chapt. 15.6.

15.3.2.14 char *ngCM_Input_Path(char*)

Some XSPICE code models are supposed to read their input data (e.g. digital stimulus data)
from a file, like the Digital Source (8.4.21). There is a certain search sequence for the lo-
cation of this input file, e.g. the current directory or the directory of the previous input (e.g.
the netlist). However, when the netlist is entered into shared ngspice via the function int
ngSpice_Circ(char**) (15.3.2.9), there will be no information available about a previous in-
put directory. Therefore ngCM_Input_Path allows to send such directory information to the
XSPICE code models. Its return string is the newly set directory path, if sent with argument
NULL, it will return the currently available search path.

500 CHAPTER 15. NGSPICE AS SHARED LIBRARY OR DYNAMIC LINK LIBRARY

15.3.2.15 int ngSpice_LockRealloc(void)

15.3.2.16 int ngSpice_UnlockRealloc(void)

Locking and unlocking the realloc of output vectors during simulation. May be set before and
unset after reading output vectors in the primary thread, while the simulation in the background
thread is moving on.

15.3.2.17 int ngSpice_nospinit(void)

Set variable no_spinit: do not search for or read initialization file spinit. The function has to
called before calling ngSpice_Init() (15.3.2.1).

15.3.2.18 int ngSpice_nospiceinit(void)

Set variable no_spiceinit: do not search for or read user initialization file .spiceinit. The
function has to called before calling ngSpice_Init() (15.3.2.1).

15.3.2.19 pevt_shared_data ngGet_Evt_NodeInfo(char*)

Get info about the event node vector. If node_name is NULL, just delete previous data

15.3.2.20 char** ngSpice_AllEvtNodes(void)

get a list of all event nodes

15.3.3 Callback functions

Callback functions are a means to return data from ngspice to the caller. These functions are
defined as global functions in the caller, so to be reachable by the C-coded ngspice. They are
declared according to the typedefs given below. ngspice receives their addresses from the caller
upon initialization with the ngSpice_Init(...) function (see 15.3.2.1). If the caller will not make
use of a callback, it may send NULL instead of the address (except for ControlledExit, which
is always required).

If XSPICE is enabled, additional callback functions are made accessible by ngSpice_Init_Evt(...)
to obtain digital event node data.

If ngspice is run in the background thread (15.4.2), the callback functions (defined in the caller)
also are called from within that thread. One has to be carefully judging how this behavior might
influence the caller, where now you have the primary and the background thread running in
parallel. So make the callback function thread safe. The integer identification number is only
used if you run several shared libraries in parallel (see Chapt. 15.6). Three additional callback
function are described in Chapt. 15.6.3.

15.3. SHARED NGSPICE API 501

15.3.3.1 typedef int (SendChar)(char*, int, void*)

char* string to be sent to caller output

int identification number of calling ngspice shared lib (default is 0, see Chapt. 15.6)

void* return pointer received from caller during initialization, e.g. pointer to object having sent
the request

Sending output from stdout, stderr to caller. ngspice printf, fprintf, fputs, fputc functions are
redirected to this function. The char* string is generated by assembling the print outputs of
the above mentioned functions according to the following rules: The string commences with
‘stdout ’, if directed to stdout by ngspice (with ‘stderr ’ respectively); all tokens are as-
sembled in sequence, taking the printf format specifiers into account, until ‘\n’ is hit. If set
addescape is given in .spiceinit, the escape character \ is added to any character from $[]\"
found in the string.

Each callback function has a void pointer as the last parameter. This is useful in object ori-
ented programming. You may have sent the this (or self) pointer of the caller’s class object to
ngspice.dll during calling ngSpice_Init (15.3.2.1). The pointer is returned unmodified by each
callback, so the callback function may identify the class object that has initialized ngspice.dll.

15.3.3.2 typedef int (SendStat)(char*, int, void*)

char* simulation status and value (in percent) to be sent to caller

int identification number of calling ngspice shared lib (default is 0, see Chapt. 15.6)

void* return pointer received from caller

sending simulation status to caller, e.g. the string tran 34.5%.

15.3.3.3 typedef int (ControlledExit)(int, NG_BOOL, NG_BOOL, int, void*)

int exit status

NG_BOOL if true: immediate unloading dll, if false: just set flag, unload is done when func-
tion has returned

NG_BOOL if true: exit upon ’quit’, if false: exit due to ngspice.dll error

int identification number of calling ngspice shared lib (default is 0, see Chapt. 15.6)

void* return pointer received from caller

asking for a reaction after controlled exit.

502 CHAPTER 15. NGSPICE AS SHARED LIBRARY OR DYNAMIC LINK LIBRARY

15.3.3.4 typedef int (SendData)(pvecvaluesall, int, int, void*)

vecvaluesall* pointer to array of structs containing actual values from all vectors

int number of structs (one per vector)

int identification number of calling ngspice shared lib (default is 0, see Chapt. 15.6)

void* return pointer received from caller

send back actual vector data.

15.3.3.5 typedef int (SendInitData)(pvecinfoall, int, void*)

vecinfoall* pointer to array of structs containing data from all vectors right after initialization

int identification number of calling ngspice shared lib (default is 0, see Chapt. 15.6)

void* return pointer received from caller

send back initialization vector data.

15.3.3.6 typedef int (BGThreadRunning)(NG_BOOL, int, void*)

NG_BOOL false if background thread is running, otherwise true

int identification number of calling ngspice shared lib (default is 0, see Chapt. 15.6)

void* return pointer received from caller

indicate if background thread is running

15.3.3.7 typedef int ngSpice_Decode_Evt)(void*, int, double *, const **)

void* pointer to event data, typically received from an event callback (see 15.3.3.10)

int identifies data type, 0 for digital node values

double* pointer to receive the “plot value” for the data, usually zero or one for a digital node

char** pointer to a char* variable the will receive a pointer to a read-only string description of
the input value

Decodes an event value for display.

Callback functions addresses received from caller with ngSpice_Init_Evt() function:

15.3. SHARED NGSPICE API 503

15.3.3.8 typedef int (SendEvtData)(int, double, double, char *, void *, int, int, int, void*)

int node index

double actual simulation time

double a real value for specified structure component for plotting purposes

char* a string value for specified structure component for printing

void* a binary data structure

int size of the binary data structure

int the mode (op, dc, tran) we are in

int identification number of calling ngspice shared lib

void* return pointer received from caller

Upon a time step finished, called per node.

15.3.3.9 typedef int (SendInitEvtData)(int, int, char*, char*, int, void*)

int node index

int maximum node index, number of nodes

char* node name

char* udn-name, node type

int identification number of calling ngspice shared lib

void* return pointer received from caller

Upon initialization, called once per event node to build up a dictionary of nodes.

15.3.3.10 typedef int (SendRawEvtData)(double, void*, void*, int)

double event time

void* pointer to the new node value, usually a struct Digital_t. See ngSpice_Decode_Evt()
(15.3.3.7).

void* return pointer received from caller

int zero if another call for the same node will follow, 1 on the final call for this node and
timestep

Called for each event at each time step as requested by ngSpice_Raw_Evt() (15.3.2.4).

504 CHAPTER 15. NGSPICE AS SHARED LIBRARY OR DYNAMIC LINK LIBRARY

15.3.3.11 typedef int (GetVSRCData)(double*, double, char*, int, void*)

double* return voltage value

double actual time

char* node name

int identification number of calling ngspice shared lib

void* return pointer received from caller

Ask for a VSRC EXTERNAL voltage value. The independent voltage source (see Chapt. 4.1)
with EXTERNAL option (4.1.9) sets a voltage value to the node defined in the netlist and named
here at the time returned by the simulator.

15.3.3.12 typedef int (GetISRCData)(double*, double, char*, int, void*)

double* return current value

double actual time

char* node name

int identification number of calling ngspice shared lib

void* return pointer received from caller

Ask for ISRC EXTERNAL value. The independent current source (see 4.1) with EXTERNAL
option (4.1.9) allows setting a current value to the node defined by the netlist and named here
at the time returned by the simulator.

15.4 General remarks on using the API

15.4.1 Loading a netlist

Basically the input to shared ngspice is the same as if you would start a ngspice batch job, e.g.
you enter a netlist and the simulation command (any .dot analysis command like .tran, .op,
or .dc etc. as found in Chapt. 11.3), as well as suitable options.

Typically you should not include a .control section in your input file. Any script described
in a .control section for standard ngspice should better be emulated by the caller and be sent
directly to ngspice.dll. Start the simulation according to Chapt. 15.4.2 in an extra thread.

As an alternative, only the netlist has to be entered (without analysis command), then you may
use any interactive command as listed in Chapt. 13.5 (except for the plot command).

However, for users without direct access to source code commands (e.g. KiCad users), it might
be advantageous to add a .control section to their netlist simulation dot commands. please be
careful and check for chapter 15.4.1.4.

The ‘typical usage’ examples given below are part of a caller written in C.

15.4. GENERAL REMARKS ON USING THE API 505

15.4.1.1 Loading from file

As with interactive ngspice, you may use the ngspice internal command source (13.5.86) to
load a complete netlist from a file.

Typical usage:

ngSpice_Command("source ../examples/adder_mos.cir");

15.4.1.2 Loading line by line

As with interactive ngspice, you may use the ngspice internal command circbyline (13.5.14) to
send a netlist line by line to the ngspice circuit parser.

Typical usage:

ngSpice_Command("circbyline fail test");
ngSpice_Command("circbyline V1 1 0 1");
ngSpice_Command("circbyline R1 1 0 1");
ngSpice_Command("circbyline .dc V1 0 1 0.1");
ngSpice_Command("circbyline .end");

The first line is a title line, which will be ignored during circuit parsing. As soon as the line
.end has been sent to ngspice, circuit parsing commences.

15.4.1.3 Loading as a string array

Typical usage:

circarray = (char**)malloc(sizeof(char*) * 7);
circarray[0] = strdup("test array");
circarray[1] = strdup("V1 1 0 1");
circarray[2] = strdup("R1 1 2 1");
circarray[3] = strdup("C1 2 0 1 ic=0");
circarray[4] = strdup(".tran 10u 3 uic");
circarray[5] = strdup(".end");
circarray[6] = NULL;
ngSpice_Circ(circarray);

An array of char pointers is malloc’d, each netlist line is then copied to the array. strdup will
care for the memory allocation. The first entry to the array is a title line, the last entry has to
contain NULL. ngSpice_Circ(circarray); sends the array to ngspice, where circuit parsing is
started immediately. Don’t forget to free the array after sending it, to avoid a memory leak.

For the latter two options to load a netlist, there is some caveat though. When sending the
netlist from caller to shared ngspice, ngspice will not get any automatic notion of a potential
input directory, as is possible and used with standard ngspice. You will either have to set the
environmental variable NGSPICE_INPUT_DIR to the input file path, especially when in the

506 CHAPTER 15. NGSPICE AS SHARED LIBRARY OR DYNAMIC LINK LIBRARY

netlist other .include ./nextinput.inc commands with relative paths are used or you are
using XSPICE code models that require loading an input file. Or you may set the variable
sourcepath (13.7) in .spiceinit. The command
set sourcepath = (D:/mypath/input $sourcepath)
will add D:/mypath/input to the front of the path list, only this leading path entry is sent to
the code models.

15.4.1.4 Using a .control section

If the simulation is started with the background thread (command bg_run), the .control section
commands are executed immediately after bg_run has been given, i.e. typically before the sim-
ulation has finished. This often is not very useful because you want to evaluate the simulation
results. If the predefined variable controlswait is set in .spiceinit or spice.rc, the command
execution is delayed until the background thread has returned (aka the simulation has finished).
If set controlswait is given inside of the .control section, only the commands following this
statement are delayed.

15.4.2 Running the simulation

The following commands are used to start the simulator in its own thread, halt the simulation
and resume it again. The extra (background) thread enables the caller to continue with other
tasks in the main thread, e.g. watching its own event loop. Of course you have to take care
that the caller will not exit before ngspice is finished, otherwise you immediately will lose all
data. After having halted the simulator by suspending the background thread, you may assess
data, change ngspice parameters, or read output data using the caller’s main thread, before you
resume simulation using a background thread again. While the background thread is running,
ngspice will reject any other command sent by ngSpice_Command.

Typical usage:

ngSpice_Command("bg_run");
...
ngSpice_Command("bg_halt");
...
ngSpice_Command("bg_resume");

Basically you may send the commands ’run’ or ’resume’ (no prefix bg_), starting ngspice within
the main thread. The caller then has to wait until ngspice returns from simulation. A command
’halt’ is not available then.

After simulation is finished (test with callback 15.3.3.6), you may send other commands from
Chapt. 13.5, emulating any .control script. These commands are executed in the main thread,
which should be okay because execution time is typically short.

15.4. GENERAL REMARKS ON USING THE API 507

15.4.3 Accessing data

15.4.3.1 Synchronous access

The callback functions SendInitData (15.3.3.5) and SendData (15.3.3.4) allow access to sim-
ulator output data synchronized with the simulation progress.

Each time a new plot is generated during simulation, e.g. when a sequence of op, ac and tran is
used or commands like linearize or fft are invoked, the callback SendInitData is called by
ngspice. Immediately after setting up the vector structure of the new plot, the function is called
once. Its parameter is a pointer to the structure vecinfoall (15.3.1), which contains an array of
structures vecinfo, one for each vector in the actual plot. You may simply use vecname to get
the name of any vector. This time the vectors are still empty, but pointers to the vector structure
are available.

Each time a new data point (e.g. time value and simulation output value(s)) is added to the
vector structure of the current plot, the function SendData is called by ngspice. This allows
you to immediately access the simulation output synchronized with the simulation time, e.g.
to interface it to a runtime plot or to use it for some controlled simulation by stopping the
simulation based on a condition, altering parameters and resume the simulation. SendData
returns a structure vecvaluesall as parameter, which contains an array of structures vecvalues,
one for each vector.

Some code to demonstrate the callback function usage is referenced below (15.5).

15.4.3.2 Asynchronous access

During simulation, while the background thread is running, or after it is finished, you may use
the functions ngSpice_CurPlot (15.3.2.10), ngSpice_AllPlots (15.3.2.11), ngSpice_AllVecs
(15.3.2.12) to retrieve information about vectors available, and function ngGet_Vec_Info (15.3.2.8)
to obtain data from a vector and its corresponding scale vector. The timing of the caller and the
simulation progress are independent from each other and not synchronized.

Again some code to demonstrate the callback function usage is referenced below (15.5).

15.4.3.3 XSPICE event node data

After starting the simulation, in a first step the callback function SendInitEvtData is called once
for each event node. All nodes are numbered in ascending order. The first function argument
is the actual node number, the second sets the total amount of nodes, then node name and node
type follow. You may set up an array to store name and type, indexed by the node number.

During simulation, after each time step ngspice checks if a node has changed. If so, SendEvt-
Data is called for each node that changed, returning the simulation time, the node number, and
the node value as a char* string, consisting of one out of 0s, 1s, Us, 0r, 1r, Ur, 0z, 1z, Uz, 0u,
1u, Uu (see 8.6.1). The double real value and the void* binary data structure arguments are for
future enhancements of the data interface. The int mode returns 0 for op, 1 for dc, 2 for ac ,
and 3 for tran simulation. The final int is useful to identify the ngspice lib by number if you run
several in parallel (see 15.6). The final *void just returns the pointer received from caller. e.g.
to identify the calling object. To receive all event data for a node, rather than the final value at
the end of a time step, use ngSpice_Raw_Evt() (15.3.2.4).

508 CHAPTER 15. NGSPICE AS SHARED LIBRARY OR DYNAMIC LINK LIBRARY

15.4.4 Altering model or device parameters

After halting ngspice by stopping the background thread (15.4.2), nearly all ngspice commands
are available. Especially alter (13.5.3) and altermod (13.5.4) may be used to change device
or model parameters. After the modification, the simulation may be resumed immediately.
Changes to a circuit netlist, however, are not possible. You would need to load a complete new
netlist (15.4.1) and restart the simulation from the beginning.

15.4.5 Output

After the simulation is finished, use the ngspice commands write (13.5.107) or wrdata (13.5.106)
to output data to a file as usual, use the print command (13.5.59) to retrieve data via callback
SendChar (15.3.3.1), or refer to accessing the data as described in Chapt. 15.4.3.

Typical usage:

ngSpice_Command("write testout.raw V(2)");
ngSpice_Command("print V(2)");

15.4.6 Error handling

There are several occasions where standard ngspice suffers from an error, cannot recover in-
ternally and then exits. If this is happening to the shared module this would mean that the
parent application, the caller, is also forced to exit. Therefore (if not suffering from a segfault)
ngspice.dll will call the function controlled_exit as usual, this now calls the callback func-
tion ’ControlledExit’ (15.3.3.3), which hands over the request for exiting to the caller. The
caller now has the task to handle the exit code for ngspice.

If ngspice has been linked at runtime by dlopen/LoadLibrary (see 15.2.2), the callback may
close all threads, and then detach ngspice.dll by invoking dlclose/FreeLibrary. The caller
may then restart ngspice by another loading and initialization (15.3.2.1).

If ngspice is included during linking the caller (see 15.2.1), there is not yet a good and general
solution to error handling, if the error is non-recoverable from inside ngspice.

15.5 Example applications

Four executables (coming with source code) serve as examples for controlling ngspice. These
are not meant to be ‘production’ programs, but just give some commented example usages of
the interface.

ng_start.exe is a MS Windows application loading ngspice.dll dynamically. All functions
and callbacks of the interface are assessed. The source code, generated with Turbo Delphi
2006, may be found here, the binaries compiled for 32 Bit are here.

Two console applications, compilable with Linux, CYGWIN, MINGW or MS Visual Studio,
are available here, demonstrating either linking upon start-up or loading shared ngspice dynam-
ically at runtime. A simple feedback loop is shown in tests 3 and 4, where a device parameter
is changed upon having an output vector value crossing a limit.

http://ngspice.sourceforge.net/ngspice-shared-lib/ng_dll_src_delphi.7z
http://ngspice.sourceforge.net/ngspice-shared-lib/ngspice-sh_bin_win32.7z
http://ngspice.sourceforge.net/ngspice-shared-lib/ngspice_cb.7z

15.6. NGSPICE PARALLEL 509

A fourth program is included with the Ngspice source code at examples/shared. The”xsh”
program provides a command-line interface to an instance of the shared library. Interactive
interpreter commands can be given to load and simulate a circuit. Local commands, starting
with “/”, exercise most of the API functions and the contents of callbacks are displayed.

An XSPICE event node example may be assessed at ngspice/visualc/ng_shared_xspice_v, cur-
rently tested only with MS Windows and compiled with Visual Studio.

15.6 ngspice parallel

The following chapter describes an offer to the advanced user and developer community. If you
are interested in evaluating the parallel and synchronized operation of several ngspice instances,
this may be one way to go. However, no ready to use implementation is available. You will
find a toolbox and some hints how to use it. Parallelization and synchronization is your task by
developing a suitable caller! And of course another major input has to come from partitioning
the circuit into suitable, loosely coupled pieces, each with its own netlist, one netlist per ngspice
instance. And you have to define the coupling between the circuit blocks. Both are not provided
by ngspice, but are again your responsibility. Both are under active research, and the toolbox
described below is an offer to join that research.

15.6.1 Go parallel!

A simple way to run several invocations of ngspice in parallel for transient simulation is to define
a caller that loads two or more ngspice shared libraries. There is one prerequisite however
to do so: the shared libraries have to have different names. So compile ngspice shared lib
(see 15.1), then copy and rename the library file, e.g. ngspice.dll may become ngspice1.dll,
ngspice2.dll etc. Then dynamically load ngspice1.dll, retrieve its address, initialize it by
calling ngSpice_init() (see 15.3.2.1), then continue initialization by calling ngSpice_init_Sync()
(see 15.6.2.1). An integer identification number may be sent during this step to later uniquely
identify each invocation of the shared library, e.g. by having any callback use this identifier.
Repeat the sequence with ngspice2.dll and so on.

Inter-process communication and synchronization is now done by using three callback func-
tions. To understand their interdependence, it might be useful to have a look at the transient
simulation sequence as defined in the ngspice source file dctran.c. The following listing in-
cludes the shared library option (It differs somewhat from standard procedure) and disregards
XSPICE.

1. initialization

2. calculation of operating point

3. next time step: set new breakpoints (VSRC, ISRC, TRA, LTRA)

4. send simulation data to output, callback function SendData* datfcn

5. check for autostop and other end conditions

6. check for interrupting simulation (e.g. by bg_halt)

510 CHAPTER 15. NGSPICE AS SHARED LIBRARY OR DYNAMIC LINK LIBRARY

7. breakpoint handling (e.g. enforce breakpoint, set new small cktdelta if directly after the
breakpoint)

8. calling ngspice internal function sharedsync() that invokes callback function GetSync-
Data* getsync with location flag loc = 0

9. save the previous states

10. start endless loop

11. save cktdelta to olddelta, set new time point by adding cktdelta to ckttime

12. new iteration of circuit at new time point, which uses callback functions GetVSRCData*
getvdat and GetISRCData* getidat to retrieve external voltage or current inputs, returns
redostep=0, if converged, redostep=1 if not converged

13. if not converged, divide cktdelta by 8

14. check for truncation error with all non-linear devices, if necessary create a new (smaller)
cktdelta to limit the error, optionally change integration order

15. calling ngspice internal function sharedsync() that invokes callback function GetSync-
Data* getsync with location flag loc = 1: as a result either goto 3 (next time step) or to
10 (loop start), depending on ngspice and user data, see the next paragraph.

The code of the synchronization procedure is handled in the ngspice internal function sharedsync()
and its companion user defined callback function GetSyncData* getsync. The actual setup is
as follows:

If no synchronization is asked for (GetSyncData* set to NULL), program control jumps to ’next
time step’ (3) if redostep==0, or subtracts olddelta from ckttime and jumps to ’loop start’ (9) if
redostep <> 0. This is the standard ngspice behavior.

If GetSyncData* has been set to a valid address by ngSpice_Init_Sync(), the callback function
getsync is involved. If redostep <> 0, olddelta is subtracted from ckttime, getsync is called,
either the cktdelta time suggested by ngspice is kept or the user provides his own deltatime,
and the program execution jumps to (9) for redoing the last step with the new deltatime. The
return value of getsync is not used. If redostep == 0, getsync is called. The user may keep
the deltatime suggested by ngspice or define a new value. If the user sets the return value of
getsync to 0, the program execution then jumps to ’next time step’ (3). If the return value of
getsync is 1, olddelta is subtracted from ckttime, and the program execution jumps to (9) for
redoing the last step with the new deltatime. Typically the user provided deltatime should be
smaller than the value suggested by ngspice.

15.6.2 Additional exported functions

The following functions (exported or callback) are designed to support the parallel action of
several ngspice invocations. They may be useful, however, also when only a single library is
loaded into a caller, if you want to ’play’ with advancing simulation time.

15.6. NGSPICE PARALLEL 511

15.6.2.1 Requesting the synchronisation callback

A callback that allows the control program to take control of the transient simulation loop may
be requested by setting the GetSyncData argument of ngSpice_Init_Sync(). See 15.3.2.2

15.6.2.2 NG_BOOL ngSpice_SetBkpt(double)

Sets a breakpoint in ngspice, a time point that the simulator is enforced to hit during the transient
simulation. After the breakpoint time has been hit, the next delta time starts with a small value
and is ramped up again. A breakpoint should be set only when the background thread in ngspice
is not running (before the simulation has started, or after the simulation has been paused by
bg_halt). The time sent to ngspice should be larger than the current time (which is either 0
before start or given by the callback GetSyncData (15.6.3.1). Several breakpoints may be set.

15.6.3 Additional callback functions

15.6.3.1 typedef int (GetSyncData)(double, double*, double, int, int, int void*)

double actual time (ckt->CKTtime)

double* delta time (ckt->CKTdelta)

double old delta time (olddelta)

int redostep flag, non zero if the previous time step failed

int identification number of calling ngspice shared lib

int location of call for synchronization in dctran.c

void* return pointer received from caller

Ask for new delta time depending on synchronization requirements. See 15.6.1 for an explana-
tion.

15.6.4 Parallel ngspice example

A first example is available as a compacted 7z archive. It contains the source code of a control-
ling application, as well as its compiled executable and ngspice.dll (for MS Windows). As the
input circuit an inverter chain has been divided into three parts. Three ngspice shared libraries
are loaded, each simulates one partition of the circuit. Interconnections between the partitions
are provided via a callback function. The simulation time is synchronized among the three
ngspice invocations by another callback function.

http://ngspice.sourceforge.net/ngspice-shared-lib/ngspice_sync_win.7z

512 CHAPTER 15. NGSPICE AS SHARED LIBRARY OR DYNAMIC LINK LIBRARY

Chapter 16

TCLspice

Spice historically comes as a simulation engine with a Command Line Interface. The Spice
engine can also be used with a Graphical User Interface. Tclspice represents a third approach
to interfacing ngspice simulation functionality. Tclspice is nothing more than a new way of
compiling and using SPICE source code. Spice is no longer considered as a standalone program
but as a library invoked by a TCL interpreter. It either permits direct simulation in a TCL shell
(this is quite analogous to the command line interface of ngspice), or it permits the elaboration
of more complex, more specific, or more user friendly simulation programs, by writing TCL
scripts.

16.1 tclspice framework

The technical difference between the ngspice CLI interface and tclspice is that the CLI interface
is compiled as a standalone program, whereas tclspice is a shared object. Tclspice is designed to
work with tools that expand the capabilities of ngspice: TCL for the scripting and programming
language interface and BLT for data processing and display. This two tools give tclspice all of
its relevance, with the insurance that the functionality is maintained by competent people.

Making tclspice (see 16.6) produces two files: libspice.so and pkgIndex.tcl. libspice.so is the
executable binary that the TCL interpreter calls to handle SPICE commands. pkgIndex.tcl take
place in the TCL directory tree, providing the SPICE package1 to the TCL user.

BLT is a TCL package. It is quite well documented. It permits handling mathematical vector
data structures for calculus and display, in a Tk interpreter like wish.

16.2 tclspice documentation

A detailed documentation on tclspice commands is available on the original tclspice web page.

16.3 spicetoblt

Tclspice opens its doors to TCL and BLT with a single specific command spicetoblt.
1package has to be understood as the TCL package

513

http://tclspice.sourceforge.net/docs/tclspice_com.html
http://tclspice.sourceforge.net/

514 CHAPTER 16. TCLSPICE

TCLspice gets its identity in the command spice::vectoblt . This command copies data com-
puted by the simulation engine into a tcl variable. vectoblt is composed of three words: vec,
to and blt. Vec means SPICE vector data. To is the English preposition, and blt is a useful tcl
package providing a vector data structure. Example:

blt::vector create Iex
spice::vectoblt Vex#branch Iex

Here an empty blt vector is created. It is then filled with the vector representation of the current
flowing out of source Vex. Vex#branch is native SPICE syntax. Iex is the name of the BLT
vector.

The reverse operation is handled by native SPICE commands, such as alter, let and set.

16.4 Running TCLspice

TCLspice consists of a library or a package to include in your tcl console or script:

load /somepath/libspice.so
package require spice

Then you can execute any native SPICE command by preceding it with spice::. For example
if you want to source the testCapa.cir netlist, type the following:

spice::source testCapa.cir
spice::spicetoblt example...

Plotting data is not a matter of SPICE, but of tcl. Once the data is stored in a blt vector, it can
be plotted. Example:

blt::graph .cimvd -title "Cim = f(Vd)"
pack .cimvd
.cimvd element create line1 -xdata Vcmd -ydata Cim

With blt::graph a plotting structure is allocated in memory. With pack it is placed into the
output window, and becomes visible. The last command, and not the least, plots the function
Cim = f (Vcmd), where Cim and Vcmd are two BLT vectors.

16.5 examples

16.5.1 Active capacitor measurement

This is a crude implementation of a circuit described by Marc Kodrnja, in his PhD thesis that
was found on the Internet. The simulation outputs a graph representing virtual capacitance
versus a control voltage. The function C = f (V) is calculated point by point. For each control

16.5. EXAMPLES 515

voltage value, the virtual capacitance is calculated in a frequency simulation. A control value
that should be as close to zero as possible is calculated to assess simulation success.

16.5.1.1 Invocation:

This script can be invoked by typing wish testbench1.tcl

16.5.1.2 testbench1.tcl

This line loads the simulator capabilities

package require spice

This is a comment (Quite useful if you intend to live with other Human beings)

Test of virtual capacitor circuit
Vary the control voltage and log the resulting capacitance

A good example of the calling of a SPICE command: precede it with spice::

spice::source "testCapa.cir"

This reminds that any regular TCL command is of course possible

set n 30 set dv 0.2
set vmax [expr $dv/2]
set vmin [expr -1 * $dv/2]
set pas [expr $dv/ $n]

BLT vector is the structure used to manipulate data. Instantiate the vectors

blt::vector create Ctmp
blt::vector create Cim
blt::vector create check
blt::vector create Vcmd

Data is, in my coding style, plotted into graph objects. Instantiate the graph

516 CHAPTER 16. TCLSPICE

blt::graph .cimvd -title "Cim = f(Vd)"
blt::graph .checkvd -title "Rim = f(Vd)"
blt::vector create Iex
blt::vector create freq
blt::graph .freqanal -title "Analyse frequentielle"
#
First simulation: A simple AC plot
#
set v [expr {$vmin + $n * $pas / 4}]
spice::alter vd = $v
spice::op
spice::ac dec 10 100 100k

Retrieve a the intensity of the current across Vex source

spice::vectoblt {Vex#branch} Iex

Retrieve the frequency at which the current have been assessed

spice::vectoblt {frequency} freq

Room the graph in the display window

pack .freqanal

Plot the function Iex =f(V)

.freqanal element create line1 -xdata freq -ydata Iex
#
Second simulation: Capacitance versus voltage control
for {set i 0} {[expr $n - $i]} {incr i }
{ set v [expr {$vmin + $i * $pas}]
spice::alter vd = $v
spice::op spice::ac dec 10 100 100k

Image capacitance is calculated by SPICE, instead of TCL there is no objective reason

spice::let Cim = real(mean(Vex#branch/(2*Pi*i*frequency*(V(5)-V(6)))))
spice::vectoblt Cim Ctmp

Build function vector point by point

Cim append $Ctmp(0:end)

Build a control vector to check simulation success

16.5. EXAMPLES 517

spice::let err = real(mean(sqrt((Vex#branch-
(2*Pi*i*frequency*Cim*V(5)-V(6)))^2)))

spice::vectoblt err Ctmp check
append $Ctmp(0:end)

Build abscissa vector

FALTA ALGO... Vcmd append $v }

Plot

pack .cimvd
.cimvd element create line1 -xdata Vcmd -ydata Cim
pack .checkvd
.checkvd element create line1 -xdata Vcmd -ydata check

16.5.2 Optimization of a linearization circuit for a Thermistor

This example is both the first and the last optimization program written for an electronic circuit.
It is far from perfect.

The temperature response of a CTN is exponential. It is thus nonlinear. In a battery charger
application floating voltage varies linearly with temperature. A TL431 voltage reference sees
its output voltage controlled by two resistors (r10, r12) and a thermistor (r11). The simulation
is run at a given temperature. The thermistor is modeled in SPICE by a regular resistor. Its
resistivity is assessed by the TCL script. It is set with a spice::alter command before running
the simulation. This script uses an iterative optimization approach to try to converge to a set
of two resistor values that minimizes the error between the expected floating voltage and the
TL431 output.

16.5.2.1 Invocation:

This script can be executed by the user by simply executing the file in a terminal.

./testbench3.tcl

Two issues2 are important to point out:

2For those who are really interested in optimizing circuits: Some parameters are very important for quick and
correct convergence. The optimizer walks step by step to a local minimum of the cost function you define. Starting
from an initial vector you provide, it converges step by step. Consider trying another start vector if the result is not
the one you expected.

The optimizer will carry on walking until it reaches a vector whose resulting cost is smaller than the target cost
you provided. You must also provide a maximum iteration count in case the target can not be achieved. Balance
time, specifications, and every other parameter. For a balance between quick and accurate convergence adjust the
‘factor’ variable, at the beginning of minimumSteepestDescent in the file differentiate.tcl.

518 CHAPTER 16. TCLSPICE

• During optimization loop, graphical display of the current temperature response is not yet
possible and I don’t know why. Each time a simulation is performed, some memory is
allocated for it.

• The simulation result remains in memory until the libspice library is unloaded (typically:
when the tcl script ends) or when a spice::clean command is performed. In this kind of
simulation, not cleaning the memory space will freeze your computer and you’ll have to
restart it. Be aware of that.

16.5.2.2 testbench3.tcl

This calls the shell sh who then runs wish with the file itself.

#!/bin/sh
WishFix \
exec wish "$0" ${1+"$@"}
#
#
#

Regular package for simulation

package require spice

Here the important line is source differentiate.tcl that contains the optimization library

source differentiate.tcl

Generates a temperature vector

proc temperatures_calc {temp_inf temp_sup points} {
set tstep [expr " ($temp_sup - $temp_inf) / $points "]
set t $temp_inf
set temperatures ""
for { set i 0 } { $i < $points } { incr i } {

set t [expr { $t + $tstep }]
set temperatures "$temperatures $t"

}
return $temperatures }

generates thermistor resistivity as a vector, typically run: thermistance_calc res B [tempera-
tures_calc temp_inf temp_sup points]

16.5. EXAMPLES 519

proc thermistance_calc { res B points } {
set tzero 273.15
set tref 25
set thermistance ""
foreach t $points {

set res_temp [expr " $res *
+ exp ($B * (1 / ($tzero + $t) -
+ 1 / ($tzero + $tref))) "]

set thermistance "$thermistance $res_temp"
}
return $thermistance }

generates the expected floating value as a vector, typically run: tref_calc res B [tempera-
tures_calc temp_inf temp_sup points]

proc tref_calc { points } {
set tref ""
foreach t $points {

set tref "$tref[expr "6*(2.275-0.005*($t-20))-9"]"
}
return $tref }

In the optimization algorithm, this function computes the effective floating voltage at the given
temperature.

NOTE:
As component values are modified by a spice::alter
Component values can be considered as global variable.
R10 and R12 are not passed to iteration function
because it is expected to be correct, i.e. to
have been modified soon before
proc iteration { t } { set tzero 273.15 spice::alter

r11 = [thermistance_calc 10000 3900 $t]
Temperature simulation often crashes. Comment it out...
#spice::set temp = [expr " $tzero + $t "]
spice::op
spice::vectoblt vref_temp tref_tmp
NOTE:
As the library is executed once for the
whole script execution, it is important to manage the memory
and regularly destroy unused data set. The data
computed here will not be reused. Clean it
spice::destroy all return [tref_tmp range 0 0] }

This is the cost function optimization algorithm will try to minimize. It is a 2-norm (Euclidean
norm) of the error across the temperature range [-25:75]°C.

520 CHAPTER 16. TCLSPICE

proc cost { r10 r12 } {
tref_blt length 0
spice::alter r10 = $r10
spice::alter r12 = $r12
foreach point [temperatures_blt range 0
+ [expr " [temperatures_blt length] - 1"]] {
+ tref_blt append [iteration $point]
}
set result [blt::vector expr " 1000 *

sum((tref_blt - expected_blt)^2)"]
disp_curve $r10 $r12
return $result }

This function displays the expected and effective value of the voltage, as well as the r10 and r12
resistor values

proc disp_curve { r10 r12 }
+ { .g configure -title "Valeurs optimales: R10 = $r10 R12 =

$r12" }

Main loop starts here

#
Optimization
blt::vector create tref_tmp
blt::vector create tref_blt
blt::vector create expected_blt
blt::vector create temperatures_blt temperatures_blt
append [temperatures_calc -25 75 30] expected_blt
append [tref_calc [temperatures_blt range 0
+ [expr " [temperatures_blt length] - 1"]]]
blt::graph .g
pack .g -side top -fill both -expand true
.g element create real -pixels 4 -xdata temperatures_blt
+ -ydata tref_blt
.g element create expected -fill red -pixels 0 -dashes
+ dot -xdata temperatures_blt -ydata expected_blt

Source the circuit and optimize it. The result is retrieved in the variable r10r12e and put into
r10 and r12 with a regular expression. A bit ugly.

spice::source FB14.cir
set r10r12 [::math::optimize::minimumSteepestDescent
+ cost { 10000 10000 } 0.1 50]
regexp {([0-9.]*) ([0-9.]*)} $r10r12 r10r12 r10 r12

Outputs optimization result

16.5. EXAMPLES 521

#
Results
spice::alter r10 = $r10
spice::alter r12 = $r12
foreach point [temperatures_blt range 0
+ [expr " [temperatures_blt length] - 1"]] {

tref_blt append [iteration $point]
}
disp_curve $r10 $r12

16.5.3 Progressive display

This example is quite simple but it is very interesting. It displays a transient simulation result
on the fly. You may now be familiar with most of the lines of this script. It uses the ability of
BLT objects to automatically update. When the vector data is modified, the strip-chart display
is modified accordingly.

16.5.3.1 testbench2.tcl

#!/bin/sh
WishFix \
exec wish -f "$0" ${1+"$@"}

###
package require BLT package require spice

this avoids to type blt:: before the blt class commands

namespace import blt::*
wm title . "Vector Test script"
wm geometry . 800x600+40+40 pack propagate . false

A strip chart with labels but without data is created and displayed (packed)

522 CHAPTER 16. TCLSPICE

stripchart .chart
pack .chart -side top -fill both -expand true
.chart axis configure x -title "Time" spice::source example.cir
spice::bg
run after 1000 vector
create a0 vector
create b0 vectorry
create a1 vector
create b1 vector
create stime
proc bltupdate {} {
puts [spice::spice_data]
spice::spicetoblt a0 a0
spice::spicetoblt b0 b0
spice::spicetoblt a1 a1
spice::spicetoblt b1 b1
spice::spicetoblt time stime
after 100 bltupdate }
bltupdate .chart element create a0 -color red -xdata
+ stime -ydata a0
.chart element create b0 -color blue -xdata stime -ydata b0
.chart element create a1 -color yellow -xdata stime -ydata a1
.chart element create b1 -color black -xdata stime -ydata b1

16.6 Compiling

16.6.1 Linux

Get tcl8.4 from your distribution. You will need the blt plotting package (compatible to the old
tcl 8.4 only) from here. See also the actual blt wiki.

./configure --with-tcl ..
make
sudo make install

16.6.2 MS Windows

Can be done, but is tedious. Here it is described by a procedure on Windows 7, 64 Bit Home
Edition.

16.6.2.1 Downloads

download tcl8.6b2-src.zip from http://www.tcl.tk/software/tcltk/download.html

download tk8.6b2-src.zip

http://sourceforge.net/projects/blt/files/BLT/BLT%25202.4z/
http://wiki.tcl.tk/199

16.7. MS WINDOWS 32 BIT BINARIES 523

download blt from http://ngspice.sourceforge.net/experimental/blt2.4z.7z

expand all to d:\software

16.6.2.2 Tcl

double click on D:\software\tcl8.6b2\win\tcl.dsw

convert to MS Visual Studio 2008 project

select release or debug

create tcl as tcl86t.dll.

16.6.2.3 Tk

edit D:\software\tk8.6b2\win\buildall.vc.bat

line 31 to

call C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\vcvarsall.bat

line 53 to

if "%TCLDIR%" == "" set TCLDIR=..\..\tcl8.6b2

open cmd window

cd to

d:\software\tk8.6b2\win>

then

d:\software\tk8.6b2\win> buildall.vc.bat debug

tk will be made as tk86t.dll, in addition wish86t.exe is generated.

16.6.2.4 blt

blt source files have been downloaded from the blt web page and modified for compatibility
with TCL8.6. To facilitate making blt24.dll, the modified source code is available as a 7z
compressed file, including a project file for MS Visual Studio 2008.

16.6.2.5 tclspice

ngspice is compiled and linked into a dll called spice.dll that may be loaded by wish86t.exe.
MS Visual Studio 2008 is the compiler applied. A project file may be downloaded as a 7z
compressed file. Expand this file in the ngspice main directory. The links to tcl and tk are hard-
coded, so both have to be installed in the places described above (d:\software\...). spice.dll
may be generated in Debug, Release or ReleaseOMP mode.

16.7 MS Windows 32 Bit binaries

You may download the compiled binaries, including tcl, tk, blt and tclspice, plus the examples,
slightly modified, from http://ngspice.sourceforge.net/experimental/tclspice-25.7z.

ftp://www.sourceforge.net/projects/blt/files/BLT2.4z.tar.gz
http://ngspice.sourceforge.net/experimental/blt2.4z.7z
http://ngspice.sourceforge.net/experimental/blt2.4z.7z
http://ngspice.sourceforge.net/experimental/visualc-tcl.7z
http://ngspice.sourceforge.net/experimental/visualc-tcl.7z
http://ngspice.sourceforge.net/experimental/tclspice-25.7z

524 CHAPTER 16. TCLSPICE

Chapter 17

Example Circuits

This section starts with an ngspice example to walk you through the basic features of ngspice
using its command line user interface. The operation of ngspice will be illustrated through
several examples (Chapt. 17.1 to 17.7).

The first example uses the simple one-transistor amplifier circuit illustrated in Fig. 17.1. This
circuit is constructed entirely with ngspice compatible devices and is used to introduce basic
concepts, including:

• Invoking the simulator:

• Running simulations in different analysis modes

• Printing and plotting analog results

• Examining status, including execution time and memory usage

• Exiting the simulator

The remainder of the section (from Chapt. 17.1 onward) lists several circuits, which have been
accompanying any ngspice distribution, and may be regarded as the ‘classical’ SPICE circuits.

17.1 AC coupled transistor amplifier

The circuit shown in Fig. 17.1 is a simple one-transistor amplifier. The input signal is amplified
with a gain of approximately -(Rc/Re) = -(3.9K/1K) = -3.9. The circuit description file for this
example is shown below.

525

526 CHAPTER 17. EXAMPLE CIRCUITS

Figure 17.1: Transistor Amplifier Simulation Example

Example:

A Berkeley SPICE3 compatible circuit

*
* This circuit contains only Berkeley SPICE3 components.

*
* The circuit is an AC coupled transistor amplifier with

* a sinewave input at node "1", a gain of approximately -3.9,

* and output on node "coll".

*
.tran 1e-5 2e-3

*
vcc vcc 0 12.0
vin 1 0 0.0 ac 1.0 sin(0 1 1k)
ccouple 1 base 10uF
rbias1 vcc base 100k
rbias2 base 0 24k
q1 coll base emit generic
rcollector vcc coll 3.9k
remitter emit 0 1k

*
.model generic npn

*
.end

To simulate this circuit, move into a directory under your user account and copy the file xspice_c1.cir

17.1. AC COUPLED TRANSISTOR AMPLIFIER 527

from directory /examples/xspice/. This file stems from the original XSPICE introduction,
therefore its name, but you do not need to have a version of ngspice with the XSPICE option to
run it.

$ cp /examples/xspice/xspice_c1.cir xspice_c1.cir

Now invoke the simulator on this circuit as follows:

$ ngspice xspice_c1.cir

After a few moments, you should see the ngspice prompt:

ngspice 1 ->

At this point, ngspice has read-in the circuit description and checked it for errors. If any errors
had been encountered, messages describing them would have been output to your terminal.
Since no messages were printed for this circuit, the syntax of the circuit description was correct.

To see the circuit description read by the simulator you can issue the following command:

ngspice 1 -> listing

The simulator shows you the circuit description currently in memory:

a berkeley spice3 compatible circuit
1 : a berkeley spice3 compatible circuit
2 : .global gnd

10 : .tran 1e-5 2e-3
12 : vcc vcc 0 12.0
13 : vin 1 0 0.0 ac 1.0 sin(0 1 1k)
14 : ccouple 1 base 10uf
15 : rbias1 vcc base 100k
16 : rbias2 base 0 24k
17 : q1 coll base emit generic
18 : rcollector vcc coll 3.9k
19 : remitter emit 0 1k
21 : .model generic npn
24 : .end

The title of this circuit is ‘A Berkeley SPICE3 compatible circuit’. The circuit description
contains a transient analysis control command .TRAN 1E-5 2E-3 requesting a total simulated
time of 2ms with a maximum time-step of 10us. The remainder of the lines in the circuit
description describe the circuit of Fig. 17.1.

Now, execute the simulation by entering the run command:

ngspice 1 -> run

528 CHAPTER 17. EXAMPLE CIRCUITS

The simulator will run the simulation and when execution is completed, will return with the
ngspice prompt. When the prompt returns, issue the rusage command again to see how much
time and memory has been used now.

To examine the results of this transient analysis, we can use the plot command. First we will
plot the nodes labeled ‘1’ and ‘base’.

ngspice 2 -> plot v(1) base

The simulator responds by displaying an X Window System plot similar to that shown in Fig.
17.2.

Figure 17.2: node 1 and node ’base’ versus time

Notice that we have named one of the nodes in the circuit description with a number (‘1’),
while the others are words (‘base’). This was done to illustrate ngspice’s special requirements
for plotting nodes labeled with numbers. Numeric labels are allowed in ngspice for backwards
compatibility with SPICE2. However, they require special treatment in some commands such
as plot. The plot command is designed to allow expressions in its argument list in addition to
names of results data to be plotted. For example, the expression plot (base - 1) would plot
the result of subtracting 1 from the value of node ‘base’.

If we had desired to plot the difference between the voltage at node ‘base’ and node ‘1’, we
would need to enclose the node name ‘1’ in the construction v() producing a command such
as plot (base - v(1)).

Now, issue the following command to examine the voltages on two of the internal nodes of the
transistor amplifier circuit:

17.1. AC COUPLED TRANSISTOR AMPLIFIER 529

ngspice 3 -> plot vcc coll emit

The plot shown in Fig. 17.3 should appear. Notice in the circuit description that the power
supply voltage source and the node it is connected to both have the name ‘vcc’. The plot
command above has plotted the node voltage ‘vcc’. However, it is also possible to plot branch
currents through voltage sources in a circuit. ngspice always adds the special suffix #branch to
voltage source names. Hence, to plot the current into the voltage source named vcc, we would
use a command such as plot vcc#branch.

Figure 17.3: VCC, Collector and Emitter Voltages

Now let’s run a simple DC simulation of this circuit and examine the bias voltages with the
print command. One way to do this is to quit the simulator using the quit command, edit
the input file to change the .tran line to .op (for ’operating point analysis’), re-invoke the
simulator, and then issue the run command. However, ngspice allows analysis mode changes
directly from the ngspice prompt. All that is required is to enter the control line, e.g. op (without
the leading ‘.’). ngspice will interpret the information on the line and start the new analysis run
immediately, without the need to enter a new run command.

To run the DC simulation of the transistor amplifier, issue the following command:

ngspice 4 -> op

After a moment the ngspice prompt returns. Now issue the print command to examine the
emitter, base, and collector DC bias voltages.

ngspice 5 -> print emit base coll

530 CHAPTER 17. EXAMPLE CIRCUITS

ngspice responds with:

emit = 1.293993e+00 base = 2.074610e+00 coll = 7.003393e+00

To run an AC analysis, enter the following command:

ngspice 6 -> ac dec 10 0.01 100

This command runs a small-signal swept AC analysis of the circuit to compute the magnitude
and phase responses. In this example, the sweep is logarithmic with ‘decade’ scaling, 10 points
per decade, and lower and upper frequencies of 0.01 Hz and 100 Hz. Since the command
sweeps through a range of frequencies, the results are vectors of values and are examined with
the plot command. Issue to the following command to plot the response curve at node ‘coll’:

ngspice 7 -> plot coll

This plot shows the AC gain from input to the collector. (Note that our input source in the circuit
description ‘vin’ contained parameters of the form ‘AC 1.0’ designating that a unit-amplitude
AC signal was applied at this point.) For plotting data from an AC analysis, ngspice chooses
automatically a logarithmic scaling for the frequency (x) axis.

To produce a more traditional ‘Bode’ gain phase plot (again with automatic logarithmic scaling
on the frequency axis), we use the expression capability of the plot command and the built-in
ngspice functions db() and ph():

ngspice 8 -> plot db(coll) ph(coll)

The last analysis supported by ngspice is a swept DC analysis. To perform this analysis, issue
the following command:

ngspice 9 -> dc vcc 0 15 0.1

This command sweeps the supply voltage ‘vcc’ from 0 to 15 volts in 0.1 volt increments. To
plot the results, issue the command:

ngspice 10 -> plot emit base coll

Finally, to exit the simulator, use the quit command, and you will be returned to the operating
system prompt.

ngspice 11 -> quit

So long.

17.2. DIFFERENTIAL PAIR 531

17.2 Differential Pair

The following deck determines the dc operating point of a simple differential pair. In addition,
the ac small-signal response is computed over the frequency range 1Hz to 100MEGHz.

Example:

SIMPLE DIFFERENTIAL PAIR
VCC 7 0 12
VEE 8 0 -12
VIN 1 0 AC 1
RS1 1 2 1K
RS2 6 0 1K
Q1 3 2 4 MOD1
Q2 5 6 4 MOD1
RC1 7 3 10K
RC2 7 5 10K
RE 4 8 10K
.MODEL MOD1 NPN BF=50 VAF=50 IS=1.E-12 RB=100 CJC=.5PF TF=.6NS
.TF V(5) VIN
.AC DEC 10 1 100MEG
.END

17.3 MOSFET Characterization

The following deck computes the output characteristics of a MOSFET device over the range
0-10V for VDS and 0-5V for VGS.

Example:

MOS OUTPUT CHARACTERISTICS
.OPTIONS NODE NOPAGE
VDS 3 0
VGS 2 0
M1 1 2 0 0 MOD1 L=4U W=6U AD=10P AS=10P

* VIDS MEASURES ID, WE COULD HAVE USED VDS,

* BUT ID WOULD BE NEGATIVE
VIDS 3 1
.MODEL MOD1 NMOS VTO=-2 NSUB=1.0E15 UO=550
.DC VDS 0 10 .5 VGS 0 5 1
.END

17.4 RTL Inverter

The following deck determines the dc transfer curve and the transient pulse response of a simple
RTL inverter. The input is a pulse from 0 to 5 Volts with delay, rise, and fall times of 2ns and

532 CHAPTER 17. EXAMPLE CIRCUITS

a pulse width of 30ns. The transient interval is 0 to 100ns, with printing to be done every
nanosecond.

Example:

SIMPLE RTL INVERTER
VCC 4 0 5
VIN 1 0 PULSE 0 5 2NS 2NS 2NS 30NS
RB 1 2 10K
Q1 3 2 0 Q1
RC 3 4 1K
.MODEL Q1 NPN BF 20 RB 100 TF .1NS CJC 2PF
.DC VIN 0 5 0.1
.TRAN 1NS 100NS
.END

17.5 Four-Bit Binary Adder (Bipolar)

The following deck simulates a four-bit binary adder, using several subcircuits to describe vari-
ous pieces of the overall circuit.

Example:

ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER

*** SUBCIRCUIT DEFINITIONS
.SUBCKT NAND 1 2 3 4

* NODES: INPUT(2), OUTPUT, VCC
Q1 9 5 1 QMOD
D1CLAMP 0 1 DMOD
Q2 9 5 2 QMOD
D2CLAMP 0 2 DMOD
RB 4 5 4K
R1 4 6 1.6K
Q3 6 9 8 QMOD
R2 8 0 1K
RC 4 7 130
Q4 7 6 10 QMOD
DVBEDROP 10 3 DMOD
Q5 3 8 0 QMOD
.ENDS NAND

17.5. FOUR-BIT BINARY ADDER (BIPOLAR) 533

Continue 4 Bit adder:

.SUBCKT ONEBIT 1 2 3 4 5 6

* NODES: INPUT(2), CARRY-IN, OUTPUT, CARRY-OUT, VCC
X1 1 2 7 6 NAND
X2 1 7 8 6 NAND
X3 2 7 9 6 NAND
X4 8 9 10 6 NAND
X5 3 10 11 6 NAND
X6 3 11 12 6 NAND
X7 10 11 13 6 NAND
X8 12 13 4 6 NAND
X9 11 7 5 6 NAND
.ENDS ONEBIT

.SUBCKT TWOBIT 1 2 3 4 5 6 7 8 9

* NODES: INPUT - BIT0(2) / BIT1(2), OUTPUT - BIT0 / BIT1,

* CARRY-IN, CARRY-OUT, VCC
X1 1 2 7 5 10 9 ONEBIT
X2 3 4 10 6 8 9 ONEBIT
.ENDS TWOBIT

.SUBCKT FOURBIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

* NODES: INPUT - BIT0(2) / BIT1(2) / BIT2(2) / BIT3(2),

* OUTPUT - BIT0 / BIT1 / BIT2 / BIT3, CARRY-IN, CARRY-OUT, VCC
X1 1 2 3 4 9 10 13 16 15 TWOBIT
X2 5 6 7 8 11 12 16 14 15 TWOBIT
.ENDS FOURBIT

*** DEFINE NOMINAL CIRCUIT
.MODEL DMOD D
.MODEL QMOD NPN(BF=75 RB=100 CJE=1PF CJC=3PF)
VCC 99 0 DC 5V
VIN1A 1 0 PULSE(0 3 0 10NS 10NS 10NS 50NS)
VIN1B 2 0 PULSE(0 3 0 10NS 10NS 20NS 100NS)
VIN2A 3 0 PULSE(0 3 0 10NS 10NS 40NS 200NS)
VIN2B 4 0 PULSE(0 3 0 10NS 10NS 80NS 400NS)
VIN3A 5 0 PULSE(0 3 0 10NS 10NS 160NS 800NS)
VIN3B 6 0 PULSE(0 3 0 10NS 10NS 320NS 1600NS)
VIN4A 7 0 PULSE(0 3 0 10NS 10NS 640NS 3200NS)
VIN4B 8 0 PULSE(0 3 0 10NS 10NS 1280NS 6400NS)
X1 1 2 3 4 5 6 7 8 9 10 11 12 0 13 99 FOURBIT
RBIT0 9 0 1K
RBIT1 10 0 1K
RBIT2 11 0 1K
RBIT3 12 0 1K
RCOUT 13 0 1K

*** (FOR THOSE WITH MONEY (AND MEMORY) TO BURN)
.TRAN 1NS 6400NS
.END

534 CHAPTER 17. EXAMPLE CIRCUITS

17.6 Four-Bit Binary Adder (MOS)

The following deck simulates a four-bit binary adder, using several subcircuits to describe vari-
ous pieces of the overall circuit.

Example:

ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER

*** SUBCIRCUIT DEFINITIONS
.SUBCKT NAND in1 in2 out VDD

* NODES: INPUT(2), OUTPUT, VCC
M1 out in2 Vdd Vdd p1 W=7.5u L=0.35u pd=13.5u ad=22.5p
+ ps=13.5u as=22.5p
M2 net.1 in2 0 0 n1 W=3u L=0.35u pd=9u ad=9p
+ ps=9u as=9p
M3 out in1 Vdd Vdd p1 W=7.5u L=0.35u pd=13.5u ad=22.5p
+ ps=13.5u as=22.5p
M4 out in1 net.1 0 n1 W=3u L=0.35u pd=9u ad=9p
+ ps=9u as=9p
.ENDS NAND
.SUBCKT ONEBIT 1 2 3 4 5 6 AND
X2 1 7 8 6 NAND
X3 2 7 9 6 NAND
X4 8 9 10 6 NAND
X5 3 10 11 6 NAND
X6 3 11 12 6 NAND
X7 10 11 13 6 NAND
X8 12 13 4 6 NAND
X9 11 7 5 6 NAND
.ENDS ONEBIT
.SUBCKT TWOBIT 1 2 3 4 5 6 7 8 9

* NODES: INPUT - BIT0(2) / BIT1(2), OUTPUT - BIT0 / BIT1,

* CARRY-IN, CARRY-OUT, VCC
X1 1 2 7 5 10 9 ONEBIT
X2 3 4 10 6 8 9 ONEBIT
.ENDS TWOBIT
.SUBCKT FOURBIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

*NODES: INPUT - BIT0(2) / BIT1(2) / BIT2(2) / BIT3(2),

* OUTPUT - BIT0 / BIT1 / BIT2 / BIT3, CARRY-IN,

* CARRY-OUT, VCC
X1 1 2 3 4 9 10 13 16 15 TWOBIT
X2 5 6 7 8 11 12 16 14 15 TWOBIT
.ENDS FOURBIT

17.7. TRANSMISSION-LINE INVERTER 535

Continue 4 Bit adder MOS:

*** POWER
VCC 99 0 DC 3.3V

*** INPUTS
VIN1A 1 0 DC 0 PULSE(0 3 0 5NS 5NS 20NS 50NS)
VIN1B 2 0 DC 0 PULSE(0 3 0 5NS 5NS 30NS 100NS)
VIN2A 3 0 DC 0 PULSE(0 3 0 5NS 5NS 50NS 200NS)
VIN2B 4 0 DC 0 PULSE(0 3 0 5NS 5NS 90NS 400NS)
VIN3A 5 0 DC 0 PULSE(0 3 0 5NS 5NS 170NS 800NS)
VIN3B 6 0 DC 0 PULSE(0 3 0 5NS 5NS 330NS 1600NS)
VIN4A 7 0 DC 0 PULSE(0 3 0 5NS 5NS 650NS 3200NS)
VIN4B 8 0 DC 0 PULSE(0 3 0 5NS 5NS 1290NS 6400NS)

*** DEFINE NOMINAL CIRCUIT
X1 1 2 3 4 5 6 7 8 9 10 11 12 0 13 99 FOURBIT

.option acct

.save V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) $ INPUTS

.save V(9) V(10) V(11) V(12) V(13) $ OUTPUTS

.TRAN 1NS 6400NS

* use BSIM3 model with default parameters
.model n1 nmos level=49 version=3.3.0
.model p1 pmos level=49 version=3.3.0

.END

17.7 Transmission-Line Inverter

The following deck simulates a transmission-line inverter. Two transmission-line elements are
required since two propagation modes are excited. In the case of a coaxial line, the first line
(T1) models the inner conductor with respect to the shield, and the second line (T2) models the
shield with respect to the outside world.

536 CHAPTER 17. EXAMPLE CIRCUITS

Example:

Transmission-line inverter

v1 1 0 pulse(0 1 0 0.1n)
r1 1 2 50
x1 2 0 0 4 tline
r2 4 0 50

.subckt tline 1 2 3 4
t1 1 2 3 4 z0=50 td=1.5ns
t2 2 0 4 0 z0=100 td=1ns
.ends tline

.tran 0.1ns 20ns

.end

Chapter 18

Statistical circuit analysis

18.1 Introduction

Real circuits do not operate in a world with fixed values of device parameters, power supplies
and environmental data. Even if a ngspice output offers 5 digits or more of precision, this
should not mislead you thinking that your circuits will behave exactly the same. All physical
parameters influencing a circuit (e.g. MOS Source/drain resistance, threshold voltage, transcon-
ductance) are distributed parameters, often following a Gaussian distribution with a mean value
µand a standard deviation σ .

To obtain circuits operating reliably under varying parameters, it might be necessary to simulate
them taking certain parameter spreads into account. ngspice offers several methods supporting
this task. A powerful random number generator is working in the background. It is not pro-
viding true random numbers, but a long sequence of pseudo random numbers. This sequence
depends on a seed value. The same seed value will deliver the same sequence of random num-
bers.

ngspice offers several methods to set this seed value. If no input is given, then ngspice sets the
seed (stored in variable rndseed) to 1 upon start up. With the option SEED you may either set
a value to rndseed upon start up of ngspice (option SEED=nn, nn is an integer greater than 0),
or obtain a “random” number as seed, that is the number of seconds since 01.01.1970 (option
SEED=random). This command is best set in .spiceinit (12.6). With the command setseed (see
chapt.13.5.78) you may choose any other seed value (integer greater than 0).

The following three chapters offer a short introduction to the statistical methods available in
ngspice. The diversity of approaches stems from historical reasons, and from some efforts to
make ngspice compatible to other simulators.

18.2 Using random param(eters)

The ngspice frontend (with its ’numparam’ parser) contains the .param (see Chapt. 2.11.1) and
.func (see Chapt. 2.12) commands. Among the built-in functions supported (see 2.11.5) you
will find the following statistical functions:

537

538 CHAPTER 18. STATISTICAL CIRCUIT ANALYSIS

Built-in function Notes
gauss(nom, rvar, sigma) nominal value plus variation drawn from Gaussian

distribution with mean 0 and standard deviation rvar
(relative to nominal), divided by sigma

agauss(nom, avar, sigma) nominal value plus variation drawn from Gaussian
distribution with mean 0 and standard deviation avar

(absolute), divided by sigma
unif(nom, rvar) nominal value plus relative variation (to nominal)

uniformly distributed between +/-rvar
aunif(nom, avar) nominal value plus absolute variation uniformly distributed

between +/-avar
limit(nom, avar) nominal value +/-avar, depending on random number in

[-1, 1] being > 0 or < 0

The frontend parser evaluates all .param or .func statements upon start-up of ngspice, before
the circuit is evaluated. The parameters aga, aga2, lim obtain their numerical values once. If the
random function appears in a device card (e.g. v11 11 0 ’agauss(1,2,3)’), a new random
number is generated.

Random number example using parameters:

* random number tests
.param aga = agauss(1,2,3)
.param aga2=’2*aga’
.param lim=limit(0,1.2)
.func rgauss(a,b,c) ’5*agauss(a,b,c)’

* always same value as defined above
v1 1 0 ’lim’
v2 2 0 ’lim’

* may be a different value
v3 3 0 ’limit(0,1.2)’

* always new random values
v11 11 0 ’agauss(1,2,3)’
v12 12 0 ’agauss(1,2,3)’
v13 13 0 ’agauss(1,2,3)’

* same value as defined above
v14 14 0 ’aga’
v15 15 0 ’aga’
v16 16 0 ’aga2’

* using .func, new random values
v17 17 0 ’rgauss(0,2,3)’
v18 18 0 ’rgauss(0,2,3)’
.op
.control
run
print v(1) v(2) v(3) v(11) v(12) v(13)
print v(14) v(15) v(16) v(17) v(18)
.endc
.end

18.3. BEHAVIORAL SOURCES (B, E, G, R, L, C) WITH RANDOM CONTROL 539

So v1, v2, and v3 will get the same value, whereas v4 might differ. v11, v12, and v13 will get
different values, v14, v15, and v16 will obtain the values set above in the .param statements.
.func will start its replacement algorithm, rgauss(a,b,c) will be replaced everywhere by
5*agauss(a,b,c).

Thus device and model parameters may obtain statistically distributed starting values. You
simply set a model parameter not to a fixed numerical value, but insert a ’parameter’ instead,
which may consist of a token defined in a .param card, by calling .func or by using a built-
in function, including the statistical functions described above. The parameter values will be
evaluated once immediately after reading the input file.

18.3 Behavioral sources (B, E, G, R, L, C) with random con-
trol

All sources listed in the section header may contain parameters, which will be evaluated before
simulation starts, as described in the previous section (18.2). In addition the nonlinear voltage or
current sources (B-source, Chapt. 5) as well as their derivatives E and G, but also the behavioral
R, L, and C may be controlled during simulation by a random independent voltage source V
with TRRANDOM option (Chapt. 4.1.8).

An example circuit, a Wien bridge oscillator from input file /examples/Monte_Carlo/OpWien.sp
is distributed with ngspice or available at Git. The two frequency determining pairs of R and
C are varied statistically using four independent Gaussian voltage sources as the controlling
units. An excerpt of this command sequence is shown below. The total simulation time ttime
is divided into 100 equally spaced blocks. Each block will get a new set of control voltages,
e.g. VR2, which is Gaussian distributed, mean 0 and absolute deviation 1. The resistor value
is calculated with ±10% spread, the factor 0.033 will set this 10% to be a deviation of 1 sigma
from nominal value.

Examples for control of a behavioral resistor:

* random resistor
.param res = 10k
.param ttime=12000m
.param varia=100
.param ttime10 = ’ttime/varia’

* random control voltage (Gaussian distribution)
VR2 r2 0 dc 0 trrandom (2 ’ttime10’ 0 1)

* behavioral resistor
R2 4 6 R = ’res + 0.033 * res*V(r2)’

So within a single simulation run you will obtain 100 different frequency values issued by the
Wien bridge oscillator. The voltage sequence VR2 is shown below.

540 CHAPTER 18. STATISTICAL CIRCUIT ANALYSIS

18.4 ngspice control language

The ngspice control language is described in detail in Chapt. 13.8. Simple or complex scripts
may be generated. All commands listed in Chapt. 13.5 are available, as well as the built-
in functions described in Chapt. 13.2, the control structures listed in Chapt. 13.6, and the
predefined variables from Chapt. 13.7. Variables and functions are typically evaluated after
a simulation run. You may created loops with several simulation runs and change device and
model parameters with the alter (13.5.3) or altermod (13.5.4) commands, as shown in the next
section 18.5. You may even interrupt a simulation run by proper usage of the stop (13.5.91) and
resume (13.5.67) commands. After stop you may change device or model parameters and then
go on with resume, continuing the simulation with the new parameter values.

The statistical functions provided for scripting are listed in the following table:

18.5. MONTE-CARLO SIMULATION 541

Name Function
rnd(vector) A vector with each component a random integer between 0

and the absolute value of the input vector’s corresponding
integer element value.

sgauss(vector) Returns a vector of random numbers drawn from a
Gaussian distribution (real value, mean = 0 , standard

deviation = 1). The length of the vector returned is
determined by the input vector. The contents of the input
vector will not be used. A call to sgauss(0) will return a

single value of a random number as a vector of length 1..
sunif(vector) Returns a vector of random real numbers uniformly

distributed in the interval [-1 .. 1]. The length of the vector
returned is determined by the input vector. The contents of

the input vector will not be used. A call to sunif(0) will
return a single value of a random number as a vector of

length 1.
poisson(vector) Returns a vector with its elements being integers drawn

from a Poisson distribution. The elements of the input
vector (real numbers) are the expected numbers λ .

Complex vectors are allowed, real and imaginary values
are treated separately.

exponential(vector) Returns a vector with its elements (real numbers) drawn
from an exponential distribution. The elements of the input

vector are the respective mean values (real numbers).
Complex vectors are allowed, real and imaginary values

are treated separately.

18.5 Monte-Carlo Simulation

Statistically varying device or model parameters are the basis for Monte-Carlo simulation. The
statistical functions described in chapter 18.2 may be used on the device instance line or in a
device model (see chapter 18.5.1).

An alternative is using the ngspice control language to run Monte-Carlo simulations (see 18.5.2).
Calls to the functions sgauss(0) or sunif(0) (see 13.2) will return Gaussian or uniform distributed
random numbers (real numbers), stored in a vector. You may define (see 13.5.19) your own
function using sgauss or sunif, e.g. to change the mean or range. In a loop (see 13.6) then you
may call the alter (13.5.3) or altermod (13.5.4) statements with random parameters followed by
an analysis like op, dc, ac, tran or other.

542 CHAPTER 18. STATISTICAL CIRCUIT ANALYSIS

18.5.1 Varying model or instance parameters

Monte-Carlo example, instance and model

* monte carlo
V1 1 0 1
R1 1 0 rmod
.model rmod res (r={gauss(2, 0.03, 1)} TC1=3.3e-3)
R2 1 0 rmod
R3 1 0 R = {gauss(2, 0.03, 1)}
R4 1 0 R = {gauss(2, 0.03, 1)}
.save @R1[i] @R2[i] @R3[i] @R4[i]

In the example shown above all resistance values (nominally 2 Ohms) will be determined during
parsing the netlist. R1 and R2 will always get the same resistance, as they both are using the
same model rmod. R3 and R4 are set individually according to the gauss function (see chapter
18.2). Thus a typical result of an operating point simulation may look like:

Operating point result of the example given above

* monte carlo result (current through R)
@r1[i] = 5.044575e-01
@r2[i] = 5.044575e-01
@r3[i] = 5.418674e-01
@r4[i] = 4.942051e-01

Several ngspice runs are required to obtain a statistical distribution of the circuit performance.

18.5.2 Using the ngspice control language

18.5.2.1 Example 1

The first examples is a LC band pass filter, where L and C device parameters will be changed 100
times. Each change is followed by an ac analysis. All graphs of output voltage versus frequency
are plotted. The file is available in the distribution as /examples/Monte_Carlo/MonteCarlo.sp
as well as from the git repository .

https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/examples/Monte_Carlo/MonteCarlo.sp

18.5. MONTE-CARLO SIMULATION 543

Monte-Carlo example 1

Perform Monte Carlo simulation in ngspice
V1 N001 0 AC 1 DC 0
R1 N002 N001 141

*
C1 OUT 0 1e-09
L1 OUT 0 10e-06
C2 N002 0 1e-09
L2 N002 0 10e-06
L3 N003 N002 40e-06
C3 OUT N003 250e-12

*
R2 0 OUT 141

*
.control
let mc_runs = 100
let run = 1
set curplot = new $ create a new plot
set scratch = $curplot $ store its name to ’scratch’

*
define unif(nom, var) (nom + nom*var * sunif(0))
define aunif(nom, avar) (nom + avar * sunif(0))
define gauss(nom, var, sig) (nom + nom*var/sig * sgauss(0))
define agauss(nom, avar, sig) (nom + avar/sig * sgauss(0))

*
dowhile run <= mc_runs

* alter c1 = unif(1e-09, 0.1)

* alter l1 = aunif(10e-06, 2e-06)

* alter c2 = aunif(1e-09, 100e-12)

* alter l2 = unif(10e-06, 0.2)

* alter l3 = aunif(40e-06, 8e-06)

* alter c3 = unif(250e-12, 0.15)
alter c1 = gauss(1e-09, 0.1, 3)
alter l1 = agauss(10e-06, 2e-06, 3)
alter c2 = agauss(1e-09, 100e-12, 3)
alter l2 = gauss(10e-06, 0.2, 3)
alter l3 = agauss(40e-06, 8e-06, 3)
alter c3 = gauss(250e-12, 0.15, 3)
ac oct 100 250K 10Meg
set run ="$&run" $ create a variable from the vector
set dt = $curplot $ store the current plot to dt
setplot $scratch $ make ’scratch’ the active plot

* store the output vector to plot ’scratch’
let vout{$run}={$dt}.v(out)
setplot $dt $ go back to the previous plot
let run = run + 1

end
plot db({$scratch}.all)

.endc

.end

544 CHAPTER 18. STATISTICAL CIRCUIT ANALYSIS

18.5.2.2 Example 2

A more sophisticated input file for Monte Carlo simulation is distributed with the file /exam-
ples/Monte_Carlo/MC_ring.sp (or git repository). Due to its length it is not reproduced here,
but some comments on its enhancements over example 1 (18.5.2.1) are presented in the follow-
ing.

A 25-stage ring oscillator is the circuit used with a transient simulation. It comprises of CMOS
inverters, modeled with BSIM3. Several model parameters (vth, u0, tox, L, and W) shall be
varied statistically between each simulation run. The frequency of oscillation will be measured
by a fft and stored. Finally a histogram of all measured frequencies will be plotted.

The function calls to sunif(0) and sgauss(0) return uniformly or Gaussian distributed ran-
dom numbers. A function unif, defined by the line

define unif(nom, var) (nom + (nom*var) * sunif(0))

will return a value with mean nom and deviation var relative to nom.

The line

set n1vth0=@n1[vth0]

will store the threshold voltage vth0, given by the model parameter set, into a variable n1vth0,
ready to be used by unif, aunif, gauss, or agauss function calls.

In the simulation loop the altermod command changes the model parameters before a call to
tran. After the transient simulation the resulting vector is linearized, a fft is calculated, and the
maximum of the fft signal is measured by the meas command and stored in a vector maxffts.
Finally the contents of the vector maxffts is plotted in a histogram.

For more details, please have a look at the strongly commented input file MC_ring.sp.

18.5.2.3 Example 3

The next example is contained in the files MC_2_control.sp and MC_2_circ.sp from folder
/examples/Monte_Carlo/. MC_2_control.sp is a ngspice script (see 13.8). It starts a loop
by setting the random number generator seed value to the value of the loop counter, sources
the circuit file MC_2_circ.sp, runs the simulation, stores a raw file, makes an fft, saves the
oscillator frequency thus measured, deletes all outputs, increases the loop counter and restarts
the loop. The netlist file MC_2_circ.sp contains the circuit, which is the same ring oscillator
as of example 2. However, now the MOS model parameter set, which is included with this
netlist file, inherits some AGAUSS functions (see 2.11.5) to vary threshold voltage, mobility
and gate oxide thickness of the NMOS and PMOS transistors. This is an approach similar to
what commercial foundries deliver within their device libraries. So this example may be your
source for running Monte Carlo with commercial libs. Start example 3 by calling

ngspice -o MC_2_control.log MC_2_control.sp

18.6 Data evaluation with Gnuplot

Run the example file /examples/Monte_Carlo/OpWien.sp, described in Chapt. 18.3. Gener-
ate a plot with Gnuplot by the ngspice command

https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/examples/Monte_Carlo/MC_ring.sp
https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/examples/Monte_Carlo/MC_2_control.sp
https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/examples/Monte_Carlo/MC_2_circ.sp

18.6. DATA EVALUATION WITH GNUPLOT 545

gnuplot pl4mag v4mag xlimit 500 1500

Open and run the command file in the Gnuplot command line window by

load ’pl-v4mag.p’

A Gaussian curve will be fitted to the simulation data. The mean oscillator frequency and its
deviation are printed in the curve fitting log in the Gnuplot window.

Gnuplot script for data evaluation:

This file: pl-v4mag.p
ngspice file OpWien.sp
ngspice command:
gnuplot pl4mag v4mag xlimit 500 1500
a gnuplot manual:
http://www.duke.edu/~hpgavin/gnuplot.html

Gauss function to be fitted
f1(x)=(c1/(a1*sqrt(2*3.14159))*exp(-((x-b1)**2)/(2*a1**2)))
Gauss function to plot start graph
f2(x)=(c2/(a2*sqrt(2*3.14159))*exp(-((x-b2)**2)/(2*a2**2)))
start values
a1=50 ; b1=900 ; c1=50
keep start values in a2, b2, c2
a2=a1 b2=b1 ; c2=c1
curve fitting
fit f1(x) ’pl4mag.data’ using 1:2 via a1, b1, c1
plot original and fitted curves with new a1, b1, c1
plot "pl4mag.data" using 1:2 with lines, f1(x), f2(x)

546 CHAPTER 18. STATISTICAL CIRCUIT ANALYSIS

pl4mag.data is the simulation data, f2(x) the starting curve, f1(x) the fitted Gaussian distribution.

This is just a simple example. You might explore the powerful built-in functions of Gnuplot to
do a much more sophisticated statistical data analysis.

Chapter 19

Circuit optimization with ngspice

19.1 Optimization of a circuit

Your circuit design (analog, maybe mixed-signal) has already the best circuit topology. There
might be still some room for parameter selection, e.g. the geometries of transistors or values of
passive elements, to best fit the specific purpose. This is, what (automatic) circuit optimization
will deliver. In addition you may fine-tune, optimize and verify the circuit over voltage, process
or temperature corners. So circuit optimization is a valuable tool in the hands of an experienced
designer. It will relieve you from the routine task of ’endless’ repetitions of re-simulating your
design.

You have to choose circuit variables as parameters to be varied during optimization (e.g. device
size, component values, bias inputs etc.). Then you may pose performance constraints onto
you circuits (e.g. Vnode < 1.2V, gain > 50 etc.). Optimization objectives are the variables to be
minimized or maximized. The n objectives and m constraints are assembled into a cost function.

The optimization flow is now the following: The circuit is loaded. Several (perhaps only one)
simulations are started with a suitable starter set of variables. Measurements are done on the
simulator output to check for the performance constraints and optimization objectives. These
data are fed into the optimizer to evaluate the cost function. A sophisticated algorithm now
determines a new set of circuit variables for the next simulator run(s). Stop conditions have to
be defined by the user to tell the simulator when to finish (e.g. fall below a cost function value,
parameter changes fall below a certain threshold, number of iterations exceeded).

The optimizer algorithms, its parameters and the starting point influence the convergence be-
havior. The algorithms have to provide measures to reaching the global optimum, not to stick
to a local one, and thus are tantamount for the quality of the optimizer.

ngspice does not have an integral optimization processor. Thus this chapter will rely on work
done by third parties to introduce ngspice optimization capability. ngspice provides the simula-
tion engine, a script or program controls the simulator and provides the optimizer functionality.

Four optimizers are presented here, using ngspice scripting language, using tclspice, using a
Python script, and using ASCO, a c-coded optimization program.

547

548 CHAPTER 19. CIRCUIT OPTIMIZATION WITH NGSPICE

19.2 ngspice optimizer using ngspice scripts

Friedrich Schmidt (see his web site) has intensively used circuit optimization during his devel-
opment of Nonlinear loadflow computation with Spice based simulators. He has provided an
optimizer using the internal ngspice scripting language (see Chapt. 13.8). His original scripts
are found here. A slightly modified and concentrated set of his scripts is available from the
ngspice optimizer directory.

The simple example given in the scripts is OK with current ngspice. Real circuits have still to
be tested.

19.3 ngspice optimizer using tclspice

ngspice offers another scripting capability, namely the tcl/tk based tclspice option (see Chapt.
16). An optimization procedure may be written using a tcl script. An example is provided in
Chapt. 16.5.2.

19.4 ngspice optimizer using a Python script

Werner Hoch has developed a ngspice optimization procedure based on the ’differential evolu-
tion’ algorithm [21]. On his web page he provides a Python script containing the control flow
and algorithms.

19.5 ngspice optimizer using ASCO

The ASCO optimizer, developed by Joao Ramos, also applies the ’differential evolution’ al-
gorithm [21]. An enhanced version 0.4.7.1, adding ngspice as a simulation engine, may be
downloaded here (7z archive format). Included are executable files (asco, asco-mpi, ngspice-c
for MS Windows). The source code should also compile and function under Linux (not yet
tested).

ASCO is a standalone executable, which communicates with ngspice via ngspice input and out-
put files. Several optimization examples, originally provided by J. Ramos for other simulators,
are prepared for use with ngspice. Parallel processing on a multi-core computer has been tested
using MPI (MPICH2) under MS Windows. A processor network will be supported as well.
A MS Windows console application ngspice_c.exe is included in the archive. Several stand
alone tools are provided, but not tested yet.

Setting up an optimization project with ASCO requires advanced know-how of using ngspice.
There are several sources of information. First of all the examples provided with the distribu-
tion give hints how to start with ASCO. The original ASCO manual is provided as well, or is
available here. It elaborates on the examples, using a commercial simulator, and provides a
detailed description how to set up ASCO. Installation of ASCO and MPI (under Windows) is
described in a file INSTALL.

http://members.aon.at/fschmid7/page_2_1.html
https://web.archive.org/web/20060926170917/http://members.aon.at/fschmid7/examples_new.zip
http://ngspice.sourceforge.net/optimizers/ngspice-optimizer.7z
http://www.h-renrew.de/h/python_spice/optimisation.html
http://asco.sourceforge.net/index.html
http://ngspice.sourceforge.net/optimizers/asco-dist.7z
http://www.mcs.anl.gov/research/projects/mpich2/
http://asco.sourceforge.net/manual.html

19.5. NGSPICE OPTIMIZER USING ASCO 549

Some remarks on how to set up ASCO for ngspice are given in the following sections (more
to be added). These a meant not as a complete description, but are an addition the the ASCO
manual.

19.5.1 Three stage operational amplifier

This example is taken from Chapt. 6.2.2 ‘Tutorial #2’ from the ASCO manual. The directory
examples /ngspice/amp3 contains four files:

amp3.cfg This file contains all configuration data for this optimization. Of special interest is
the following section, which sets the required measurements and the constraints on the measured
parameters:

Measurements
ac_power:VDD:MIN:0
dc_gain:VOUT:GE:122
unity_gain_frequency:VOUT:GE:3.15E6
phase_margin:VOUT:GE:51.8
phase_margin:VOUT:LE:70
amp3_slew_rate:VOUT:GE:0.777E6
#

Each of these entries is linked to a file in the /extract subdirectory, having exactly the same
names as given here, e.g. ac_power, dc_gain, unity_gain, phase_margin, and amp3_slew_rate.
Each of these files contains an # Info # section, which is currently not used. The # Commands
section may contain a measurement command (including ASCO parameter #SYMBOL#, see
file /extract/unity_gain_frequency). It also may contain a .control section (see file /extrac-
t/phase_margin_min). During set-up #SYMBOL# is replaced by the file name, a leading ‘z’,
and a trailing number according to the above sequence, starting with 0.

amp3.sp This is the basic circuit description. Entries like #LM2# are ASCO-specific, defined
in the # Parameters # section of file amp3.cfg. ASCO will replace these parameter placehold-
ers with real values for simulation, determined by the optimization algorithm. The .control
... .endc section is specific to ngspice. Entries to this section may deliver workarounds of
some commands not available in ngspice, but used in other simulators. You may also define
additional measurements, get access to variables and vectors, or define some data manipulation.
In this example the .control section contains an op measurement, required later for slew rate
calculation, as well as the ac simulation, which has to occur before any further data evaluation.
Data from the op simulation are stored in a plot op1. Its name is saved in variable dt. The ac
measurements sets another plot ac1. To retrieve op data from the former plot, you have to use
the {$dt}.<vector> notation (see file /extract/amp3_slew_rate).

n.typ, p.typ MOSFET parameter files, to be included by amp3.sp.

550 CHAPTER 19. CIRCUIT OPTIMIZATION WITH NGSPICE

Testing the set-up

Copy asco-test.exe and ngspice_c.exe (console executable of ngspice) into the directory, and
run

$ asco-test -ngspice amp3

from the console window. Several files will be created during checking. If you look at <computer-
name>.sp: this is the input file for ngspice_c, generated by ASCO. You will find the addi-
tional .measure commands and .control sections. The quit command will be added au-
tomatically just before the .endc command in its own .control section. asco-test will dis-
play error messages on the console, if the simulation or communication with ASCO is not ok.
The output file <computer-name>.out, generated by ngspice during each simulation, con-
tains symbols like zac_power0, zdc_gain1, zunity_gain_frequency2, zphase_margin3,
zphase_margin4, and zamp3_slew_rate5. These are used to communicate the ngspice out-
put data to ASCO. ASCO is searching for something like zdc_gain1 =, and then takes the next
token as the input value. Calling phase_margin twice in amp3.cfg has lead to two measure-
ments in two .control sections with different symbols (zphase_margin3, zphase_margin4).

A failing test may result in an error message from ASCO. Sometimes, however, ASCO freezes
after some output statements. This may happen if ngspice issues an error message that cannot
be handled by ASCO. Here it may help calling ngspice directly with the input file generated by
ASCO:

$ ngspice_c <computer-name>.sp

Thus you may evaluate the ngspice messages directly.

Running the simulation

Copy (w)asco.exe, (w)asco-mpi.exe and ngspice_c.exe (console executable of ngspice)
into the directory, and run

$ asco -ngspice amp3

or alternatively (if MPICH is installed)

$ mpiexec -n 7 asco-mpi -ngspice amp3

The following graph 19.1 shows the acceleration of the optimization simulation on a multi-core
processor (i7 with 4 real or 8 virtual cores), 500 generations, if -n is varied. Speed is tripled, a
mere 15 min suffices to optimize 21 parameters of the amplifier.

19.5.2 Digital inverter

This example is taken from Chapt. 6.2.1 Tutorial #1 from the ASCO manual. In addition to the
features already mentioned above, it adds Monte-Carlo and corner simulations. The file inv.cfg
contains the following section:

#Optimization Flow#
Alter:yes $ do we want to do corner analysis?
MonteCarlo:yes $ do we want to do MonteCarlo analysis?

19.5. NGSPICE OPTIMIZER USING ASCO 551

Figure 19.1: Optimization speed

AlterMC cost:3.00 $ point at which we want to start ALTER and/or
$ MONTECARLO

ExecuteRF:no $ Execute or no the RF module to add RF parasitics?
SomethingElse:
#

Monte Carlo is switched on. It uses the AGAUSS function (see Chapt. 18.2). Its parameters
are generated by ASCO from the data supplied by the inv.cfg section #Monte Carlo#. Ac-
cording to the paper by Pelgrom on MOS transistor matching [22] the AGAUSS parameters are
calculated as

W = AGAUSS
(

W,
ABeta√

2 ·W ·L ·m
· W

100
·10−6,1

)
(19.1)

delvto = AGAUSS
(

0,
AV T√

2 ·W ·L ·m
·10−9,1

)
(19.2)

The .ALTER command is not available in ngspice. However, a new option in ngspice to the
altermod command (13.5.4) enables the simulation of design corners. The #Alter# section in
inv.cfg gives details. Specific to ngspice, again several .control section are used.

ALTER
.control

* gate oxide thickness varied
altermod nm pm file [b3.min b3.typ b3.max]
.endc
.control

* power supply variation
alter vdd=[2.0 2.1 2.2]
.endc
.control

552 CHAPTER 19. CIRCUIT OPTIMIZATION WITH NGSPICE

run
.endc
#

NMOS (nm) and PMOS (pm) model parameter sets are loaded from three different model files,
each containing both NMOS and PMOS sets. b3.typ is assembled from the original parameter
files n.typ and p.typ, provided with original ASCO, with some adaptation to ngspice BSIM3.
The min and max sets are artificially created in that only the gate oxide thickness deviates ±1
nm from what is found in model file b3.typ. In addition the power supply voltage is varied,
so in total you will find 3 x 3 simulation combinations in the input file <computer-name>.sp
(after running asco-test).

19.5.3 Bandpass

This example is taken from Chapt. 6.2.4 Tutorial #4 from the ASCO manual. S11 in the
passband is to be maximised. S21 is used to extract side lobe parameters. The .net command
is not available in ngspice, so S11 and S21 are derived with a script in file bandpass.sp as
described in Chapt. 13.9. The measurements requested in bandpass.cfg as

Measurements
Left_Side_Lobe:---:LE:-20
Pass_Band_Ripple:---:GE:-1
Right_Side_Lobe:---:LE:-20
S11_In_Band:---:MAX:---
#

are realized as ’measure’ commands inside of control sections (see files in directory extract).
The result of a measure statement is a vector, which may be processed by commands in the
following lines. In file extract/S1_In_Band #Symbol# is made available only after a short
calculation (inversion of sign), using the print command. quit has been added to this entry
because it will become the final control section in <computer-name>.sp. A disadvantage of
measure inside of a .control section is that parameters from .param statements may not be
used (as is done in example 19.5.4).

The bandpass example includes the calculation of RF parasitic elements defined in rfmodule.cfg
(see Chapt. 7.5 of the ASCO manual). This calculation is invoked by setting

ExecuteRF:yes $Execute or no the RF module to add RF parasitics?

in bandpass.cfg. The two subcircuits LBOND_sub and CSMD_sub are generated in <computer-
name>.sp to simulate these effects.

19.5.4 Class-E power amplifier

This example is taken from Chapt. 6.2.3 Tutorial #3 from the ASCO manual. In this example
the ASCO post processing is applied in file extract/P_OUT (see Chapt. 7.4 of the ASCO
manual.). In this example .measure statements are used. They allow using parameters from
.param statements, because they will be located outside of .control sections, but do not allow
doing data post processing inside of ngspice. You may use ASCO post processing instead.

Chapter 20

Notes

20.1 Glossary

card A logical SPICE input line. A card may be extended through the use of the ‘+’ sign in
SPICE, thereby allowing it to take up multiple lines in a SPICE deck.

code model A model of a device, function, component, etc. which is based solely on a C
programming language-based function. In addition to the code models included with the
XSPICE option of the ngspice simulator, you can use code models that you develop for
circuit modeling.

deck A collection of SPICE cards that together specify all input information required in order
to perform an analysis. A ‘deck’ of ‘cards’ will in fact be contained within a file on the
host computer system.

element card A single, logical line in an ngspice circuit deck that describes a circuit element.
Circuit elements are connected to each other to form circuits (e.g., a logical card that
describes a resistor, such as R1 2 0 10K, is an element card).

instance A unique occurrence of a circuit element. See ‘element card’, in which the instance
R1 is specified as a unique element (instance) in a hypothetical circuit description.

macro A macro, in the context of this document, refers to a C language macro that supports the
construction of user-defined models by simplifying input/output and parameter-passing
operations within the Model Definition File.

.mod Refers to the Model Definition File in XSPICE. The file suffix reflects the file-name of
the model definition file: cfunc.mod.

.model Refers to a model card associated with an element card in ngspice. A model card allows
for data defining an instance to be conveniently located in the ngspice deck such that the
general layout of the elements is more readable.

Nutmeg The ngspice post-processor (now obsolete). This provides a simple stand-alone sim-
ulator interface that can be used with the ngspice simulator to display and plot simulator
raw files.

subcircuit A ‘device’ within an ngspice deck that is defined in terms of a group of element
cards and that can be referenced in other parts of the ngspice deck through element cards.

553

554 CHAPTER 20. NOTES

20.2 Acronyms and Abbreviations

ATE Automatic Test Equipment

CAE Computer-Aided Engineering

CCCS Current Controlled Current Source.

CCVS Current Controlled Voltage Source.

FET Field Effect Transistor

IDD Interface Design Document

IFS Refers to the Interface Specification File. The abbreviation reflects the file name of the
Interface Specification File: ifspec.ifs.

MNA Modified Nodal Analysis

MOSFET Metal Oxide Semiconductor Field Effect Transistor

PWL Piece-Wise Linear

RAM Random Access Memory

ROM Read Only Memory

SDD Software Design Document

SI Simulator Interface

SPICE Simulation Program with Integrated Circuit Emphasis. This program was developed at
the University of California at Berkeley and is the origin of ngspice.

SPICE3 Version 3 of SPICE.

SRS Software Requirements Specification

SUM Software User’s Manual

UCB University of California at Berkeley

UDN User-Defined Node(s)

VCCS Voltage Controlled Current Source.

VCVS Voltage Controlled Voltage Source

XSPICE Extended SPICE; option to ngspice, integrating predefined or user defined code mod-
els for event-driven mixed-signal simulation.

20.3. TO DO 555

20.3 To Do

1. Review of Chapt. 1.3

2. hfet1,2 model descriptions

3. MOS level 9 description

556 CHAPTER 20. NOTES

Bibliography

[1] A. Vladimirescu and S. Liu, ‘The Simulation of MOS Integrated Circuits Using SPICE2’
ERL Memo No. ERL M80/7, Electronics Research Laboratory University of California,
Berkeley, October 1980

[2] T. Sakurai and A. R. Newton, ‘A Simple MOSFET Model for Circuit Analysis and its ap-
plication to CMOS gate delay analysis and series-connected MOSFET Structure’ ERL
Memo No. ERL M90/19, Electronics Research Laboratory, University of California,
Berkeley, March 1990

[3] B. J. Sheu, D. L. Scharfetter, and P. K. Ko, ‘SPICE2 Implementation of BSIM’ ERL Memo
No. ERL M85/42, Electronics Research Laboratory University of California, Berkeley,
May 1985

[4] J. R. Pierret, ‘A MOS Parameter Extraction Program for the BSIM Model’ ERL Memo
Nos. ERL M84/99 and M84/100, Electronics Research Laboratory University of Califor-
nia, Berkeley, November 1984

[5] Min-Chie Jeng, ‘Design and Modeling of Deep Submicrometer MOSFETSs’ ERL Memo
Nos. ERL M90/90, Electronics Research Laboratory, University of California, Berkeley,
October 1990

[6] Soyeon Park, ‘Analysis and SPICE implementation of High Temperature Effects on MOS-
FET’, Master’s thesis, University of California, Berkeley, December 1986.

[7] Clement Szeto, ‘Simulation of Temperature Effects in MOSFETs (STEIM)’, Master’s the-
sis, University of California, Berkeley, May 1988.

[8] J.S. Roychowdhury and D.O. Pederson, ‘Efficient Transient Simulation of Lossy Intercon-
nect’, Proc. of the 28th ACM/IEEE Design Automation Conference, June 17-21 1991, San
Francisco

[9] A. E. Parker and D. J. Skellern, ‘An Improved FET Model for Computer Simulators’, IEEE
Trans CAD, vol. 9, no. 5, pp. 551-553, May 1990.

[10] R. Saleh and A. Yang, Editors, ‘Simulation and Modeling’, IEEE Circuits and Devices,
vol. 8, no. 3, pp. 7-8 and 49, May 1992.

[11] H.Statz et al., ‘GaAs FET Device and Circuit Simulation in SPICE’, IEEE Transactions
on Electron Devices, V34, Number 2, February 1987, pp160-169.

[12] Weidong Liu et al.: ‘BSIM3v3.2.2 MOSFET Model User’s Manual’, BSIM3v3.2.2

557

http://www.eecs.berkeley.edu/Pubs/TechRpts/1990/1429.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1990/1429.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1990/1601.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1990/1601.html
http://ngspice.sourceforge.net/external-documents/models/bsim322_manual.pdf

558 BIBLIOGRAPHY

[13] Weidong Lui et al.: ‘BSIM3.v3.3.0 MOSFET Model User’s Manual’, BSIM3v3.3.0

[14] ‘SPICE3.C1 Nutmeg Programmer’s Manual’, Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, California, April, 1987.

[15] Thomas L. Quarles: SPICE3 Version 3C1 User’s Guide, Department of Electrical En-
gineering and Computer Sciences, University of California, Berkeley, California, April,
1989.

[16] Brian Kernighan and Dennis Ritchie: ‘The C Programming Language’, Second Edition,
Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[17] ‘Code-Level Modeling in XSPICE’, F.L. Cox, W.B. Kuhn, J.P. Murray, and S.D. Tynor,
published in the Proceedings of the 1992 International Symposium on Circuits and Sys-
tems, San Diego, CA, May 1992, vol 2, pp. 871-874.

[18] ‘A Physically Based Compact Model of Partially Depleted SOI MOSFETs for Analog Cir-
cuit Simulation’, Mike S. L. Lee, Bernard M. Tenbroek, William Redman-White, James
Benson, and Michael J. Uren, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36,
NO. 1, JANUARY 2001, pp. 110-121

[19] ‘A Realistic Large-signal MESFET Model for SPICE’, A. E. Parker, and D. J. Skellern,
IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 9, Sept. 1997, pp.
1563-1571.

[20] ‘Integrating RTS Noise into Circuit Analysis’, T. B. Tang and A. F. Murray, IEEE ISCAS,
2009, Proc. of IEEE ISCAS, Taipei, Taiwan, May 2009, pp 585-588

[21] R. Storn, and K. Price: ‘Differential Evolution’, technical report TR-95-012, ICSI, March
1995, see report download, or the DE web page

[22] M. J. M. Pelgrom e.a.: ‘Matching Properties of MOS Transistors’, IEEE J. Sol. State Circ,
vol. 24, no. 5, Oct. 1989, pp. 1433-1440

[23] Y. V. Pershin, M. Di Ventra: ‘SPICE model of memristive devices with threshold’,
arXiv:1204.2600v1 [physics.comp-ph] 12 Apr 2012, http://arxiv.org/pdf/1204.2600.pdf

[24] George M. Kull e.a. ‘A Unified Circuit Model for Bipolar Transistors Including Quasi-
Saturation Effects’, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-32,
NO. 6, JUNE 1985

[25] Matthias Bucher, Christophe Lallement, Christian Enz, Fabien Théodoloz, François
Krummenacher, ‘The EPFL-EKV MOSFET Model Equations for Simulation’, Techni-
cal Report, Revision II, July 1998, Electronics Laboratories, Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland

[26] Kenneth Kundert, Sparse Matrix Techniques, in Circuit Analysis, Simulation and Design,
Albert Ruehli (Ed.), North-Holland, 1986

[27] T. A. Davis and Ekanathan Palamadai Natarajan. 2010. Algorithm 907: KLU, A Direct
Sparse Solver for Circuit Simulation Problems. ACM Trans. Math. Softw. 37, 3, Article
36 (September 2010), 17 pages. https://dl.acm.org/doi/abs/10.1145/1824801.1824814

http://ngspice.sourceforge.net/external-documents/models/bsim330_manual.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/1989/ERL-89-46.pdf
http://www.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www.icsi.berkeley.edu/~storn/code.html
http://arxiv.org/pdf/1204.2600.pdf
https://dl.acm.org/doi/abs/10.1145/1824801.1824814

BIBLIOGRAPHY 559

[28] F. Lannutti, P. Nenzi and M. Olivieri, "KLU sparse direct linear solver implementation into
NGSPICE," Proceedings of the 19th International Conference Mixed Design of Integrated
Circuits and Systems - MIXDES 2012, Warsaw, Poland, 2012, pp. 69-73.

560 BIBLIOGRAPHY

Part II

XSPICE Software User’s Manual

561

Chapter 21

XSPICE Basics

21.1 ngspice with the XSPICE option

The XSPICE option allows you to add event-driven simulation capabilities to ngspice. ngspice
now is the main software program that performs mathematical simulation of a circuit specified
by you, the user. It takes input in the form of commands and circuit descriptions and produces
output data (e.g. voltages, currents, digital states, and waveforms) that describe the circuit’s
behavior.

Plain ngspice is designed for analog simulation and is based exclusively on matrix solution
techniques. The XSPICE option adds even-driven simulation capabilities. Thus, designs that
contain significant portions of digital circuitry can be efficiently simulated together with analog
components. ngspice with XSPICE option also includes a ‘User-Defined Node’ capability that
allows event-driven simulations to be carried out with any type of data.

The XSPICE option has been developed by the Computer Science and Information Technology
Laboratory at Georgia Tech Research Institute of the Georgia Institute of Technology, Atlanta,
Georgia 30332 at around 1990 and enhanced by the ngspice team. The manual is based on the
original XSPICE user’s manual, no longer available from Georgia Tech, but from the ngspice
web site.

In the following, the term ‘XSPICE’ may be read as ‘ngspice with XSPICE code model subsys-
tem enabled’. You may enable the option by adding --enable-xspice to the ./configure
command. The MS Windows distribution already contains the XSPICE option.

21.2 The XSPICE Code Model Subsystem

The new component of ngspice, the Code Model Subsystem, provides the tools needed to model
the various parts of your system. While ngspice is targeted primarily at integrated circuit (IC)
analysis, XSPICE includes features to model and simulate board-level and system-level designs
as well. The Code Model Subsystem is central to this new capability, providing XSPICE with
an extensive set of models to use in designs and allowing you to add your own models to this
model set.

The ngspice simulator at the core of XSPICE includes built-in models for discrete components
commonly found within integrated circuits. These ‘model primitives’ include components such

563

http://ngspice.sourceforge.net/literature.html
http://ngspice.sourceforge.net/literature.html

564 CHAPTER 21. XSPICE BASICS

as resistors, capacitors, diodes, and transistors. The XSPICE Code Model Subsystem extends
this set of primitives in two ways. First, it provides a library of over 40 additional primitives,
including summers, integrators, digital gates, controlled oscillators, s-domain transfer functions,
and digital state machines. See Chapt. 8 for a description of the library entries. Second, it adds
a code model generator to ngspice that provides a set of programming utilities to make it easy
for you to create your own models by writing them in the C programming language.

The code models are generated upon compiling ngspice. They are stored in shared libraries,
which may be distributed independently from the ngspice sources. During runtime initializa-
tion, ngspice will load the code model libraries and make the code model instances available
for simulation.

21.3 XSPICE Top-Level Diagram

A top-level diagram of the XSPICE system integrated into ngspice is shown in Fig. 21.1.
The XSPICE Simulator is made up of the ngspice core, the event-driven algorithm, circuit
description syntax parser extensions, a loading routine for code models, and the ngspice control
language user interface. The XSPICE Code Model Subsystem consists of the Code Model
Generator, 5 standard code model library sources with more than 40 code models, the sources
for Node Type Libraries, and all the interfaces to User-Defined Code Models and to User-
Defined Node Types.

Figure 21.1: ngspice/XSPICE Top-Level Diagram

Chapter 22

Execution Procedures

This chapter covers operation of the XSPICE simulator and the Code Model Subsystem. It
begins with background material on simulation and modeling and then discusses the analysis
modes supported in XSPICE and the circuit description syntax used for modeling. Detailed
descriptions of the predefined Code Models and Node Types provided in the XSPICE libraries
are also included.

22.1 Simulation and Modeling Overview

This section introduces the concepts of circuit simulation and modeling. It is intended primarily
for users who have little or no previous experience with circuit simulators, and also for those
who have not used circuit simulators recently. However, experienced SPICE users may wish to
scan the material presented here since it provides background for new Code Model and User-
Defined Node capabilities of the XSPICE option.

22.1.1 Describing the Circuit

This section provides an overview of the circuit description syntax expected by the XSPICE
simulator. A general understanding of circuit description syntax will be helpful to you should
you encounter problems with your circuit and need to examine the simulator’s error messages,
or should you wish to develop your own models.

This section will introduce you to the creation of circuit description input files using the control
language user interface. Note that this material is presented in an overview form. Details of
circuit description syntax are given later in this chapter and in the previous chapters of this
manual.

22.1.1.1 Example Circuit Description Input

Although different SPICE-based simulators may include various enhancements to the basic
version from the University of California at Berkeley, most use a similar approach in describing
circuits. This approach involves capturing the information present in a circuit schematic in
the form of a text file that follows a defined format. This format requires the assignment of

565

566 CHAPTER 22. EXECUTION PROCEDURES

Figure 22.1: Example Circuit 1

alphanumeric identifiers to each circuit node, the assignment of component identifiers to each
circuit device, and the definition of the significant parameters for each device. For example, the
circuit description below shows the equivalent input file for the circuit shown in Fig. 22.1.

Examples for control of a behavioral resistor:

Small Signal Amplifier

*
* This circuit simulates a simple small signal amplifier.

*
Vin Input 0 0 SIN(0 .1 500Hz)
R_source Input Amp_In 100
C1 Amp_In 0 1uF
R_Amp_Input Amp_In 0 1MEG
E1 (Amp_Out 0) (Amp_In 0) -10
R_Load Amp_Out 0 1000

.Tran 1.0u 0.01

.end

This file exhibits many of the most important properties common to all SPICE circuit descrip-
tion files including the following:

• The first line of the file is always interpreted as the title of the circuit. The title may
consist of any text string.

• Lines that provide user comments, but no circuit information, are begun by an asterisk.

• A circuit device is specified by a device name, followed by the node(s) to which it is
connected, and then by any required parameter information.

• The first character of a device name tells the simulator what kind of device it is (e.g. R =
resistor, C = capacitor, E = voltage controlled voltage source).

• Nodes may be labeled with any alphanumeric identifier. The only specific labeling re-
quirement is that 0 must be used for ground.

22.1. SIMULATION AND MODELING OVERVIEW 567

• A line that begins with a dot is a ‘control directive’ Control directives are used most
frequently for specifying the type of analysis the simulator is to carry out.

• An .end statement must be included at the end of the file.

• With the exception of the Title and .end statements, the order in which the circuit file is
defined is arbitrary.

• All identifiers are case insensitive - the identifier ‘npn’ is equivalent to ‘NPN’ and to
‘nPn’.

• Spaces and parenthesis are treated as white space.

• Long lines may be continued on a succeeding line by beginning the next line with a ‘+’
in the first column.

In this example, the title of the circuit is ‘Small Signal Amplifier’. Three comment lines are
included before the actual circuit description begins. The first device in the circuit is voltage
source Vin, which is connected between node Input and ‘0’ (ground). The parameters after
the nodes specify that the source has an initial value of 0, a wave shape of SIN, and a DC offset,
amplitude, and frequency of 0, .1, and 500 respectively. The next device in the circuit is resistor
R_Source, which is connected between nodes Input and Amp_In, with a value of 100 Ohms.
The remaining device lines in the file are interpreted similarly.

The control directive that begins with .tran specifies that the simulator should carry out a
simulation using the Transient analysis mode. In this example, the parameters to the transient
analysis control directive specify that the maximum time-step allowed is 1 microsecond and
that the circuit should be simulated for 0.01 seconds of circuit time.

Other control cards are used for other analysis modes. For example, if a frequency response plot
is desired, perhaps to determine the effect of the capacitor in the circuit, the following statement
will instruct the simulator to perform a frequency analysis from 100 Hz to 10 MHz in decade
intervals with ten points per decade.

.ac dec 10 100 10meg

To determine the quiescent operating point of the circuit, the following statement may be in-
serted in the file.

.op

A fourth analysis type supported by ngspice is swept DC analysis. An example control state-
ment for the analysis mode is

.dc Vin -0.1 0.2 .05

This statement specifies a DC sweep that varies the source Vin from -100 millivolts to +200
millivolts in steps of 50 millivolts.

568 CHAPTER 22. EXECUTION PROCEDURES

22.1.1.2 Models and Subcircuits

The file discussed in the previous section illustrated the most basic syntax rules of a circuit
description file. However, ngspice (and other SPICE-based simulators) include many other fea-
tures that allow for accurate modeling of semiconductor devices such as diodes and transistors
and for grouping elements of a circuit into a macro or ‘subcircuit’ description that can be reused
throughout a circuit description. For instance, the file shown below is a representation of the
schematic shown in Fig. 22.2.

Examples for control of a behavioral resistor:

Small Signal Amplifier with Limit Diodes

*
* This circuit simulates a small signal amplifier

* with a diode limiter.

*
.dc Vin -1 1 .05

Vin Input 0 DC 0
R_source Input Amp_In 100
D_Neg 0 Amp_In 1n4148
D_Pos Amp_In 0 1n4148
C1 Amp_In 0 1uF
X1 Amp_In 0 Amp_Out Amplifier
R_Load Amp_Out 0 1000

.model 1n4148 D (is=2.495e-09 rs=4.755e-01 n=1.679e+00
+ tt=3.030e-09 cjo=1.700e-12 vj=1 m=1.959e-01 bv=1.000e+02
+ ibv=1.000e-04)

.subckt Amplifier Input Common Output
E1 (Output Common) (Input Common) -10
R_Input Input Common 1meg
.ends Amplifier

.end

This is the same basic circuit as in the initial example, with the addition of two components and
some changes to the simulation file. The two diodes have been included to illustrate the use of
device models, and the amplifier is implemented with a subcircuit. Additionally, this file shows
the use of the swept DC control card.

Device Models Device models allow you to specify, when required, many of the parameters
of the devices being simulated. In this example, model statements are used to define the silicon
diodes. Electrically, the diodes serve to limit the voltage at the amplifier input to values between
about ±700 millivolts. The diode is simulated by first declaring the ‘instance’ of each diode
with a device statement. Instead of attempting to provide parameter information separately for
both diodes, the label ‘1n4148’ alerts the simulator that a separate model statement is included

22.1. SIMULATION AND MODELING OVERVIEW 569

Figure 22.2: Example Circuit 2

in the file that provides the necessary electrical specifications for the device (‘1n4148’ is the
part number for the type of diode the model is meant to simulate).

The model statement that provides this information is:

.model 1n4148 D (is=2.495e-09 rs=4.755e-01 n=1.679e+00
+ tt=3.030e-09 cjo=1.700e-12 vj=1 m=1.959e-01
+ bv=1.000e+02 ibv=1.000e-04)

The model statement always begins with the string .model followed by an identifier and the
model type (D for diode, NPN for NPN transistors, etc).

The optional parameters (‘is’, ‘rs’, ‘n’, . . .) shown in this example configure the simulator’s
mathematical model of the diode to match the specific behavior of a particular part (e.g. a
‘1n4148’).

Subcircuits In some applications, describing a device by embedding the required elements
in the main circuit file, as is done for the amplifier in Fig. 22.1, is not desirable. A hierarchical
approach may be taken by using subcircuits. An example of a subcircuit statement is shown in
the second circuit file:

X1 Amp_In 0 Amp_Out

Amplifier Subcircuits are always identified by a device label beginning with ‘X’. Just as with
other devices, all of the connected nodes are specified. Notice, in this example, that three nodes
are used. Finally, the name of the subcircuit is specified. Elsewhere in the circuit file, the
simulator looks for a statement of the form:

.subckt <Name> <Node1> <Node2> <Node3> ...

This statement specifies that the lines that follow are part of the Amplifier subcircuit, and that the
three nodes listed are to be treated wherever they occur in the subcircuit definition as referring,
respectively, to the nodes on the main circuit from which the subcircuit was called. Normal
device, model, and comment statements may then follow. The subcircuit definition is concluded
with a statement of the form:

570 CHAPTER 22. EXECUTION PROCEDURES

.ends <Name>

22.1.1.3 XSPICE Code Models

In the previous example, the specification of the amplifier was accomplished by using a ngspice
Voltage Controlled Voltage Source device. This is an idealization of the actual amplifier. Prac-
tical amplifiers include numerous non-ideal effects, such as offset error voltages and non-ideal
input and output impedances. The accurate simulation of complex, real-world components can
lead to cumbersome subcircuit files, long simulation run times, and difficulties in synthesizing
the behavior to be modeled from a limited set of internal devices known to the simulator.

To address these problems, XSPICE allows you to create Code Models that simulate complex,
non-ideal effects without the need to develop a subcircuit design. For example, the following file
provides simulation of the circuit in Fig. 22.2, but with the subcircuit amplifier replaced with
a Code Model called ‘Amp’ that models several non-ideal effects including input and output
impedance and input offset voltage.

Small Signal Amplifier

*
* This circuit simulates a small signal amplifier

* with a diode limiter.

*
.dc Vin -1 1 .05

Vin Input 0 DC 0
R_source Input Amp_In 100
D_Neg 0 Amp_In 1n4148
D_Pos Amp_In 0 1n4148
C1 Amp_In 0 1uF
A1 Amp_In 0 Amp_Out Amplifier
R_Load Amp_Out 0 1000

.model 1n4148 D (is=2.495e-09 rs=4.755e-01 n=1.679e+00
+ tt=3.030e-09 cjo=1.700e-12 vj=1 m=1.959e-01 bv=1.000e+02
+ ibv=1.000e-04)

.model Amplifier Amp (gain = -10 in_offset = 1e-3
+ rin = 1meg rout = 0.4)
.end

A statement with a device label beginning with ‘A’ alerts the simulator that the device uses
a Code Model. The model statement is similar in form to the one used to specify the diode.
The model label ‘Amp’ directs XSPICE to use the code model with that name. Parameter
information has been added to specify a gain of -10, an input offset of 1 millivolt, an input
impedance of 1 meg ohm, and an output impedance of 0.4 ohm. Subsequent sections of this
document detail the steps required to create such a Code Model and include it in the XSPICE
simulator.

22.2. CIRCUIT DESCRIPTION SYNTAX 571

22.1.1.4 Node Bridge Models

When a mixed-mode simulator is used, some method must be provided for translating data
between the different simulation algorithms. XSPICE’s Code Model support allows you to
develop models that work under the analog simulation algorithm, the event-driven simulation
algorithm, or both at once.

In XSPICE, models developed for the express purpose of translating between the different al-
gorithms or between different User-Defined Node types are called ‘Node Bridge’ models. For
translations between the built-in analog and digital types, predefined node bridge models are
included in the XSPICE Code Model Library.

22.1.1.5 Practical Model Development

In practice, developing models often involves using a combination of ngspice passive devices,
device models, subcircuits, and XSPICE Code Models. XSPICE’s Code Models may be seen
as an extension to the set of device models offered in standard ngspice. The collection of
over 40 predefined Code Models included with XSPICE provides you with an enriched set of
modeling primitives with which to build subcircuit models. In general, you should first attempt
to construct your models from these available primitives. This is often the quickest and easiest
method.

If you find that you cannot easily design a subcircuit to accomplish your goal using the available
primitives, then you should turn to the code modeling approach. Because they are written in a
general purpose programming language (C), code models enable you to simulate virtually any
behavior for which you can develop a set of equations or algorithms.

22.2 Circuit Description Syntax

If you need to debug a simulation, if you are planning to develop your own models, or if you
are using the XSPICE simulator through the control language user interface, you will need to
become familiar with the circuit description language.

The previous sections presented example circuit description input files. The following sections
provide more detail on XSPICE circuit descriptions with particular emphasis on the syntax for
creating and using models. First, the language and syntax of the ngspice simulator are described
and references to additional information are given. Next, XSPICE extensions to the ngspice
syntax are detailed. Finally, various enhancements to ngspice operation are discussed including
polynomial sources, arbitrary phase sources, supply ramping, matrix conditioning, convergence
options, and debugging support.

22.2.1 XSPICE Syntax Extensions

In the preceding discussion, ngspice syntax was reviewed, and those features of ngspice that are
specifically supported by the XSPICE simulator were enumerated. In addition to these features,
there exist extensions to the ngspice capabilities that provide much more flexibility in describing
and simulating a circuit. The following sections describe these capabilities, as well as the syntax
required to make use of them.

572 CHAPTER 22. EXECUTION PROCEDURES

22.2.1.1 Convergence Debugging Support

When a simulation is failing to converge, the simulator can be asked to return convergence
diagnostic information that may be useful in identifying the areas of the circuit in which con-
vergence problems are occurring. When running through the interactive user interface, these
messages are written directly to the terminal.

22.2.1.2 Digital Nodes

Support is included for digital nodes that are simulated by an event-driven algorithm. Because
the event-driven algorithm is faster than the standard SPICE matrix solution algorithm, and
because all digital, real, int and User-Defined Node types make use of the event-driven
algorithm, reduced simulation time for circuits that include these models can be anticipated
compared to simulation of the same circuit using analog code models and nodes.

22.2.1.3 User-Defined Nodes

Support is provided for User Defined Nodes that operate with the event-driven algorithm. These
nodes allow the passing of arbitrary data structures among models. The real and integer node
types supplied with XSPICE are actually predefined User-Defined Node types.

22.2.1.4 Supply Ramping

A supply ramping function is provided by the simulator as an option to a transient analysis
to simulate the turn-on of power supplies to a board level circuit. To enable this option, the
compile time flag XSPICE_EXP has to be set, e.g. by adding CFLAGS="-DXSPICE_EXP" to
the ./configure command line. The supply ramping function linearly ramps the values of all
independent sources and the capacitor and inductor code models (code model extension) with
initial conditions toward their final value at a rate that you define. A complete ngspice deck
example of usage of the ramptime option is shown below.

22.3. HOW TO CREATE CODE MODELS 573

Example:

Supply ramping option

*
* This circuit demonstrates the use of the option

* "ramptime" that ramps independent sources and the

* capacitor and inductor initial conditions from

* zero to their final value during the time period

* specified.

*
*
.tran 0.1 5
.option ramptime=0.2

* a1 1 0 cap
.model cap capacitor (c=1000uf ic=1)
r1 1 0 1k

*
a2 2 0 ind
.model ind inductor (l=1H ic=1)
r2 2 0 1.0

*
v1 3 0 1.0
r3 3 0 1k

*
i1 4 0 1e-3
r4 4 0 1k

*
v2 5 0 0.0 sin(0 1 0.3 0 0 45.0)
r5 5 0 1k

*
.end

22.3 How to create code models

The following instruction to create an additional code model uses the ngspice infrastructure and
some ’intelligent’ copy and paste. As an example an extra code model d_xxor is created in the
xtradev shared library, reusing the existing d_xor model from the digital library. More detailed
information will be made available in Chapt. 24.

You should have downloaded ngspice, either the most recent distribution or from the Git repos-
itory, and compiled and installed it properly according to your operating system and the in-
structions given in Chapt. 28 of the Appendix, especially Chapt. 28.1.4 (for Linux users), or
Chapt. 28.2.2 for MINGW and MS Windows. (MS Visual Studio will not do, because we
have not yet integrated the code model generator into this compiler! You may however use
all code models later with any ngspice executable.) Then change into directory ngspice/sr-
c/xspice/icm/xtradev.

Create a new directory

mkdir d_xxor

574 CHAPTER 22. EXECUTION PROCEDURES

Copy the two files cfunc.mod and ifspec.ifs from ngspice/src/xspice/icm/digital/d_xor to
ngspice/src/xspice/icm/xtradev/d_xxor. These two files may serve as a template for your
new model!

For simplicity reasons we do only a very simple editing to these files here, in fact the function-
ality is not changed, just the name translated to a new model. Edit the new cfunc.mod: In lines
5, 28, 122, 138, 167, 178 replace the old name (d_xor) by the new name d_xxor. Edit the new
ifspec.ifs: In lines 16, 23, 24 replace cm_d_xor by cm_d_xxor and d_xor by d_xxor.

Make ngspice aware of the new code model by editing file
ngspice/src/xspice/icm/xtradev/modpath.lst:

Add a line with the new model name d_xxor.

Redo ngspice by entering directory ngspice/release, and issuing the commands:

make

sudo make install

And that’s it! In ngspice/release/src/xspice/icm/xtradev/ you now will find cfunc.c and
ifspec.c and the corresponding object files. The new code model d_xxor resides in the shared
library xtradev.cm, and is available after ngspice is started. As a test example you may edit
ngspice/src/xspice/examples/digital_models1.deck, and change line 60 to the new model:

.model d_xor1 d_xxor (rise_delay=1.0e-6 fall_delay=2.0e-6 input_load=1.0e-12)

The complete input file follows:

22.3. HOW TO CREATE CODE MODELS 575

Code Model Test: new xxor

*
*** analysis type ***
.tran .01s 4s

*
*** input sources ***
*
v2 200 0 DC PWL((0 0.0) (2 0.0) (2.0000000001 1.0) (3 1.0))

*
v1 100 0 DC PWL((0 0.0) (1.0 0.0) (1.0000000001 1.0) (2 1.0)
+ (2.0000000001 0.0) (3 0.0) (3.0000000001 1.0) (4 1.0))

*
*** resistors to ground ***
r1 100 0 1k
r2 200 0 1k

*
*** adc_bridge blocks ***
aconverter [200 100] [2 1] adc_bridge1
.model adc_bridge1 adc_bridge (in_low=0.1 in_high=0.9
+ rise_delay=1.0e-12 fall_delay=1.0e-12)

*
*** xor block ***
a7 [1 2] 70 d_xor1
.model d_xor1 d_xxor (rise_delay=1.0e-6 fall_delay=2.0e-6
+ input_load=1.0e-12)

*
*** dac_bridge blocks ****
abridge1 [70] [out] dac1
.model dac1 dac_bridge(out_low = 0.7 out_high = 3.5
+ out_undef = 2.2 input_load = 5.0e-12 t_rise = 50e-9
+ t_fall = 20e-9)

*
*** simulation and plotting ***
.control
run
plot allv
.endc

*
.end

An analog input, delivered by the pwl voltage sources, is transformed into the digital domain
by an adc_bridge, processed by the new code model d_xxor, and then translated back into the
analog domain.

If you want to change the functionality of the new model, you have to edit ifspec.ifs for the
code model interface and cfunc.mod for the detailed functionality of the new model. Please see
Chapt. 24, especially Chapt. 24.6 ff. for any details. And of course you may take the existing

576 CHAPTER 22. EXECUTION PROCEDURES

analog, digital, mixed signal and other existing code models (to be found in the subdirectories
to ngspice/release/src/xspice/icm) as stimulating examples for your work.

Chapter 23

Example circuits

The following chapter is designed to demonstrate XSPICE features. The first example circuit
models the circuit of Fig. 22.2 using the XSPICE gain block code model to substitute for the
more complex and computationally expensive ngspice transistor model. This example illus-
trates one way in which XSPICE code models can be used to raise the level of abstraction in
circuit modeling to improve simulation speed.

The next example, shown in Fig. 23.1, illustrates many of the more advanced features offered by
XSPICE. This circuit is a mixed-mode design incorporating digital data, analog data, and User-
Defined Node data together in the same simulation. Some of the important features illustrated
include:

• Creating and compiling Code Models

• Creating an XSPICE executable that incorporates these new models

• The use of ‘node bridge’ models to translate data between the data types in the simulation

• Plotting analog and event-driven (digital and User-Defined Node) data

• Using the eprint command to print event-driven data

Throughout these examples, we assume that ngspice with XSPICE option has already been
installed on your system and that your user account has been set up with the proper search path
and environment variable data.

The examples also assume that you are running under Linux and will use standard Linux com-
mands such as cp for copying files, etc. If you are using a different set up, with different oper-
ating system command names, you should be able to translate the commands shown into those
suitable for your installation. Finally, file system path-names given in the examples assume
that ngspice + XSPICE has been installed on your system in directory /usr/local/xspice-1-0.
If your installation is different, you should substitute the appropriate root path-name where
appropriate.

23.1 Amplifier with XSPICE model ‘gain’

The circuit, as has been shown in Fig. 22.2, is extended here by using the XSPICE code model
gain. The ngspice circuit description for this circuit is shown below.

577

578 CHAPTER 23. EXAMPLE CIRCUITS

Example:

A transistor amplifier circuit

*
.tran 1e-5 2e-3

*
vin 1 0 0.0 ac 1.0 sin(0 1 1k)

*
ccouple 1 in 10uF
rzin in 0 19.35k

*
aamp in aout gain_block
.model gain_block gain (gain = -3.9 out_offset = 7.003)

*
rzout aout coll 3.9k
rbig coll 0 1e12

*
.end

Notice the component ‘aamp’. This is an XSPICE code model device. All XSPICE code model
devices begin with the letter ‘a’ to distinguish them from other ngspice devices. The actual
code model used is referenced through a user-defined identifier at the end of the line - in this
case gain_block. The type of code model used and its parameters appear on the associated
.model card. In this example, the gain has been specified as -3.9 to approximate the gain of the
transistor amplifier, and the output offset (out_offset) has been set to 7.003 according to the DC
bias point information obtained from the DC analysis in Example 1 from Chapter 22.

Notice also that input and output impedances of the one-transistor amplifier circuit are modeled
with the resistors ‘rzin’ and ‘rzout’, since the gain code model defaults to an ideal voltage-
input, voltage-output device with infinite input impedance and zero output impedance.

Lastly, note that a special resistor ‘rbig’ with value ‘1e12’ has been included at the opposite side
of the output impedance resistor ‘rzout’. This resistor is required by ngspice’s matrix solution
formula. Without it, the resistor ‘rzout’ would have only one connection to the circuit, and
an ill-formed matrix could result. One way to avoid such problems without adding resistors
explicitly is to use the ngspice ‘rshunt’ option described in this document under ngspice Syntax
Extensions/General Enhancements.

To simulate this circuit, copy the file xspice_c2.cir from the directory /src/xspice/examples
into a directory in your account.

$ cp /examples/xspice/xspice_c2.cir xspice_c2.cir

Invoke the simulator on this circuit:

$ ngspice xspice_c2.cir

After a few moments, you should see the ngspice prompt:

ngspice 1 ->

23.2. XSPICE ADVANCED USAGE 579

Now issue the run command and when the prompt returns, issue the plot command to examine
the voltage at the node ‘coll’.

ngspice 1 -> run
ngspice 2 -> plot coll

The resulting waveform closely matches that from the original transistor amplifier circuit sim-
ulated in Example 1.

When you are done, enter the quit command to leave the simulator and return to the command
line.

ngspice 3 -> quit

Using the rusage command, you can verify that this abstract model of the transistor amplifier
runs somewhat faster than the full circuit of Example 1. This is because the code model is less
complex computationally. This demonstrates one important use of XSPICE code models - to
reduce run time by modeling circuits at a higher level of abstraction. Speed improvements vary
and are most pronounced when a large amount of low-level circuitry can be replaced by a small
number of code models and additional components.

23.2 XSPICE advanced usage

23.2.1 Circuit example C3

An equally important use of code models is in creating models for circuits and systems that do
not easily lend themselves to synthesis using standard ngspice primitives (resistors, capacitors,
diodes, transistors, etc.). This occurs often when trying to create models of ICs for use in simu-
lating board-level designs. Creating models of operational amplifiers such as an LM741 or timer
ICs such as an LM555 is greatly simplified through the use of XSPICE code models. Another
example of code model use is shown in the next example where a complete sampled-data system
is simulated using XSPICE analog, digital, and User-Defined Node types simultaneously.

The circuit shown in Fig. 23.1 is designed to demonstrate several of the more advanced features
of XSPICE. In this example, you will be introduced to the process of creating code models and
linking them into ngspice. You will also learn how to print and plot the results of event-driven
analysis data. The ngspice/XSPICE circuit description for this example is shown below.

580 CHAPTER 23. EXAMPLE CIRCUITS

Figure 23.1: Example Circuit C3

Example:

Mixed IO types

* This circuit contains a mixture of IO types, including

* analog, digital, user-defined (real), and ’null’.

*
* The circuit demonstrates the use of the digital and

* user-defined node capability to model system-level designs

* such as sampled-data filters. The simulated circuit

* contains a digital oscillator enabled after 100us. The

* square wave oscillator output is divided by 8 with a

* ripple counter. The result is passed through a digital

* filter to convert it to a sine wave.

*
.tran 1e-5 1e-3

*
v1 1 0 0.0 pulse(0 1 1e-4 1e-6)
r1 1 0 1k

*
abridge1 [1] [enable] atod
.model atod adc_bridge

*
aclk [enable clk] clk nand
.model nand d_nand (rise_delay=1e-5 fall_delay=1e-5)

*
adiv2 div2_out clk NULL NULL NULL div2_out dff
adiv4 div4_out div2_out NULL NULL NULL div4_out dff
adiv8 div8_out div4_out NULL NULL NULL div8_out dff
.model dff d_dff

23.2. XSPICE ADVANCED USAGE 581

Example (continued):

abridge2 div8_out enable filt_in node_bridge2
.model node_bridge2 d_to_real (zero=-1 one=1)

*
xfilter filt_in clk filt_out dig_filter

*
abridge3 filt_out a_out node_bridge3
.model node_bridge3 real_to_v

*
rlpf1 a_out oa_minus 10k

*
xlpf 0 oa_minus lpf_out opamp

*
rlpf2 oa_minus lpf_out 10k
clpf lpf_out oa_minus 0.01uF

.subckt dig_filter filt_in clk filt_out
.model n0 real_gain (gain=1.0)
.model n1 real_gain (gain=2.0)
.model n2 real_gain (gain=1.0)
.model g1 real_gain (gain=0.125)
.model zm1 real_delay
.model d0a real_gain (gain=-0.75)
.model d1a real_gain (gain=0.5625)
.model d0b real_gain (gain=-0.3438)
.model d1b real_gain (gain=1.0)

*
an0a filt_in x0a n0
an1a filt_in x1a n1
an2a filt_in x2a n2

*
az0a x0a clk x1a zm1
az1a x1a clk x2a zm1

*
ad0a x2a x0a d0a
ad1a x2a x1a d1a

*
az2a x2a filt1_out g1
az3a filt1_out clk filt2_in zm1

*
an0b filt2_in x0b n0
an1b filt2_in x1b n1
an2b filt2_in x2b n2

*
az0b x0b clk x1b zm1
az1b x1b clk x2b zm1

*
ad0 x2b x0b d0b
ad1 x2b x1b d1b

*
az2b x2b clk filt_out zm1
.ends dig_filter

582 CHAPTER 23. EXAMPLE CIRCUITS

Example (continued):

.subckt opamp plus minus out

*
r1 plus minus 300k
a1 %vd (plus minus) outint lim
.model lim limit (out_lower_limit = -12 out_upper_limit = 12
+ fraction = true limit_range = 0.2 gain=300e3)
r3 outint out 50.0
r2 out 0 1e12

*
.ends opamp

*
.end

This circuit is a high-level design of a sampled-data filter. An analog step waveform (created
from a ngspice pulse waveform) is introduced as ‘v1’ and converted to digital by code model
instance ‘abridge’. This digital data is used to enable a Nand-Gate oscillator (‘aclk’) after a
short delay. The Nand-Gate oscillator generates a square-wave clock signal with a period of
approximately two times the gate delay, which is specified as 1e-5 seconds. This 50 kHz clock
is divided by a series of D Flip Flops (‘adiv2’, ‘adiv4’, ‘adiv8’) to produce a square-wave at
approximately 6.25 kHz. Note particularly the use of the reserved word ‘NULL’ for certain
nodes on the D Flip Flops. This tells the code model that there is no node connected to these
ports of the flip flop.

The divide-by-8 and enable waveforms are converted by the instance ‘abridge2’ to the format
required by the User-Defined Node type ‘real’, which expected real-valued data. The output of
this instance on node filt_in is a real valued square wave that oscillates between values of -1
and 1. Note that the associated code model d_to_real is not part of the original XSPICE code
model library but has been added later to ngspice.

This signal is then passed through subcircuit ‘xfilter’ that contains a digital low-pass filter
clocked by node ‘clk’. The result of passing this square-wave through the digital low-pass
filter is the production of a sampled sine wave (the filter passes only the fundamental of the
square-wave input) on node filt_out. This signal is then converted back to ngspice analog
data on node a_out by node bridge instance ‘abridge3’.

The resulting analog waveform is then passed through an op-amp-based low-pass analog filter
constructed around subcircuit ‘xlpf’ to produce the final output at analog node ‘lpf_out’.

23.2.2 Running example C3

Now copy the file xspice_c3.cir from directory /examples/xspice/ into the current directory:

$ cp /examples/xspice/xspice_c3.cir xspice_c3.cir

and invoke the new simulator executable as you did in the previous examples.

$ ngspice xspice_c3.cir

23.2. XSPICE ADVANCED USAGE 583

Execute the simulation with the run command.

ngspice 1 -> run

After a short time, the ngspice prompt should return. Results of this simulation are examined
in the manner illustrated in the previous two examples. You can use the plot command to plot
either analog nodes, event-driven nodes, or both. For example, you can plot the values of the
sampled-data filter input node and the analog low-pass filter output node as follows:

ngspice 2 -> plot filt_in lpf_out

The plot shown in Fig. 23.2 should appear.

Figure 23.2: Plot of Filter Input and Output

You can also plot data from nodes inside a subcircuit. For example, to plot the data on node
‘x1a’ in subcircuit ‘xfilter’, create a pathname to this node with a dot separator.

ngspice 3 -> plot xfilter.x1a

The output from this command is shown in Fig. 23.3. Note that the waveform contains vertical
segments. These segments are caused by the non-zero delays in the ‘real gain’ models used
within the subcircuit. Each vertical segment is actually a step with a width equal to the model
delay (1e-9 seconds).

Plotting nodes internal to subcircuits works for both analog and event-driven nodes.

To examine data such as the closely spaced events inside the subcircuit at node ‘xfilter.x1a’, it
is often convenient to use the eprint command to produce a tabular listing of events. Try this
by entering the following command:

584 CHAPTER 23. EXAMPLE CIRCUITS

Figure 23.3: Plot of Subcircuit Internal Node

ngspice 4 -> eprint xfilter.x1a

**** Results Data ****
Time or Step
xfilter.x1a
0.000000000e+000 0.000000e+000 1.010030000e-004 2.000000e+000
1.010040000e-004 2.562500e+000 1.210020000e-004 2.812500e+000
1.210030000e-004 4.253906e+000 1.410020000e-004 2.332031e+000
1.410030000e-004 3.283447e+000 1.610020000e-004 2.014893e+000
1.610030000e-004 1.469009e+000 1.810020000e-004 2.196854e+000
1.810030000e-004 1.176232e+000
...
9.610030000e-004 3.006294e-001 9.810020000e-004 2.304755e+000
9.810030000e-004 9.506230e-001 9.810090000e-004 -3.049377e+000
9.810100000e-004 -4.174377e+000

**** Messages ****
**** Statistics ****
Operating point analog/event alternations: 1
Operating point load calls: 37
Operating point event passes: 2
Transient analysis load calls: 4299
Transient analysis timestep backups: 87

This command produces a tabular listing of event-times in the first column and node values in
the second column. The 1 ns delays can be clearly seen in the fifth decimal place of the event
times.

Note that the eprint command also gives statistics from the event-driven algorithm portion of
XSPICE. For this example, the simulator alternated between the analog solution algorithm and
the event-driven algorithm one time while performing the initial DC operating point solution

23.2. XSPICE ADVANCED USAGE 585

prior to the start of the transient analysis. During this operating point analysis, 37 total calls were
made to event-driven code model functions, and two separate event passes or iterations were
required before the event nodes obtained stable values. Once the transient analysis commenced,
there were 4299 total calls to event-driven code model functions. Lastly, the analog simulation
algorithm performed 87 time-step backups that forced the event-driven simulator to backup its
state data and its event queues.

A similar output is obtained when printing the values of digital nodes. For example, print the
values of the node ‘div8 out’ as follows:

ngspice 5 -> eprint div8_out

**** Results Data ****
Time or Step
div8_out
0.000000000e+000 1s
1.810070000e-004 0s
2.610070000e-004 1s
...
9.010070000e-004 1s
9.810070000e-004 0s

**** Messages ****
**** Statistics ****
Operating point analog/event alternations: 1
Operating point load calls: 37
Operating point event passes: 2
Transient analysis load calls: 4299
Transient analysis timestep backups: 87

From this printout, we see that digital node values are composed of a two character string. The
first character (0, 1, or U) gives the state of the node (logic zero, logic one, or unknown logic
state). The second character (s, r, z, u) gives the ‘strength’ of the logic state (strong, resistive,
hi-impedance, or undetermined).

If you wish, examine other nodes in this circuit with either the plot or eprint commands.
When you are done, enter the quit command to exit the simulator and return to the operating
system prompt:

ngspice 6 -> quit

So long.

586 CHAPTER 23. EXAMPLE CIRCUITS

Chapter 24

Code Models and User-Defined Nodes

The following sections explain the steps required to create code models and User-Defined Nodes
(UDNs), store them in shared libraries and load them into the simulator at runtime. The ngspice
simulator already includes XSPICE libraries of predefined models and node types that span the
analog and digital domains. These have been detailed earlier in this document (see Sections
8.2, 8.3, and 8.4). However, the real power of the XSPICE is in its support for extending these
libraries with new models written by users. ngspice includes an XSPICE code model generator.
Adding code models to ngspice will require a model definition plus some simple file operations,
which are explained in this chapter.

The original manual cited an XSPICE ‘Code Model Toolkit’ that enabled one to define new
models and node data types to be passed between them offline, independent from ngspice.
Whereas this Toolkit is still available in the original source code distribution at the XSPICE
web page, it is neither required nor supported any more.

So we make use of the existing XSPICE infrastructure provided with ngspice to create new
code models. With an ’intelligent’ copy and paste, and the many available code models serving
as a guide you will be quickly able to create your own models. You have to have a compiler
(gcc) available under Linux, MS Windows (Cygwin, MINGW), maybe also for other OSs,
including supporting software (Flex, Bison, and the autotools if you start from Git sources).
The compilation procedures for ngspice are described in detail in Chapt. 28. Adding a code
model may then require defining the functionality, interface, and eventually user defined nodes.
Compiling into a shared library is only a simple ’make’, loading the shared lib(s) into ngspice is
done by the ngspice command codemodel... (see Chapt. 13.5.15). This will allow you to either
add some code model to an existing library, or you may generate a new library with your own
code models. The latter is of interest if you want to distribute your code models independently
from the ngspice sources or executables.

These new code models are handled by ngspice in a manner analogous to its treating of SPICE
devices and XSPICE Predefined Code Models. The basic steps required to create sources for
new code models or User-Defined Nodes, compile them and load them into ngspice are sim-
ilar. They consist of 1) creating the code model or UserDefined Node (UDN) directory and
its associated model or data files, 2) inform ngspice about the code model or UDN directories
that have to be compiled and linked into ngspice, 3) compile them into a shared lib, and 4)
load them into the ngspice simulator upon runtime. All code models finally reside in dynami-
cally linkable shared libraries (*.cm), which in fact are .so files under Linux or dlls under MS
Windows. Currently we have 5 of them (analog.cm, digital.cm, spice2poly.cm, xtradev.cm,

587

https://web.archive.org/web/20161030172156/http://users.ece.gatech.edu/~mrichard/Xspice/
https://web.archive.org/web/20161030172156/http://users.ece.gatech.edu/~mrichard/Xspice/

588 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

xtraevt.cm). Upon start up of ngspice they are dynamically loaded into the simulator by the
ngspice codemodel command (which is located in file spinit (see Chapt. 12.5) for the stan-
dard code models). Once you have added your new code model into one of these libraries (or
have created a new library file, e.g. my-own.cm), instances of the model can be placed into
any simulator deck that describes a circuit of interest and simulated along with all of the other
components in that circuit.

A quick entry to get a new code model has already been presented in Chapt. 22.3. You may
find the details of the XSPICE language in Chapt. 24.6 ff.

24.1 Code Model Data Type Definitions

There are several data types that you can incorporate into a model. These have already been
used extensively in the code model library included with the simulator. They are detailed below:

Boolean_t The Boolean type is an enumerated type that can take on values of FALSE (integer
value 0) or TRUE (integer value 1). Alternative names for these enumerations are MIF FALSE
and MIF TRUE, respectively.

Complex_t The Complex type is a structure composed of two double values. The first of
these is the .real field, and the second is the .imag field. Typically these values are accessed as
shown:

For complex value ‘data’, the real portion is ‘data.real’, and the imaginary portion is ‘data.imag’.

Digital_State_t The Digital State type is an enumerated value that can be either ZERO (in-
teger value 0), ONE (integer value 1), or UNKNOWN (integer value 2).

Digital_Strength_t The Digital Strength type is an enumerated value that can be either
STRONG (integer value 0), RESISTIVE (integer value 1), HI IMPEDANCE (integer value
2) or UNDETERMINED (integer value 3).

Digital_t The Digital type is a composite of the Digital_State_t and Digital_Strength_t enu-
merated data types. The actual variable names within the Digital type are .state and .strength
and are accessed as shown below:

For Digital_t value ‘data’, the state portion is ‘data.state’, and the strength portion is ‘data.strength’.

24.2 Creating Code Models

The following description deals with extending one of the five existing code model libraries.
Adding a new library is described in Chapt. 24.4. The first step in creating a new code model
within XSPICE is to create a model directory inside of the selected library directory. The new
directory name is the name of the new code model. As an example you may add a directory
d_counter to the library directory digital.

24.3. CREATING USER-DEFINED NODES 589

cd ngspice/src/xspice/icm/digital
mkdir d_counter

Into this new directory you copy the following template files:

• Interface Specification File (ifspec.ifs)

• Model Definition File (cfunc.mod)

You may choose existing files that are similar to the new code model you intend to integrate.
The template Interface Specification File (ifspec.ifs) is edited to define the model’s inputs, out-
puts, parameters, etc (see Chapt. 24.6). You then edit the template Model Definition File
(cfunc.mod) to include the C-language source code that defines the model behavior (see Chapt.
24.7). As a final step you have to notify ngspice of the new code model. You have to edit the
file modpath.lst that resides in the library directory ngspice/src/xspice/icm/digital. Just add
the entry d_counter to this file.

The Interface Specification File is a text file that describes, in a tabular format, information
needed for the code model to be properly interpreted by the simulator when it is placed with
other circuit components into a SPICE deck. This information includes such things as the
parameter names, parameter default values, and the name of the model itself. The specific
format presented to you in the Interface Specification File template must be followed exactly,
but is quite straightforward. A detailed description of the required syntax, along with numerous
examples, is included in Section 24.6.

The Model Definition File contains a C programming language function definition. This func-
tion specifies the operations to be performed within the model on the data passed to it by the
simulator. Special macros are provided that allow the function to retrieve input data and return
output data. Similarly, macros are provided to allow for such things as storage of information
between iteration time-points and sending of error messages. Section 24.7 describes the form
and function of the Model Definition File in detail and lists the support macros provided within
the simulator for use in code models.

To allow compiling and linking (see Chapt. 24.5) you have at least to adapt the names of the
functions inside of the two copied files to get unique function and model names. If for example
you have chosen ifspec.ifs and cfunc.mod from model d_fdiv as your template, simply replace
all entries d_fdiv by d_counter inside of the two files.

24.3 Creating User-Defined Nodes

In addition to providing the capability of adding new models to the simulator, a facility exists
that allows node types other than those found in standard SPICE to be created. Models may be
constructed that pass information back and forth via these nodes. Such models are constructed
in the manner described in the previous sections, with appropriate changes to the Interface
Specification and Model Definition Files.

Because of the need of electrical engineers to have ready access to both digital and analog
simulation capabilities, the digital node type is provided as a built-in node type along with
standard SPICE analog nodes. For digital nodes, extensive support is provided in the form

590 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

of macros and functions so that you can treat this node type as a standard type analogous to
standard SPICE analog nodes when creating and using code models. In addition to analog and
digital nodes, the node types real and int are also provided with the simulator. These were
created using the User-Defined Node (UDN) creation facilities described below and may serve
as a template for further node types.

The first step in creating a new node type within XSPICE is to set up a node type directory
along with the appropriate template files needed.

cd ngspice/src/xspice/icm/xtraevt
mkdir <directory name>

<directory name> should be the name of the new type to be defined. Copy file udnfunc.c
from /icm/xtraevt/int into the new directory. Edit this file according to the new type you want
to create.

Notify ngspice about this new UDN directory by editing
ngspice/src/xspice/icm/xtraevt/udnpath.lst. Add a new line containing <directory name>.
For compiling and linking see Chapt. 24.5.

The UDN Definition File contains a set of C language functions. These functions perform
operations such as allocating space for data structures, initializing them, and comparing them to
each other. Section 24.8 describes the form and function of the User-Defined Node Definition
File in detail and includes an example UDN Definition File.

24.4 Adding a new code model library

A group of code models may be assembled into a library. A new library is a means to distribute
new code models, independently from the existing ones. This is the way to generate a new code
model library:

cd ngspice/src/xspice/icm/
mkdir <directory name>

<directory name> is the name of the new library. Copy empty files modpath.lst and udnpath.lst
into this directory.

Edit file ngspice/src/xspice/icm/GNUmakefile.in, add <directory name> to the end of line
10, which starts with CMDIRS =

That’s all you have to do about a new library! Of course it is empty right now, so you have to
define at least one code model according to the procedure described in Chapt. 24.2.

24.5 Compiling and loading the new code model (library)

Compiling is now as simple as issuing the commands

24.6. INTERFACE SPECIFICATION FILE 591

cd ngspice/release
make
sudo make install

if you have installed ngspice according to Chapt. 28.1.4. This procedure will install the code
model libraries into a directory <prefix>/lib/spice/, e.g. C:/Spice/lib/spice/ for standard Win-
dows install or /usr/local/lib/spice/ for Linux.

Thus the code model libraries are not linked into ngspice at compile time, but may be loaded
at runtime using the codemodel command (see Chapt. 13.5.15). This is done automatically
for the predefined code model libraries upon starting ngspice. The appropriate commands are
provided in the start up file spinit (see Chapt. 12.5). So if you have added a new code model
inside of one of the existing libraries, nothing has to be done, you will have immediate access
to your new model.

If you have generated a new code model library, e.g. new_lib.cm, then you have to add the line

@XSPICEINIT@ codemodel @prefix@/@libname@/spice/new_lib.cm

to spinit.in in ngspice/src. This will create a new spinit if ngspice is recompiled from scratch.

To avoid the need for recompilation of ngspice, you also may directly edit the file spinit by
adding the line

codemodel C:/Spice/lib/spice/new_lib.cm

(OS MS Windows) or the appropriate Linux equivalent. Upon starting ngspice, the new library
will be loaded and you have access to the new code model(s). The codemodel command has to
be executed upon start-up of ngspice, so that the model information is available as soon as the
circuit is parsed. Failing to do so will lead to an error message of a model missing. So spinit
(or .spiceinit for personal code model libraries) is the correct place for codemodel.

24.6 Interface Specification File

The Interface Specification (IFS) file is a text file that describes the model’s naming informa-
tion, its expected input and output ports, its expected parameters, and any variables within the
model that are to be used for storage of data across an entire simulation. These four types
of data are described to the simulator in IFS file sections labeled NAME_TABLE, PORT_TABLE,
PARAMETER_TABLE and STATIC_VAR_TABLE, respectively. An example IFS file is given below.
The example is followed by detailed descriptions of each of the entries, what they signify, and
what values are acceptable for them. Keywords are case insensitive.

NAME_TABLE:
C_Function_Name: ucm_xfer
Spice_Model_Name: xfer
Description: "arbitrary transfer function"
PORT_TABLE:

592 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: num_coeff
Description: "numerator polynomial coefficients"
Data_Type: real
Default_Value: -
Limits: -
Vector: yes
Vector_Bounds: [1 -]
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: den_coeff
Description: "denominator polynomial coefficients"
Data_Type: real
Default_Value: -
Limits: -
Vector: yes
Vector_Bounds: [1 -]
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: int_ic
Description: "integrator stage initial conditions"
Data_Type: real
Default_Value: 0.0
Limits: -
Vector: yes
Vector_Bounds: den_coeff
Null_Allowed: yes
STATIC_VAR_TABLE:
Static_Var_Name: x
Data_Type: pointer
Description: "x-coefficient array"

24.6. INTERFACE SPECIFICATION FILE 593

24.6.1 The Name Table

The name table is introduced by the Name_Table: keyword. It defines the code model’s C
function name, the name used on a .MODEL card, and an optional textual description. The
following sections define the valid fields that may be specified in the Name Table.

24.6.1.1 C Function Name

The C function name is a valid C identifier that is the name of the function for the code model.
It is introduced by the C_Function_Name: keyword followed by a valid C identifier. To reduce
the chance of name conflicts, it is recommended that user-written code model names use the
prefix ucm_ for this entry. Thus, in the example given above, the model name is xfer, but the C
function is ucm_xfer. Note that when you subsequently write the model function in the Model
Definition File, this name must agree with that of the function (i.e., ucm_xfer), or an error will
result in the linking step.

24.6.1.2 SPICE Model Name

The SPICE model name is a valid SPICE identifier that will be used on SPICE .MODEL cards to
refer to this code model. It may or may not be the same as the C function name. It is introduced
by the Spice_Model_Name: keyword followed by a valid SPICE identifier.

Description The description string is used to describe the purpose and function of the code
model. It is introduced by the Description: keyword followed by a C string literal.

24.6.2 The Port Table

The port table is introduced by the Port_Table: keyword. It defines the set of valid ports
available to the code model. The following sections define the valid fields that may be specified
in the port table.

24.6.2.1 Port Name

The port name is a valid SPICE identifier. It is introduced by the Port_Name: keyword followed
by the name of the port. Note that this port name will be used to obtain and return input and
output values within the model function. This will be discussed in more detail in the next
section.

24.6.2.2 Description

The description string is used to describe the purpose and function of the port. It is introduced
by the Description: keyword followed by a C string literal.

594 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

Default Types
Type Description Valid Directions

d digital any
g conductance (VCCS) inout

gd differential conductance (VCCS) inout
h resistance (CCVS) inout

hd differential resistance (CCVS) inout
i current in or out

id differential current in or out
v voltage in or out

vd differential voltage in or out
<identifier> user-defined type any

Table 24.1: Port Types

24.6.2.3 Direction

The direction of a port specifies the data flow direction through the port. A direction must be
one of n, out, or inout. It is introduced by the Direction: keyword followed by a valid
direction value.

24.6.2.4 Default Type

The Default_Type field specifies the type of a port. These types are identical to those used to
define the port types on a SPICE deck instance card (see Table 8.1), but without the percent sign
(%) preceding them. Table 24.1 summarizes the allowable types.

24.6.2.5 Allowed Types

A port must specify the types it is allowed to assume. An allowed type value must be a list of
type names (a blank or comma separated list of names delimited by square brackets, e.g. [v vd
i id] or [d]). The type names must be taken from those listed in Table 24.1.

24.6.2.6 Vector

A port that is a vector can be thought of as a bus. The Vector field is introduced with the
Vector: keyword followed by a Boolean value: YES, TRUE, NO or FALSE.

The values YES and TRUE are equivalent and specify that this port is a vector. Likewise, NO
and FALSE specify that the port is not a vector. Vector ports must have a corresponding vector
bounds field that specifies valid sizes of the vector port.

24.6.2.7 Vector Bounds

If a port is a vector, limits on its size must be specified in the vector bounds field. The Vector
Bounds field specifies the upper and lower bounds on the size of a vector. The Vector Bounds

24.6. INTERFACE SPECIFICATION FILE 595

field is usually introduced by the Vector_Bounds: keyword followed by a range of integers
(e.g. ‘[1 7]’ or ‘[3, 20]’). The lower bound of the vector specifies the minimum number of
elements in the vector; the upper bound specifies the maximum number of elements. If the
range is unconstrained, or the associated port is not a vector, the vector bounds may be specified
by a hyphen (‘-’). Using the hyphen convention, partial constraints on the vector bound may be
defined (e.g., ‘[2, -]’ indicates that the least number of port elements allowed is two, but there
is no maximum number).

24.6.2.8 Null Allowed

In some cases, it is desirable to permit a port to remain unconnected to any electrical node in
a circuit. The Null_Allowed field specifies whether this constitutes an error for a particular
port. The Null_Allowed field is introduced by the ‘Null_Allowed:’ keyword and is followed
by a boolean constant: ‘YES’, ‘TRUE’, ‘NO’ or ‘FALSE’. The values ‘YES’ and ‘TRUE’ are
equivalent and specify that it is legal to leave this port unconnected. ‘NO’ or ‘FALSE’ specify
that the port must be connected.

24.6.3 The Parameter Table

The parameter table is introduced by the Parameter_Table: keyword. It defines the set of
valid parameters available to the code model. The following sections define the valid fields that
may be specified in the parameter table.

24.6.3.1 Parameter Name

A parameter name is a valid SPICE identifier that will be used on SPICE .MODEL cards to
refer to this parameter. It is introduced by the Parameter_Name: keyword followed by a valid
SPICE identifier.

24.6.3.2 Description

The description string is used to describe the purpose and function of the parameter. It is
introduced by the ‘Description:’ keyword followed by a string literal.

24.6.3.3 Data Type

The parameter’s data type is specified by the Data Type field. The Data Type field is introduced
by the keyword ‘Data_Type:’ and is followed by a valid data type. Valid data types include
boolean, complex, int, real, and string.

24.6.3.4 Null Allowed

The Null_Allowed field is introduced by the ‘Null_Allowed:’ keyword and is followed by a
boolean literal. A value of ‘TRUE’ or ‘YES’ specify that it is valid for the corresponding SPICE
.MODEL card to omit a value for this parameter. If the parameter is omitted, the default value

596 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

is used. If there is no default value, an undefined value is passed to the code model, and the
PARAM_NULL() macro will return a value of ‘TRUE’ so that defaulting can be handled within
the model itself. If the value of Null_Allowed is ‘FALSE’ or ‘NO’, then the simulator will flag
an error if the SPICE .MODEL card omits a value for this parameter.

24.6.3.5 Default Value

If the Null_Allowed field specifies ‘TRUE’ for this parameter, then a default value may be
specified. This value is supplied for the parameter in the event that the SPICE .MODEL card
does not supply a value for the parameter. The default value must be of the correct type. The
Default Value field is introduced by the ‘Default_Value:’ keyword and is followed by a
numeric, boolean, complex, or string literal, as appropriate.

24.6.3.6 Limits

Integer and real parameters may be constrained to accept a limited range of values. The fol-
lowing range syntax is used whenever such a range of values is required. A range is specified
by a square bracket followed by a value representing a lower bound separated by space from
another value representing an upper bound and terminated with a closing square bracket (e.g.”[0
10]”). The lower and upper bounds are inclusive. Either the lower or the upper bound may be
replaced by a hyphen (‘-’) to indicate that the bound is unconstrained (e.g. ‘[10 -]’ is read as
‘the range of values greater than or equal to 10’). For a totally unconstrained range, a single
hyphen with no surrounding brackets may be used. The parameter value limit is introduced by
the ‘Limits:’ keyword and is followed by a range.

24.6.3.7 Vector

The Vector field is used to specify whether a parameter is a vector or a scalar. Like the PORT
TABLE Vector field, it is introduced by the ‘Vector:’ keyword and followed by a boolean
value. ‘TRUE’ or ‘YES’ specify that the parameter is a vector. ‘FALSE’ or ‘NO’ specify that it
is a scalar.

24.6.3.8 Vector Bounds

The valid sizes for a vector parameter are specified in the same manner as are port sizes (see
Section 24.6.2.7). However, in place of using a numeric range to specify valid vector bounds it
is also possible to specify the name of a port. When a parameter’s vector bounds are specified
in this way, the size of the vector parameter must be the same as the associated vector port.

24.6.4 Static Variable Table

The Static Variable table is introduced by the ‘Static_Var_Table:’ keyword. It defines the
set of valid static variables available to the code model. These are variables whose values are
retained between successive invocations of the code model by the simulator. The following
sections define the valid fields that may be specified in the Static Variable Table.

24.6. INTERFACE SPECIFICATION FILE 597

24.6.4.1 Name

The Static variable name is a valid C identifier that will be used in the code model to refer to
this static variable. It is introduced by the ‘Static_Var_Name:’ keyword followed by a valid
C identifier.

24.6.4.2 Description

The description string is used to describe the purpose and function of the static variable. It is
introduced by the ‘Description:’ keyword followed by a string literal.

24.6.4.3 Data Type

The static variable’s data type is specified by the Data Type field. The Data Type field is in-
troduced by the keyword Data_Type: and is followed by a valid data type. Valid data types
include boolean, complex, int, real, string and pointer.

Note that pointer types are used to specify vector values; in such cases, the allocation of memory
for vectors must be handled by the code model through the use of the malloc() or calloc() C
function. Such allocation must only occur during the initialization cycle of the model (which
is identified in the code model by testing the INIT macro for a value of TRUE). Otherwise,
memory will be unnecessarily allocated each time the model is called.

Following is an example of the method used to allocate memory to be referenced by a static
pointer variable ‘x’ and subsequently use the allocated memory. The example assumes that the
value of ‘size’ is at least 2, else an error would result. The references to STATIC_VAR(x) that
appear in the example illustrate how to set the value of, and then access, a static variable named
‘x’. In order to use the variable ‘x’ in this manner, it must be declared in the Static Variable
Table of the code model’s Interface Specification File.

/* Define local pointer variable */
double *local.x;

/* Allocate storage to be referenced by the static variable x. */
/* Do this only if this is the initial call of the code model. */
if (INIT == TRUE) {

STATIC_VAR(x) = calloc(size, sizeof(double));
}

/* Assign the value from the static pointer value to the local */
/* pointer variable. */
local_x = STATIC_VAR(x);

/* Assign values to first two members of the array */
local_x[0] = 1.234;
local_x[1] = 5.678;

598 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

24.7 Model Definition File

The Model Definition File is a C source code file that defines a code model’s behavior given
input values that are passed to it by the simulator. The file itself is always given the name
cfunc.mod. In order to allow for maximum flexibility, passing of input, output, and simulator-
specific information is handled through accessor macros, which are described below. These
are not ordinary C preprocesor macros; they are expanded by a dedicated program that checks
them against the interface specification file. In addition, certain predefined library functions
(e.g. smoothing interpolators, complex arithmetic routines) are included in the simulator in
order to ease the burden of the code model programmer. These are also described below.

24.7.1 Macros

The use of the accessor macros is illustrated in the following example. Note that the argument
to most accessor macros is the name of a parameter or port as defined in the Interface Specifi-
cation File. Note also that all accessor macros except ‘ARGS’ resolve to an lvalue (C language
terminology for something that can be assigned a value). Accessor macros do not implement
expressions or assignments.

void code.model(ARGS) /* private structure accessed by
accessor macros */

{
/* The following code fragments are intended to show how

information in the argument list is accessed. The reader
should not attempt to relate one fragment to another.
Consider each fragment as a separate example.

*/

double p,/* variable for use in the following code fragments */
x, /* variable for use in the following code fragments */
y; /* variable for use in the following code fragments */

int i, /* indexing variable for use in the following */
j; /* indexing variable for use in the following */

UDN_Example_Type *a_ptr, /* A pointer used to access a
User-Defined Node type */

y_ptr; / A pointer used to access a
User-Defined Node type */

/* Initializing and outputting a User-Defined Node result */
if(INIT) {

OUTPUT(y) = malloc(sizeof(user.defined.struct));
y_ptr = OUTPUT(y);
y_ptr->component1 = 0.0;
y_ptr->component2 = 0.0;

24.7. MODEL DEFINITION FILE 599

}
else {

y_ptr = OUTPUT(y);
y_ptr->component1 = x1;
y_ptr->component2 = x2;

}

/* Determining analysis type */
if(ANALYSIS == AC) {

/* Perform AC analysis-dependent operations here */
}

/* Accessing a parameter value from the .model card */
p = PARAM(gain);

/* Accessing a vector parameter from the .model card */
for(i = 0; i < PARAM_SIZE(in_offset); i++)

p = PARAM(in_offset[i]);

/* Accessing the value of a simple real-valued input */
x = INPUT(a);

/* Accessing a vector input and checking for null port */
if(! PORT_NULL(a))

for(i = 0; i < PORT_SIZE(a); i++)
x = INPUT(a[i]);

/* Accessing a digital input */
x = INPUT(a);

/* Accessing the value of a User-Defined Node input... */
/* This node type includes two elements in its definition. */
a_ptr = INPUT(a);
x = a_ptr->component1;
y = a_ptr->component2;

/* Outputting a simple real-valued result */
OUTPUT(out1) = 0.0;

/* Outputting a vector result and checking for null */
if(! PORT_NULL(a))

for(i = 0; i < PORT_SIZE(a); i++)
OUTPUT(a[i]) = 0.0;

/* Outputting the partial of output out1 w.r.t. input a */
PARTIAL(out1,a) = PARAM(gain);

/* Outputting the partial of output out2(i) w.r.t. input b(j) */

600 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

for(i = 0; i < PORT_SIZE(out2); i++) {
for(j = 0; j < PORT_SIZE(b); j++) {

PARTIAL(out2[i],b[j]) = 0.0;
}

}

/* Outputting gain from input c to output out3 in an
AC analysis */

complex_gain_real = 1.0;
complex_gain_imag = 0.0;
AC_GAIN(out3,c) = complex_gain;

/* Outputting a digital result */
OUTPUT_STATE(out4) = ONE;

/* Outputting the delay for a digital or user-defined output */
OUTPUT_DELAY(out5) = 1.0e-9;

}

24.7.1.1 Macro Definitions

The full set of accessor macros is listed below. Arguments shown in parenthesis are examples
only. Explanations of the accessor macros are provided in the subsections below.

Circuit Data:
ARGS
CALL_TYPE
INIT
ANALYSIS
NEW_TIMEPOINT
TIME
T(n)
RAD_FREQ
TEMPERATURE
CALLBACK

Parameter Data:
PARAM(gain)
PARAM_SIZE(gain)
PARAM_NULL(gain)

Port Data:
PORT_SIZE(a)
PORT_NULL(a)
LOAD(a)
TOTAL_LOAD(a)

Input Data:
INPUT(a)
INPUT_STATE(a)

24.7. MODEL DEFINITION FILE 601

INPUT_STRENGTH(a)
Output Data:

OUTPUT(y)
OUTPUT_CHANGED(a)
OUTPUT_DELAY(y)
OUTPUT_STATE(a)
OUTPUT_STRENGTH(a)

Partial Derivatives:
PARTIAL(y,a)

AC Gains:
AC_GAIN(y,a)

Static Variable:
STATIC_VAR(x)

24.7.1.2 Macro arguments for vector ports and parameters

When a port or parameter has been defined as a vector in the interface specification, some
macros require an argument that includes the vector index, as in OUTPUT(y[i]), while others
accept only the simple port or parameter name. The first kind are identified as “indexed” in
the descriptions below. The index may be any C expression that specifies a valid index for the
vector.

24.7.1.3 Circuit Data

ARGS
CALL_TYPE
INIT
ANALYSIS
NEW_TIMEPOINT
TIME
T(n)
RAD_FREQ
TEMPERATURE
CALLBACK

ARGS is a macro that is passed in the argument list of every code model. It is there to provide
a way of referencing each model to all of the remaining macro values. It must be present
in the argument list of every code model; it must also be the only argument present in the
argument list of every code model.

CALL_TYPE is a macro that returns one of two possible symbolic constants. These are
EVENT and ANALOG. Testing may be performed by a model using CALL TYPE to
determine whether it is being called by the analog simulator or the event-driven simula-
tor. This will, in general, only be of value to a hybrid model such as the adc bridge or the
dac bridge. Some expected behaviours of the code model, such as setting output values,
depend on the CALL TYPE. For code models that request it (see 24.7.2.7) a third value,
STEP_PENDING, is used when the call indicates that the simulator is about to complete
an analog time step.

602 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

INIT is an integer (int) that takes the value 1 or 0 depending on whether this is the first call to
the code model instance or not, respectively.

ANALYSIS is an enumerated integer that takes values of DC, AC, or TRANSIENT.

NEW_TIMEPOINT is an integer that takes the value 1 or 0 depending on whether this is the
first call for this instance at the current analysis step (i.e., time-point) or not, respectively.

TIME is a double representing the current analysis time in a transient analysis. T(n) is a double
vector giving the analysis time for a specific analog time-point in a transient analysis,
where n takes the value 0 or 1. T(0) is equal to TIME in ANALOG calls, but in EVENT
calls TIME lies between T(1) and T(0). T(1) is the last accepted time-point. (T(0) - T(1))
is the time-step (i.e., the delta-time value) associated with the current time. The difference
between the TIME values in two successive calls to a code model function may be zero,
or even negative if the analog simulator reduces the time-step while seeking convergence.
TIME will never be less than any current or previous valid T(1).

RAD_FREQ is a double representing the current analysis frequency in an AC analysis ex-
pressed in units of radians per second.

TEMPERATURE is a double representing the current analysis temperature.

CALLBACK is a variable of type Mif_Callback_t, a function pointer defined in the header file
miftypes.h. A function may be supplied by assigning to CALLBACK in the INIT call to
the code model. That function will then be called during reset or deletion of instances of
the code model. It is expected to release any extra resources such as dynamic memory or
open files that have been allocated during simulation. Most code models will not need this
as storage for variables allocated through the library are released automatically. When the
function is called, the first argument is ARGS and the second is a reason code: currently
the only value is MIF_CB_DESTROY. That should be checked in case new call reasons
are introduced. The set of macros that can be used in the function is restricted to those
for ports, parameters and static variables.

24.7.1.4 Parameter Data

PARAM(gain)
PARAM_SIZE(gain)
PARAM_NULL(gain)

PARAM(gain) (indexed) resolves to the value of the scalar (i.e., non-vector) parameter ‘gain’
that was defined in the Interface Specification File tables. The macro evaluation has the
type given in the ifspec.ifs file and can be used regardless of type. If ‘gain’ is a string,
then PARAM(gain) resolves to a read-only character pointer.

PARAM_SIZE(gain) resolves to an integer (int) representing the size of the ‘gain’ vector
(which was dynamically determined when the SPICE deck was read). PARAM_SIZE(gain)
is undefined if ‘gain’ is a scalar.

PARAM_NULL(gain) resolves to an integer with value 0 or 1 depending on whether a value
was specified for gain, or whether the value is defaulted, respectively.

24.7. MODEL DEFINITION FILE 603

24.7.1.5 Port Data

PORT_SIZE(a)
PORT_NULL(a)
LOAD(a)
TOTAL_LOAD(a)

PORT_SIZE(a) resolves to an integer (int) representing the size of the ‘a’ vector port (which
was dynamically determined when the SPICE deck was read). PORT_SIZE(a) is undefined
if gain is a scalar.

PORT_NULL(a) resolves to an integer (int) with value 0 or 1 depending on whether the SPICE
deck has a node specified for this port, or has specified that the port is null, respectively.

LOAD(a) (indexed) is used in a digital model to post a capacitive load value to a particular in-
put or output port during the INIT pass of the simulator. All values posted for a particular
event-driven node using the LOAD() macro are summed, producing a total load value.

TOTAL_LOAD(a) (indexed) returns a double value that represents the total capacitive load
seen on a specified node to which a digital code model is connected. This information
may be used after the INIT pass by the code model to modify the delays it posts with its
output states and strengths. Note that this macro can also be used by non-digital event-
driven code models (see LOAD(), above).

24.7.1.6 Input Data

INPUT(a)
INPUT_STATE(a)
INPUT_STRENGTH(a)

The input data macros are all indexed.

INPUT(a) resolves to the value of the scalar input a that was defined in the Interface Speci-
fication File tables. The macro evaluates to a real (double) value for analog ports and a
pointer to the internal representation for event ports (digital, integer, real or user-defined).
The same accessor macro can be used regardless of type.

INPUT_STATE(a) resolves to the state value defined for digital node types. These will be one
of the symbolic constants ZERO, ONE, or UNKNOWN.

INPUT_STRENGTH(a) resolves to the strength with which a digital input node is being
driven. This is determined by a resolution algorithm that looks at all outputs to a node
and determines its final driven strength. This value in turn is passed to a code model when
requested by this macro. Possible strength values are
1. STRONG
2. RESISTIVE
3. HI_IMPEDANCE
4. UNDETERMINED

604 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

24.7.1.7 Output Data

OUTPUT(y)
OUTPUT_CHANGED(a)
OUTPUT_DELAY(y)
OUTPUT_STATE(a)
OUTPUT_STRENGTH(a)

The output data macros are all indexed.

OUTPUT(y) resolves to the value of the scalar output ‘y’ that was defined in the Interface
Specification File tables. The macro evaluates to a real l-value (it can be assigned to) for
analog ports and a pointer to the internal representation (dereference before assigning a
value) for event ports (digital, integer, real or user-defined). The same accessor macro can
be used regardless of type. Event simulator port values must only be set in EVENT calls.
All analog simulator ports should be set in ANALOG calls, otherwise the value reverts to
zero. Setting analog ports in an EVENT call does nothing. To handle the case where a new
output for the“other” simulator is produced, schedule a re-entry to that simulator using
cm_event_queue() or cm_analog_set_temp_breakpoint(), as appropriate, passing
TIME as the argument.

OUTPUT_CHANGED(a) may be assigned one of two values for any particular output to an
event simulator port. If assigned the value TRUE (the default), then an output state,
strength (if digital) and delay must be posted by the model during the call. If, on the other
hand, no change has occurred during that pass, the OUTPUT_CHANGED(a) value for an
output can be set to FALSE. In this case, no state, strength or delay values need be posted
by the model. Remember that this macro applies to a single output port. If a model has
multiple outputs that have not changed, OUTPUT_CHANGED(a) must be set to FALSE
for each of them.

OUTPUT_DELAY(y) may be assigned a double value representing a delay associated with a
particular event simulator port. Note that this macro must be set for each digital or User-
Defined Node output from a model during each pass, unless the OUTPUT_CHANGED(a)
macro is set to FALSE. Note also that a positive value must be assigned to OUTPUT_DELAY().
Assigning a value of zero (or a negative value) will cause an error.

OUTPUT_STATE(a) may be assigned a state value for a digital output node. Valid values are
ZERO, ONE, and UNKNOWN. This is the normal way of posting an output state from
a digital code model. This is a convenient alternative to constructing a full digital value
(state and strength) and assigning to *OUTPUT(a).

OUTPUT_STRENGTH(a) may be assigned a strength value for a digital output node. This is
the normal way of posting an output strength from a digital code model. Valid values are
1. STRONG
2. RESISTIVE
3. HI_IMPEDANCE
4. UNDETERMINED

24.7. MODEL DEFINITION FILE 605

24.7.1.8 Partial Derivatives

PARTIAL(y,a)
PARTIAL(y[n],a)
PARTIAL(y,a[m])
PARTIAL(y[n],a[m])

PARTIAL(y,a) (indexed) resolves to the value of the partial derivative of scalar output ‘y’
with respect to scalar input ‘a’. The type is always double since partial derivatives are
only defined for nodes with real valued quantities (i.e., analog nodes).

The remaining uses of PARTIAL are shown for the cases in which either the output, the input,
or both are vectors.

Partial derivatives are required by the simulator to allow it to solve the non-linear equations
that describe circuit behavior for analog nodes. Since coding of partial derivatives can be-
come difficult and error-prone for complex analog models, you may wish to consider using the
cm_analog_auto_partial() code model support function instead of using this macro.

PARTIAL(a, a) is valid for an inout port and its use may greatly improve convergence.

24.7.1.9 AC Gains

AC_GAIN(y,a)
AC_GAIN(y[n],a)
AC_GAIN(y,a[m])
AC_GAIN(y[n],a[m])

AC_GAIN(y,a) (indexed) resolves to the value of the AC analysis gain of scalar output ‘y’
from scalar input ‘a’. The type is always a structure (Complex_t) defined in the standard
code model header file:

typedef struct Complex_s {
double real; /* The real part of the complex number */
double imag; /* The imaginary part of the complex number */

} Complex_t;

The remaining uses of AC_GAIN are shown for the cases in which either the output, the input,
or both are vectors.

24.7.1.10 Static Variables

STATIC_VAR(x)

STATIC_VAR(x) resolves to an lvalue for a scalar or pointer as defined in the Interface Spec-
ification File. Unlike C language static and global variables, these values are local to a
specific instance of the code model. The type of ‘x’ is that given in the Interface Specifica-
tion File. The same accessor macro can be used regardless of type since it simply resolves

606 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

to an lvalue. To store a C structure or vector, the declared type should be ’pointer’ and the
code model is responsible for allocating storage and assigning the pointer to the allocated
storage to STATIC_VAR(x). That is usually done in the INIT call. The code model is
also responsible for freeing the storage, in a function that is declared by the CALLBACK
macro.

24.7.1.11 Accessor Macros

Table 24.3 describes the accessor macros available to the Model Definition File programmer and
their C types. The PARAM and STATIC_VAR macros, whose types are labeled CD (context
dependent), return the type defined in the Interface Specification File. Arguments listed with
‘[i]’ take an optional square bracket delimited index if the corresponding port or parameter is a
vector. The index may be any C expression - possibly involving calls to other accessor macros
(e.g.,” OUTPUT(out[PORT_SIZE(out)-1])”)

Name Type Args Description
AC_GAIN Complex_t y[i],x[i] AC gain of output y with respect to

input x.
ANALYSIS enum <none> Type of analysis: DC, AC,

TRANSIENT.
ARGS Mif_Private_t <none> Standard argument to all code

model function.
CALLBACK Mif_Callback_t <none> Pointer to callback function
CALL_TYPE enum <none> Type of model evaluation call:

ANALOG or EVENT.
INIT Boolean_t <none> Is this the first call to the model?
INPUT double, int or void* name[i] Value of analog input port, or value

of structure pointer for
User-Defined Node port.

INPUT_STATE enum name[i] State of a digital input: ZERO,
ONE, or UNKNOWN.

INPUT_STRENGTH enum name[i] Strength of digital input:
STRONG, RESISTIVE, HI
IMPEDANCE, or
UNDETERMINED.

INPUT_TYPE char* name[i] The port type of the input.
LOAD double name[i] The digital load value placed on a

port by this model.
MESSAGE char* name[i] A message output by a model on

an event-driven node.
OUTPUT double, int or void* name[i] Value of the analog output port or

value of structure pointer for
User-Defined Node port.

OUTPUT_CHANGED Boolean_t name[i] Has a new value been assigned to
this event-driven output by the
model?

24.7. MODEL DEFINITION FILE 607

Table 24.3: Accessor macros

OUTPUT_DELAY double name[i] Delay in seconds for an
event-driven output.

OUTPUT_STATE enum name[i] State of a digital output: ZERO,
ONE, or UNKNOWN.

OUTPUT_STRENGTH enum name[i] Strength of digital output:
STRONG, RESISTIVE,
HI_IMPEDANCE, or
UNDETERMINED.

OUTPUT_TYPE char* name[i] The port type of the output.
PARAM CD name[i] Value of the parameter.
PARAM_NULL Boolean_t name[i] Was the parameter not included on

the SPICE .model card ?
PARAM_SIZE int name Size of parameter vector.
PARTIAL double y[i],x[i] Partial derivative of output y with

respect to input x.
PORT_NULL Mif_Boolean_t name Has this port been specified as

unconnected?
PORT_SIZE int name Size of port vector.
RAD_FREQ double <none> Current analysis frequency in

radians per second.
STATIC_VAR CD name Value of a static variable.
STATIC_VAR_SIZE int name Size of static var vector (currently

unused).
T(n) int index Current and previous analysis

times (T(0) = current analysis time,
T(1) = previous analysis time).

TEMPERATURE double <none> Current analysis temperature.
TIME double <none> Current analysis time (same as

T(0) for ANALOG calls). In
EVENT calls it is the event time
and may lie between T(1) and T(0).

TOTAL_LOAD double name[i] The total of all loads on the node
attached to this event driven port.

24.7.2 Function Library

24.7.2.1 Overview

Aside from the accessor macros, the simulator also provides a library of functions callable from
within code models. The header file containing prototypes to these functions is automatically
inserted into the Model Definition File for you. The complete list of available functions follows:

Smoothing Functions:

608 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

void cm_smooth_corner
void cm_smooth_discontinuity
double cm_smooth_pwl

Model State Storage Functions:
void cm_analog_alloc
void cm_event_alloc
void *cm_analog_get_ptr
void *cm_event_get_ptr

Integration and Convergence Functions:
int cm_analog_integrate
int cm_analog_converge
void cm_analog_not_converged
void cm_analog_auto_partial
double cm_analog_ramp_factor

Message Handling Functions:
char *cm_message_get_errmsg
void cm_message_send
int cm_message_printf

Breakpoint Handling Functions:
int cm_analog_set_temp_bkpt
int cm_analog_set_perm_bkpt
int cm_event_queue

Special Purpose Functions:
void cm_climit_fcn
double cm_netlist_get_c
double cm_netlist_get_l
char *cm_get_path
const char *cm_get_node_name
const char *cm_get_neg_node_name
bool cm_probe_node
bool cm_schedule_output
bool cm_getvar
void cm_cexit
void cm_irreversible

Complex Math Functions:
complex_t cm_complex_set
complex_t cm_complex_add
complex_t cm_complex_sub
complex_t cm_complex_mult
complex_t cm_complex_div

24.7.2.2 Smoothing Functions

void
cm_smooth_corner(x_input, x_center, y_center, domain,

lower_slope, upper_slope, y_output, dy_dx)

double x_input; /* The value of the x input */

24.7. MODEL DEFINITION FILE 609

double x_center; /* The x intercept of the two slopes */
double y_center; /* The y intercept of the two slopes */
double domain; /* The smoothing domain */
double lower_slope; /* The lower slope */
double upper_slope; /* The upper slope */
double *y_output; /* The smoothed y output */
double *dy_dx; /* The partial of y wrt x */

void
cm_smooth_discontinuity(x_input, x_lower, y_lower, x_upper, y_upper

y_output, dy_dx)

double x_input; /* The x value at which to compute y */
double x_lower; /* The x value of the lower corner */
double y_lower; /* The y value of the lower corner */
double x_upper; /* The x value of the upper corner */
double y_upper; /* The y value of the upper corner */
double *y_output; /* The computed smoothed y value */
double *dy_dx; /* The partial of y wrt x */

double
cm_smooth_pwl(x_input, x, y, size, input_domain, dout_din)

double x_input; /* The x input value */
double *x; /* The vector of x values */
double *y; /* The vector of y values */
int size; /* The size of the xy vectors */
double input_domain; /* The smoothing domain */
double *dout_din; /* The partial of the output wrt the input */

cm_smooth_corner() automates smoothing between two arbitrarily-sloped lines that meet at
a single center point. You specify the center point (x_center, y_center), plus a domain (x-
valued delta) above and below x_center. This defines a smoothing region about the cen-
ter point. Then, the slopes of the meeting lines outside of this smoothing region are speci-
fied (lower_slope, upper_slope). The function then interpolates a smoothly-varying output
(*y_output) and its derivative (*dy_dx) for the x_input value. This function helps to automate
the smoothing of piecewise-linear functions, for example. Such smoothing aids the simulator
in achieving convergence.

cm_smooth_discontinuity() allows you to obtain a smoothly-transitioning output (*y_output)
that varies between two static values (y_lower, y_upper) as an independent variable (x_input)
transitions between two values (x_lower, x_upper). This function is useful in interpolating be-
tween resistances or voltage levels that change abruptly between two values.

cm_smooth_pwl() duplicates much of the functionality of the predefined pwl code model. The
cm smooth pwl() takes an input value plus x-coordinate and y-coordinate vector values along
with the total number of coordinate points used to describe the piecewise linear transfer function
and returns the interpolated or extrapolated value of the output based on that transfer function.
More detail is available by looking at the description of the pwl code model. Note that the
output value is the function’s returned value.

610 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

24.7.2.3 Model State Storage Functions

void cm_analog_alloc(tag, size)

int tag; /* The user-specified tag for this block of memory */
int size; /* The number of bytes to allocate */

void cm_event_alloc(tag, size)

int tag; /* The user-specified tag for the memory block */
int size; /* The number of bytes to be allocated */

void *cm_analog_get_ptr(tag, timepoint
int tag; /* The user-specified tag for this block of memory */
int timepoint; /* The timepoint of interest - 0=current 1=previous */

void *cm_event_get_ptr(tag, timepoint)

int tag; /* The user-specified tag for the memory block */
int timepoint; /* The timepoint - 0=current, 1=previous */

cm_analog_alloc() and cm_event_alloc() allow you to allocate storage space for analog
and event-driven model state information. The storage space is not static, but rather represents
a storage vector of two values that rotate with each accepted simulator time-point evaluation.
This is explained more fully below. The ‘tag’ parameter allows you to specify an integer tag
when allocating space. This allows more than one rotational storage location per model to be
allocated. The ‘size’ parameter specifies the size in bytes of the storage (computed by the C lan-
guage sizeof() operator). Both cm_analog_alloc() and cm_event_alloc() will not return
pointers to the allocated space, as has been available (and buggy) from the original XSPICE
code. cm_analog_alloc() should be used by an analog model; cm_event_alloc() should
be used by an event-driven model.

cm_analog_get_ptr() and cm_event_get_ptr() retrieve the pointer location of the rota-
tional storage space previously allocated by cm_analog_alloc() or cm_event_alloc(). Im-
portant notice: These functions must be called only after all memory allocation (all calls to
cm_analog_alloc() or cm_event_alloc()) have been done. All pointers returned between
calls to memory allocation will become obsolete (point to freed memory because of an internal
realloc). The functions take the integer ‘tag’ used to allocate the space, and an integer from 0 to
1 that specifies the time-point with which the desired state variable is associated (e.g. timepoint
= 0 will retrieve the address of storage for the current time-point; timepoint = 1 will retrieve
the address of storage for the last accepted time-point). Note that once a model is exited,
storage to the current time-point state storage location (i.e., timepoint = 0) will, upon the
next time-point iteration, be rotated to the previous location (i.e., timepoint = 1). When
rotation is done, a copy of the old ‘timepoint = 0’ storage value is placed in the new ‘timepoint
= 1’ storage location. Thus, if a value does not change for a particular iteration, specific writing
to ‘timepoint = 0’ storage is not required. These features allow a model coder to constantly
know which piece of state information is being dealt with within the model function at each
time-point.

Rotation and copying for cm_analog_get_ptr() occurs when the circuit state converges and

24.7. MODEL DEFINITION FILE 611

the simulator accepts the new timepoint. Rotation and copying are done for cm_event_get_ptr()
before each EVENT call. When simulation time moves backward, newer EVENT data is dis-
carded and the next copy is made from the oldest data with time-stamp less than TIME.

24.7.2.4 Integration and Convergence Functions

int cm_analog_integrate(integrand, integral, partial)

double integrand; /* The integrand */
double *integral; /* The current and returned value of integral */
double *partial; /* The partial derivative of integral wrt integrand */

int cm_analog_converge(state)

double *state; /* The state to be converged */

void cm_analog_not_converged()
void cm_analog_auto_partial()

double cm_ramp_factor()

cm_analog_integrate() takes as input the integrand (the input to the integrator) and produces
as output the integral value and the partial of the integral with respect to the integrand. The in-
tegration itself is with respect to time, and the pointer to the integral value must have been pre-
viously allocated using cm_analog_alloc() and *cm_analog_get_ptr(). This is required
because of the need for the integrate routine itself to have access to previously-computed values
of the integral.

cm_analog_converge() takes as an input the address of a state variable that was previously
allocated using cm_analog_alloc() and *cm_analog_get_ptr(). The function itself serves
to notify the simulator that for each time-step taken, that variable must be iterated upon until it
converges.

cm_analog_not_converged() is a function that can and should be called by an analog model
whenever it performs internal limiting of one or more of its inputs to aid in reaching conver-
gence. This causes the simulator to call the model again at the current time-point and continue
solving the circuit matrix. A new time-point will not be attempted until the code model re-
turns without calling the cm_analog_not_converged() function. For circuits that have trou-
ble reaching a converged state (often due to multiple inputs changing too quickly for the model
to react in a reasonable fashion), the use of this function is virtually mandatory.

cm_analog_auto_partial() may be called at the end of a code model function in lieu of cal-
culating the values of partial derivatives explicitly in the function. When this function is called,
no values should be assigned to the PARTIAL macro since these values will be computed au-
tomatically by the simulator. The automatic calculation of partial derivatives can save consid-
erable time in designing and coding a model, since manual computation of partial derivatives
can become very complex and error-prone for some models. However, the automatic evaluation
may also increase simulation run time significantly. Function cm_analog_auto_partial()
causes the model to be called N additional times (for a model with N inputs) with each input
varied by a small amount (1e-6 for voltage inputs and 1e-12 for current inputs). The values

612 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

of the partial derivatives of the outputs with respect to the inputs are then approximated by the
simulator through divided difference calculations.

cm_analog_ramp_factor() will then return a value from 0.0 to 1.0 that indicates whether
or not a ramp time value requested in the SPICE analysis deck (with the use of .option
ramptime=<duration>) has elapsed. If the RAMPTIME option is used, then cm_analog_ramp_factor
returns a 0.0 value during the DC operating point solution and a value that is between 0.0 and
1.0 during the ramp. A 1.0 value is returned after the ramp is over or if the RAMPTIME op-
tion is not used. This value is intended as a multiplication factor to be used with all model
outputs that would ordinarily experience a ‘power-up’ transition. Currently, all sources within
the simulator are automatically ramped to the ‘final’ time-zero value if a RAMPTIME option is
specified.

24.7.2.5 Message Handling Functions

char *cm_message_get_errmsg()
int cm_message_send(char *msg)
char *msg; /* The message to output. */
int cm_message_printf(char *fmt, ...);

*cm_message_get_errmsg() is a function designed to be used with other library functions
to provide a way for models to handle error situations. More specifically, whenever a library
function that returns type int is executed from a model, it will return an integer value, n. If
this value is not equal to zero (0), then an error condition has occurred (likewise, functions that
return pointers will return a NULL value if an error has occurred). At that point, the model can
invoke *cm_message_get_errmsg to obtain a pointer to an error message. This can then in turn
be displayed to the user or passed to the simulator interface through the cm_message_send()
function. The C code required for this is as follows:

err = cm_analog_integrate(in, &out, &dout_din);
if (err) {

cm_message_send(cm_message_get_errmsg());
}
else { ...

cm_message_send() sends messages to either the standard output screen or to the simulator
interface, depending on which is in use. The instance name and a new line are added to the
message.

cm_message_printf() formats a message like sprintf() and passes it to cm_message_send().

24.7.2.6 Breakpoint Handling Functions

int cm_analog_set_perm_bkpt(time)

double time; /* The time of the breakpoint to be set */

int cm_analog_set_temp_bkpt(time)

24.7. MODEL DEFINITION FILE 613

double time; /* The time of the breakpoint to be set */

int cm_event_queue(time)

double time; /* The time of the event to be queued */

cm_analog_set_perm_bkpt() takes as input a time value. This value is posted to the analog
simulator algorithm and is used to force the simulator to choose that value as a breakpoint at
some time in the future. The simulator may choose as the next time-point a value less than the
input, but not greater. Also, regardless of how many time-points pass before the breakpoint is
reached, it will not be removed from posting. Thus, a breakpoint is guaranteed at the passed
time value. Note that a breakpoint may also be set for a time prior to the current time, but this
will result in an error if the posted breakpoint is prior to the last accepted time (i.e., T(1)).

cm_analog_set_temp_bkpt() takes as input a time value. This value is posted to the simulator
and is used to force the simulator, for the next time-step only, to not exceed the passed time
value. The simulator may choose as the next time-point a value less than the input, but not
greater. In addition, once the next time-step is chosen, the posted value is removed regardless
of whether it caused the break at the given time-point. This function is useful in the event that
a time-point needs to be retracted after its first posting in order to recalculate a new breakpoint
based on new input data (for controlled oscillators, controlled one-shots, etc), since temporary
breakpoints automatically ‘go away’ if not reposted each time-step. Note that a breakpoint may
also be set for a time prior to the current time, but this will result in an error if the posted
breakpoint is prior to the last accepted time (i.e., T(1)).

It is not certain that a future call will be made with TIME exactly equal to the function argument,
but there will be a close match. Arithmetic rounding may occur and the simulator may make
only one call when requests are very closely spaced. The closeness depends on the minimum
timestep of the simulation.

cm_event_queue() is similar to cm_analog_set_perm_bkpt(), but functions with event-
driven models. When invoked, this function causes the model to be queued for calling at the
specified time, with CALL_TYPE == EVENT. There is no combining of closly-spaced events.
All other details applicable to cm_analog_set_perm_bkpt() apply to this function as well.

All three functions return 0 when a breakpoint or queued event has been created. Otherwise the
return value is non-zero and an error message has been set for cm_message_get_errmsg().

24.7.2.7 Special Purpose Functions

void
cm_climit_fcn(in, in_offset, cntl_upper, cntl_lower, lower_delta, upper_delta,

limit_range, gain, fraction, out_final, pout_pin_final,
pout_pcntl_lower_final, pout_pcntl_upper_final)

double in; /* The input value */
double in-offset; /* The input offset */
double cntl_upper; /* The upper control input value */
double cntl_lower; /* The lower control input value */

614 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

double lower_delta; /* The delta from control to limit value */
double upper_delta; /* The delta from control to limit value */
double limit_range; /* The limiting range */
double gain; /* The gain from input to output */
int percent; /* The fraction vs. absolute range flag */
double *out_final; /* The output value */
double *pout_pin_final; /* The partial of output wrt input */
double *pout_pcntl_lower_final; /* The partial of output wrt lower

control input */
double *pout_pcntl_upper:final; /* The partial of output wrt upper

control input */

double cm_netlist_get_c()
double cm_netlist_get_l()
char* cm_get_path()
CKTcircuit *cm_get_circuit()
const char *cm_get_node_name(const char *port_name, unsigned int index)
bool cm_probe_node(conn_index, port_index, value)

unsigned int conn_index; /* Connection index */
unsigned int port_index; /* Port index within connection */
void *value; /* Pointer to event value, input and return */

bool cm_schedule_output(unsigned int conn_index, unsigned int port_index, double delay, void *vp)
unsigned int conn_index; /* Connection index */
unsigned int port_index; /* Port index within connection */
double delay; /* Delay time, similar to OUTPUT_DELAY */
void *vp; /* Pointer to the event value, like OUTPUT */

bool cm_getvar(char *name, enum cp_types type, void *retval, size_t rsize)
char *name; /* Variable name */
enum cp_types type; /* Type of data requested */
void *retval; /* Buffer for data returned */
size_t rsize; /* Buffer size */

void cm_cexit(int exitcode)
int exitcode; /* Number returned upon exiting */

void cm_irreversible(unsigned int priority)
unsigned int priority; /* Relative priority of code model instance */

cm_climit_fcn() is a very specific function that mimics the behavior of the climit code model
(see the Predefined Models section). In brief, the cm_climit_fcn() takes as input an in value,
an offset, and controlling upper and lower values. Parameter values include delta values for
the controlling inputs, a smoothing range, gain, and fraction switch values. Outputs include
the final value, plus the partial derivatives of the output with respect to signal input, and both
control inputs. These all operate identically to the similarly-named inputs and parameters of the
climit model.

The function performs a limit on the in value, holding it to within some delta of the control-
ling inputs, and handling smoothing, etc. The cm_climit_fcn() was originally used in the
ilimit code model to handle much of the primary limiting in that model, and can be used by a

24.7. MODEL DEFINITION FILE 615

code model developer to take care of limiting in larger models that require it. See the detailed
description of the climit model a for more in-depth description.

cm_netlist_get_c() and cm_netlist_get_l() functions search the analog circuitry to which
their input is connected, and total the capacitance or inductance, respectively, found at that node.
The functions, as they are currently written, assume they are called by a model that has only
one single-ended analog input port.

cm_get_path() fetches the path of the first netlist input file found on the ngspice command
line or in the source command, which ngspice saves to the global variable Infile_Path.

cm_get_circuit() returns a pointer to the (fundamental) ngspice circuit structure. This
allows accessing a wealth of data, as defined by CKTcircuit structure in cktdefs.h. To build
complex custom-built XSPICE-models, access to such parameters (e.g. maximum step size)
may be needed to get reasonable results from a simulation. This may be necessary when SPICE
interacts with an external sensor-simulator and the results of that external simulator do not have
a direct impact on the SPICE circuit. Then, modifying the maximum step size on the fly may
help to improve the simulation results.

cm_get_node_name() returns the name of the node attached to a port. The second argument
is the index for vector ports.

cm_get_neg_node_name() returns the name of the ’negative’ node of a differential node pair
attached to a port. The second argument is the index for vector ports. cm_get_node_name()
will then get the ’positive’ node’s name.

cm_probe_node() performs a speculative resolution of a node attached to a port. Given a port
and an event value, it returns what the value on the attached node would be, if the port was
attempting to output the original value. It is used by the bidi_bridge to discover how the node
is being driven by the other attached digital ports.

cm_schedule_output() queues an output event for a port, with the same effect as assigning
to the OUTPUT_DELAY and OUPUT macros, but without returning from the code model
function. It allows more than one event to be queued to a port in a single call. To prevent one
event overriding another on the same port they should be queued with increasing delays.

cm_getvar() obtains the value of a command interpreter variable. It has the same interface as
the internal function cp_getvar() as defined in the header file src/include/ngspice/cpextern.h.

cm_cexit() calls function controlled_exit(), which exits the simulator gracefully.

A call to cm_irreversible()has several effects that work together to support code models
that contain a sub-simulation. Such a sub-simulation will usually be irreversible: in transient
analysis it will not store enough data to allow a completed time step to be abandoned. However,
analog simulation in Ngspice frequently abandons time steps so that they can be retried with a
shorter period to achieve convergence. If the inputs to the sub-simulation are different in the
final analog solution and the original attempt, the sub-simulation may be permanently left in an
incorrect state.

A solution to this problem is to delay advancing time in the sub-simulation until Ngspice is
committed to the current timestep. This can work fully only for a single instance, but under
some conditions it may be possible to support several irreversible sub-simulations in one circuit.

The effects of a call are: the code model instance is added to the hybrids list if it is not already
a member; its position in the list is adjusted using the passed priority; and just before a time
step is accepted a special call is made to the code model. The hybrids list initially contains all

616 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

code model instances that have both analog and event ports. Code models instances on the list
receive an event call just before a time step is accepted. Setting priority to 1 ensures that an
instance will be called last, an instance with priority 2 will be called just before that, and so on.
Each instance must use a separate priority value, but the values used need not be consecutive.
The final effect of cm_irreversible() is that when the call is made, CALL_TYPE will have the
special value STEP_PENDING, not the usual value, EVENT.

A code model using cm_irreversible() may schedule an analog breakpoint in such calls, so that
the current time step does not proceed, although it was acceptable to the simulator core. In that
case no further STEP_PENDING calls are made for the step.

24.7.2.8 Complex Math Functions

Complex_t cm_complex_set (real_part, imag_part)

double real_part; /* The real part of the complex number */
double imag_part; /* The imaginary part of the complex number */

Complex_t cm_complex_add (x, y)

Complex_t x; /* The first operand of x + y */
Complex_t y; /* The second operand of x + y */

Complex_t cm_complex_sub (x, y)

Complex_t x; /* The first operand of x - y (minuend) */
Complex_t y; /* The second operand of x - y (subtrahend) */

Complex_t cm_complex_mult (x, y)

Complex_t x; /* The first operand of x * y */
Complex_t y; /* The second operand of x * y */

Complex_t cm_complex_div (x, y)

Complex_t x; /* The first operand of x / y (dividend) */
Complex_t y; /* The second operand of x / y (divisor) */

cm_complex_set() takes as input two doubles, and converts these to a Complex_t. The first
double is taken as the real part, and the second is taken as the imaginary part of the resulting
complex value.

cm_complex_add(), cm_complex_sub(), cm_complex_mult(), and cm_complex_div() each
take two complex values as inputs and return the result of a complex addition, subtraction, mul-
tiplication, or division, respectively.

24.8. USER-DEFINED NODE DEFINITION FILE 617

24.8 User-Defined Node Definition File

The User-Defined Node Definition File (udnfunc.c) defines the C functions that implement
basic operations on user-defined nodes such as data structure creation, initialization, copying,
and comparison. Unlike the Model Definition File that uses the Code Model Preprocessor to
translate Accessor Macros, the User-Defined Node Definition file is a pure C language file. This
file uses macros to isolate you from data structure definitions, but the macros are defined in a
standard header file (EVTudn.h), and translations are performed by the standard C Preproces-
sor.

When you create a directory for a new User-Defined Node, e.g.
/ngspice/src/xspice/icm/xtraevt/new_type/, add a new User-Defined Node Definition
File udnfunc.c (see the example in Chapt. 24.8.3), and place a structure of type ’Evt_Udn_Info_t’
at its bottom.

This structure contains the type name for the node, a description string, and pointers to each
of the functions that define the node. This structure is complete except for a text string that
describes the node type. This string is stubbed out and may be edited by you if desired.

24.8.1 Macros

Name Type Description
MALLOCED_PTR void * Assign pointer to allocated structure

to this macro
STRUCT_PTR void * A pointer to a structure of the defined

type
STRUCT_PTR_1 void * A pointer to a structure of the defined

type
STRUCT_PTR_2 void * A pointer to a structure of the defined

type
EQUAL Mif_Boolean_t Assign TRUE or FALSE to this macro

according to the results of structure
comparison

INPUT_STRUCT_PTR void * A pointer to a structure of the defined
type

OUTPUT_STRUCT_PTR void * A pointer to a structure of the defined
type

INPUT_STRUCT_PTR_ARRAY void ** An array of pointers to structures of
the defined type

INPUT_STRUCT_PTR_ARRAY_SIZE int The size of the array
STRUCT_MEMBER_ID char * A string naming some part of the

structure
PLOT_VAL double The value of the specified structure

member for plotting purposes
PRINT_VAL char * The value of the specified structure

member for printing purposes

Table 24.4: User-Defined Node Macros

618 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

You must code the functions described in the following section using the macros appropriate
for the particular function. You may elect whether not to provide the optional functions.

It is an error to use a macro not defined for a function. Note that a review of the sample
directories for the real and int UDN types will make the function usage clearer.

The macros used in the User-Defined Node Definition File to access and assign data values
are defined in Table 24.4. The translations of the macros and of macros used in the function
argument lists are defined in the Interface Design Document for the XSPICE Simulator.

24.8.2 Function Library

The functions (required and optional) that define a User-Defined Node are listed below. For
optional functions not used, the pointer in the Evt_Udn_Info_t structure can be changed to
NULL.

Required functions:

create Allocate data structure used as inputs and outputs to
code models.

initialize Set structure to appropriate initial value for first use as
model input.

copy Make a copy of the contents into created but possibly
uninitialized structure.

compare Determine if two structures are equal in value.

Optional functions:

dismantle Free allocations inside structure (but not structure itself).

invert Invert logical value of structure.

resolve Determine the resultant when multiple outputs are connected
to a node.

plot_val Output a real value for specified structure component for
plotting purposes.

print_val Output a string value for specified structure component for
printing.

ipc_val Output a binary representation of the structure suitable
for sending over the IPC channel.

https://web.archive.org/web/20161030172156/http://users.ece.gatech.edu/~mrichard/Xspice/

24.8. USER-DEFINED NODE DEFINITION FILE 619

The required actions for each of these functions are described in the following subsections. In
each function, you have to replace the XXX with the node type name specified. The macros
used in implementing the functions are described in a later section.

24.8.2.1 Function udn_XXX_create

Allocate space for the data structure defined for the User-Defined Node to pass data between
models. Then assign pointer created by the storage allocator (e.g. malloc) to MALLOCED_PTR.

24.8.2.2 Function udn_XXX_initialize

Assign STRUCT_PTR to a pointer variable of defined type and then initialize the value of the
structure.

24.8.2.3 Function udn_XXX_compare

Assign STRUCT_PTR_1 and STRUCT_PTR_2 to pointer variables of the defined type. Com-
pare the two structures and assign either TRUE or FALSE to EQUAL.

24.8.2.4 Function udn_XXX_copy

Assign INPUT_STRUCT_PTR and OUTPUT_STRUCT_PTR to pointer variables of the de-
fined type and then copy the elements of the input structure to the output structure.

24.8.2.5 Function udn_XXX_dismantle

Assign STRUCT_PTR to a pointer variable of defined type and then free any allocated sub-
structures (but not the structure itself!). If there are no substructures, the body of this function
may be left null.

24.8.2.6 Function udn_XXX_invert

Assign STRUCT_PTR to a pointer variable of the defined type, and then invert the logical value
of the structure.

24.8.2.7 Function udn_XXX_resolve

Assign INPUT_STRUCT_PTR_ARRAY to a variable declared as an array of pointers of the
defined type - e.g.:

<type> **struct_array;
struct_array = INPUT_STRUCT_PTR_ARRAY;

Then, the number of elements in the array may be determined from the integer valued IN-
PUT_STRUCT_PTR_ARRAY_SIZE macro.

Assign OUTPUT_STRUCT_PTR to a pointer variable of the defined type. Scan through the
array of structures, compute the resolved value, and assign it into the output structure.

620 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

24.8.2.8 Function udn_XXX_plot_val

Assign STRUCT_PTR to a pointer variable of the defined type. Then, access the member of
the structure specified by the string in STRUCT_MEMBER_ID and assign some real valued
quantity for this member to PLOT_VALUE.

24.8.2.9 Function udn_XXX_print_val

Assign STRUCT_PTR to a pointer variable of the defined type. Then, access the member of
the structure specified by the string in STRUCT_MEMBER_ID and assign some string valued
quantity for this member to PRINT_VALUE.

If the string is not static, a new string should be allocated on each call. Do not free the allocated
strings.

24.8.2.10 Function udn_XXX_ipc_val

Use STRUCT_PTR to access the value of the node data. Assign to IPC_VAL a binary repre-
sentation of the data. Typically this can be accomplished by simply assigning STRUCT_PTR
to IPC_VAL.

Assign to IPC_VAL_SIZE an integer representing the size of the binary data in bytes.

24.8.3 Example UDN Definition File

The following is an example UDN Definition File that is included with the XSPICE system. It
illustrates the definition of the functions described above for a User-Defined Node type int (for
integer node type), to be found in file /ngspice/src/xspice/icm/xtraevt/int/udnfunc.c.

#include <stdio.h>
#include "ngspice/cm.h"
#include "ngspice/evtudn.h"

void *tmalloc(size_t);
#define TMALLOC(t,n) (t*) tmalloc(sizeof(t)*(size_t)(n))

/* macro to ignore unused variables and parameters */
#define NG_IGNORE(x) (void)x

/* *** */

static void udn_int_create(CREATE_ARGS)
{

/* Malloc space for an int */
MALLOCED_PTR = TMALLOC(int, 1);

}

24.8. USER-DEFINED NODE DEFINITION FILE 621

/* *** */

static void udn_int_dismantle(DISMANTLE_ARGS)
{

NG_IGNORE(STRUCT_PTR);
/* Do nothing. There are no internally malloc’ed

things to dismantle */
}

/* *** */

static void udn_int_initialize(INITIALIZE_ARGS)
{

int *int_struct = (int *) STRUCT_PTR;

/* Initialize to zero */

*int_struct = 0;
}

/* *** */

static void udn_int_invert(INVERT_ARGS)
{

int *int_struct = (int *) STRUCT_PTR;

/* Invert the state */

*int_struct = -(*int_struct);
}

/* *** */

static void udn_int_copy(COPY_ARGS)
{

int *int_from_struct = (int *) INPUT_STRUCT_PTR;
int *int_to_struct = (int *) OUTPUT_STRUCT_PTR;

/* Copy the structure */

*int_to_struct = *int_from_struct;
}

/* *** */

static void udn_int_resolve(RESOLVE_ARGS)
{

int **array = (int**)INPUT_STRUCT_PTR_ARRAY;
int *out = (int *) OUTPUT_STRUCT_PTR;
int num_struct = INPUT_STRUCT_PTR_ARRAY_SIZE;

622 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

int sum;
int i;

/* Sum the values */
for(i = 0, sum = 0; i < num_struct; i++)

sum += *(array[i]);

/* Assign the result */

*out = sum;
}

/* *** */

static void udn_int_compare(COMPARE_ARGS)
{

int *int_struct1 = (int *) STRUCT_PTR_1;
int *int_struct2 = (int *) STRUCT_PTR_2;

/* Compare the structures */
if((*int_struct1) == (*int_struct2))

EQUAL = TRUE;
else

EQUAL = FALSE;
}

/* *** */

static void udn_int_plot_val(PLOT_VAL_ARGS)
{

int *int_struct = (int *) STRUCT_PTR;
NG_IGNORE(STRUCT_MEMBER_ID);

/* Output a value for the int struct */
PLOT_VAL = *int_struct;

}

/* *** */

static void udn_int_print_val(PRINT_VAL_ARGS)
{

int *int_struct = (int *) STRUCT_PTR;
NG_IGNORE(STRUCT_MEMBER_ID);

/* Allocate space for the printed value */
PRINT_VAL = TMALLOC(char, 30);

/* Print the value into the string */
sprintf(PRINT_VAL, "%8d", *int_struct);

24.8. USER-DEFINED NODE DEFINITION FILE 623

}

/* *** */

static void udn_int_ipc_val(IPC_VAL_ARGS)
{

/* Simply return the structure and its size */
IPC_VAL = STRUCT_PTR;
IPC_VAL_SIZE = sizeof(int);

}

Evt_Udn_Info_t udn_int_info = {
"int",
"integer valued data",
NULL,

udn_int_create,
udn_int_dismantle,
udn_int_initialize,
udn_int_invert,
udn_int_copy,
udn_int_resolve,
udn_int_compare,
udn_int_plot_val,
udn_int_print_val,
udn_int_ipc_val

};

624 CHAPTER 24. CODE MODELS AND USER-DEFINED NODES

Chapter 25

Error Messages

Error messages may be subdivided into three categories. These are

1. Error messages generated during the development of a code model (Preprocessor Error
Messages).

2. Error messages generated by the simulator during a simulation run (Simulator Error Mes-
sages).

3. Error messages generated by individual code models (Code Model Error Messages).

These messages will be explained in detail in the following subsections.

25.1 Preprocessor Error Messages

The following is a list of error messages that may be encountered when invoking the directory-
creation and code modeling preprocessor tools. These are listed individually, and explanations
follow the name/listing.

Usage: cmpp [-ifs] [-mod [<filename>]] [-lst]

The Code Model Preprocessor (cmpp) command was invoked incorrectly.

ERROR - Too few arguments

The Code Model Preprocessor (cmpp) command was invoked with too few arguments.

ERROR - Too many arguments

The Code Model Preprocessor (cmpp) command was invoked with too many arguments.

ERROR - Unrecognized argument

625

626 CHAPTER 25. ERROR MESSAGES

The Code Model Preprocessor (cmpp) command was invoked with an invalid argument.

ERROR - File not found: s<filename>

The specified file was not found, or could not be opened for read access.

ERROR - Line <line number> of <filename> exceeds XX characters

The specified line was too long.

ERROR - Pathname on line <line number> of <filename>
exceeds XX characters.

The specified line was too long.

ERROR - No pathnames found in file: <filename>

The indicated modpath.lst file does not have pathnames properly listed.

ERROR - Problems reading ifspec.ifs in directory <pathname>

The Interface Specification File (ifspec.ifs) for the code model could not be read.

ERROR - Model name <model name> is same as internal SPICE model name

A model has been given the same name as an intrinsic SPICE device.

ERROR - Model name ’<model name>’ in directory: <pathname>
is same as
model name ’<model name>’ in directory: <pathname>

Two models in different directories have the same name.

ERROR - C function name ’<function name>’ in directory: <pathname>,
is same as
C function name ’<function name>’ in directory: <pathname>

Two C language functions in separate model directories have the same names; these would
cause a collision when linking the final executable.

ERROR - Problems opening CMextrn.h for write

25.1. PREPROCESSOR ERROR MESSAGES 627

The temporary file CMextern.h used in building the XSPICE simulator executable could not
be created or opened. Check permissions on directory.

ERROR - Problems opening CMinfo.h for write

The temporary file CMinfo.h used in building the XSPICE simulator executable could not be
created or opened. Check permissions on directory.

ERROR - Problems opening objects.inc file for write

The temporary file objects.inc used in building the XSPICE simulator executable could not be
created or opened. Check permissions on directory.

ERROR - Could not open input .mod file: <filename>

The Model Definition File that contains the definition of the Code Model’s behavior (usually
cfunc.mod) was not found or could not be read.

ERROR - Could not open output .c: <filename>

The indicated C language file that the preprocessor creates could not be created or opened.
Check permissions on directory.

Error parsing .mod file: <filename>

Problems were encountered by the preprocessor in interpreting the indicated Model Definition
File.

ERROR - File not found: <filename>

The indicated file was not found or could not be opened.

Error parsing interface specification file

Problems were encountered by the preprocessor in interpreting the indicated Interface Specifi-
cation File.

ERROR - Can’t create file: <filename>

The indicated file could not be created or opened. Check permissions on directory.

ERROR - write.port.info() - Number of allowed types cannot be zero

There must be at least one port type specified in the list of allowed types.

628 CHAPTER 25. ERROR MESSAGES

illegal quoted character in string (expected "\" or "\\")

A string was found with an illegal quoted character in it.

unterminated string literal

A string was found that was not terminated.

Unterminated comment

A comment was found that was not terminated.

Port ’<port name>’ not found

The indicated port name was not found in the Interface Specification File.

Port type ’vnam’ is only valid for ’in’ ports

The port type vnam was used for a port with direction out or inout. This type is only allowed
on in ports.

Port types ’g’, ’gd’, ’h’, ’hd’ are only valid for ’inout’ ports

Port type g, gd, h, or hd was used for a port with direction out or in. These types are only
allowed on inout ports.

Invalid parameter type - POINTER type valid only for STATIC_VARs

The type POINTER was used in a section of the Interface Specification file other than the
STATIC_VAR section.

Port default type is not an allowed type

A default type was specified that is not one of the allowed types for the port.

Incompatible port types in ‘allowed_types’ clause

Port types listed under ‘Allowed_Types’ in the Interface Specification File must all have the
same underlying data type. It is illegal to mix analog and event driven types in a list of allowed
types.

Invalid parameter type (saw <parameter type 1> - expected <parameter type 2>)

25.1. PREPROCESSOR ERROR MESSAGES 629

A parameter value was not compatible with the specified type for the parameter.

Named range not allowed for limits

A name was found where numeric limits were expected.

Direction of port ’<port number>’ in <port name>()
is not <IN or OUT> or INOUT

A problem exists with the direction of one of the elements of a port vector.

Port ’<port name>’ is an array - subscript required

A port was referenced that is specified as an array (vector) in the Interface Specification File. A
subscript is required (e.g. myport[i])

Parameter ’<parameter name>’ is an array - subscript required

A parameter was referenced that is specified as an array (vector) in the Interface Specification
File. A subscript is required (e.g. myparam[i])

Port ’<port name>’ is not an array - subscript prohibited

A port was referenced that is not specified as an array (vector) in the Interface Specification
File. A subscript is not allowed.

Parameter ’<parameter name>’ is not an array - subscript prohibited

A parameter was referenced that is not specified as an array (vector) in the Interface Specifica-
tion File. A subscript is not allowed.

Static variable ’<static variable name>’ is not an array - subscript prohibited

Array static variables are not supported. Use a POINTER type for the static variable.

Buffer overflow - try reducing the complexity of CM-macro array subscripts

The argument to a code model accessor macro was too long.

Unmatched)

An open (was found with no corresponding closing).

Unmatched]

An open [was found with no corresponding closing].

630 CHAPTER 25. ERROR MESSAGES

25.2 Simulator Error Messages

The following is a list of error messages that may be encountered while attempting to run a
simulation (with the exception of those error messages generated by individual code models).
Most of these errors are generated by the simulator while attempting to parse a SPICE deck.
These are listed individually, and explanations follow the name/listing.

ERROR - Scalar port expected, [found

A scalar connection was expected for a particular port on the code model, but the symbol [,
which is used to begin a vector connection list, was found.

ERROR - Unexpected]

A] was found where not expected. Most likely caused by a missing [.

ERROR - Unexpected [- Arrays of arrays not allowed

A [character was found within an array list already begun with another [character.

ERROR - Tilde not allowed on analog nodes

The tilde character ~ was found on an analog connection. This symbol, which performs state
inversion, is only allowed on digital nodes and on User-Defined Nodes only if the node type
definition allows it.

ERROR - Not enough ports

An insufficient number of node connections was supplied on the instance line. Check the Inter-
face Specification File for the model to determine the required connections and their types.

ERROR - Expected node/instance identifier

A special token (e.g. [] < > ...) was found when not expected.

ERROR - Expected node identifier

A special token (e.g. [] < > ...) was found when not expected.

ERROR - unable to find definition of model <name>

A .model line for the referenced model was not found.

ERROR - model: %s - Array parameter expected - No array delimiter found

25.3. CODE MODEL ERROR MESSAGES 631

An array (vector) parameter was expected on the .model card, but enclosing [] characters were
not found to delimit its values.

ERROR - model: %s - Unexpected end of model card

The end of the indicated .model line was reached before all required information was supplied.

ERROR - model: %s - Array parameter must have at least one value

An array parameter was encountered that had no values.

ERROR - model: %s - Bad boolean value

A bad values was supplied for a Boolean. Value used must be TRUE, FALSE, T, or F.

ERROR - model: %s - Bad integer, octal, or hex value

A badly formed integer value was found.

ERROR - model: %s - Bad real value

A badly formed real value was found.

ERROR - model: %s - Bad complex value

A badly formed complex number was found. Complex numbers must be enclosed in < > de-
limiters.

25.3 Code Model Error Messages

The following is a list of error messages that may be encountered while attempting to run a
simulation with certain code models. These are listed alphabetically based on the name of the
code model, and explanations follow the name and listing.

25.3.1 Code Model aswitch
cntl_error:

*****ERROR*****
ASWITCH: CONTROL voltage delta less than 1.0e-12

This message occurs as a result of the cntl_off and cntl_on values being less than 1.0e-12 volt-
s/amperes apart.

632 CHAPTER 25. ERROR MESSAGES

25.3.2 Code Model climit
climit_range_error:

**** ERROR ****
* CLIMIT function linear range less than zero. *

This message occurs whenever the difference between the upper and lower control input values
are close enough that there is no effective room for proper limiting to occur; this indicates an
error in the control input values.

25.3.3 Code Model core
allocation_error:

ERROR
CORE: Allocation calloc failed!

This message is a generic message related to allocating sufficient storage for the H and B array
values.

limit_error:

ERROR
CORE: Violation of 50% rule in breakpoints!

This message occurs whenever the input domain value is an absolute value and the H coordinate
points are spaced too closely together (overlap of the smoothing regions will occur unless the
H values are redefined).

25.3.4 Code Model d_osc
d_osc_allocation_error:

**** Error ****
D_OSC: Error allocating VCO block storage

Generic block storage allocation error.

d_osc_array_error:

**** Error ****
D_OSC: Size of control array different than frequency array

Error occurs when there is a different number of control array members than frequency array
members.

d_osc_negative_freq_error:

**** Error ****
D_OSC: The extrapolated value for frequency
has been found to be negative...
Lower frequency level has been clamped to 0.0 Hz.

Occurs whenever a control voltage is input to a model that would ordinarily (given the specified
control/freq coordinate points) cause that model to attempt to generate an output oscillating at
zero frequency. In this case, the output will be clamped to some DC value until the control
voltage returns to a more reasonable value.

25.3. CODE MODEL ERROR MESSAGES 633

25.3.5 Code Model d_source
loading_error:

ERROR
D_SOURCE: source.txt file was not read successfully.

This message occurs whenever the d source model has experienced any difficulty in loading the
source.txt (or user-specified) file. This will occur with any of the following problems:

• Width of a vector line of the source file is incorrect.

• A time-point value is duplicated or is otherwise not monotonically increasing.

• One of the output values was not a valid 12-State value (0s, 1s, Us, 0r, 1r, Ur, 0z, 1z, Uz,
0u, 1u, Uu).

25.3.6 Code Model d_state
loading_error:

ERROR
D_STATE: state.in file was not read successfully.
The most common cause of this problem is a trailing
blank line in the state.in file

This error occurs when the state.in file (or user-named state machine input file) has not been
read successfully. This is due to one of the following:

• The counted number of tokens in one of the file’s input lines does not equal that required
to define either a state header or a continuation line (Note that all comment lines are
ignored, so these will never cause the error to occur).

• An output state value was defined using a symbol that was invalid (i.e., it was not one of
the following: 0s, 1s, Us, 0r, 1r, Ur, 0z, 1z, Uz, 0u, 1u, Uu).

• An input value was defined using a symbol that was invalid (i.e., it was not one of the
following: 0, 1, X, or x).

index_error:

ERROR
D_STATE: An error exists in the ordering of states values
in the states->state[] array. This is usually caused
by non-contiguous state definitions in the state.in file

This error is caused by the different state definitions in the input file being non-contiguous. In
general, it will refer to the different states not being defined uniquely, or being ‘broken up’ in
some fashion within the state.in file.

634 CHAPTER 25. ERROR MESSAGES

25.3.7 Code Model oneshot
oneshot_allocation_error:

**** Error ****
ONESHOT: Error allocating oneshot block storage

Generic storage allocation error.

oneshot_array_error:

**** Error ****
ONESHOT: Size of control array different than pulse-width array

This error indicates that the control array and pulse-width arrays are of different sizes.

oneshot_pw_clamp:

**** Warning ****
ONESHOT: Extrapolated Pulse-Width Limited to zero

This error indicates that for the current control input, a pulse-width of less than zero is indicated.
The model will consequently limit the pulse width to zero until the control input returns to a
more reasonable value.

25.3.8 Code Model pwl
allocation_error:

ERROR
PWL: Allocation calloc failed!

Generic storage allocation error.

limit_error:

ERROR
PWL: Violation of 50% rule in breakpoints!

This error message indicates that the pwl model has an absolute value for its input domain, and
that the x_array coordinates are so close together that the required smoothing regions would
overlap. To fix the problem, you can either spread the x_array coordinates out or make the
input domain value smaller.

25.3.9 Code Model s_xfer
num_size_error:

ERROR
S_XFER: Numerator coefficient array size greater than
denominator coefficient array size.

This error message indicates that the order of the numerator polynomial specified is greater
than that of the denominator. For the s_xfer model, the orders of numerator and denominator
polynomials must be equal, or the order of the denominator polynomial must be greater than
that or the numerator.

25.3. CODE MODEL ERROR MESSAGES 635

25.3.10 Code Model sine
allocation_error:

**** Error ****
SINE: Error allocating sine block storage

Generic storage allocation error.

sine_freq_clamp:

**** Warning ****
SINE: Extrapolated frequency limited to 1e-16 Hz

This error occurs whenever the controlling input value is such that the output frequency ordi-
narily would be set to a negative value. Consequently, the output frequency has been clamped
to a near-zero value.

array_error:

**** Error ****
SINE: Size of control array different than frequency array

This error message normally occurs whenever the controlling input array and the frequency
array are different sizes.

25.3.11 Code Model square
square_allocation_error:

**** Error ****
SQUARE: Error allocating square block storage

Generic storage allocation error.

square_freq_clamp:

**** WARNING ****
SQUARE: Frequency extrapolation limited to 1e-16

This error occurs whenever the controlling input value is such that the output frequency ordi-
narily would be set to a negative value. Consequently, the output frequency has been clamped
to a near-zero value.

square_array_error:

**** Error ****
SQUARE: Size of control array different than frequency array

This error message normally occurs whenever the controlling input array and the frequency
array are different sizes.

636 CHAPTER 25. ERROR MESSAGES

25.3.12 Code Model triangle
triangle_allocation_error:

**** Error ****
TRIANGLE: Error allocating triangle block storage

Generic storage allocation error.

triangle_freq_clamp:

**** Warning ****
TRIANGLE: Extrapolated Minimum Frequency Set to 1e-16 Hz

This error occurs whenever the controlling input value is such that the output frequency ordi-
narily would be set to a negative value. Consequently, the output frequency has been clamped
to a near-zero value.

triangle_array_error:

**** Error ****
TRIANGLE: Size of control array different than frequency array

This error message normally occurs whenever the controlling input array and the frequency
array are different sizes.

Part III

CIDER

637

Chapter 26

CIDER User’s Manual

The CIDER User’s Manual that follows is derived from the original manual being part of the
PhD thesis from David A. Gates from UC Berkeley. Unfortunately the manual here is not yet
complete, so please refer to the thesis for detailed information. Literature on CODECS, the
predecessor of CIDER, is available here from UCB: TechRpt ERL-90-96 and TechRpt ERL-
88-71.

26.1 SPECIFICATION

Overview of numerical-device specification

The input to CIDER consists of a SPICE-like description of a circuit, its analyses and its com-
pact device models, and PISCES-like descriptions of numerically analyzed device models. For
a description of the SPICE input format, consult the SPICE3 Users Manual [JOHN92]. The
KLU matrix solver (11.1.1) is not supported.

To simulate devices numerically, two types of input must be added to the input file. The first
is a model description in which the common characteristics of a device class are collected. In
the case of numerical models, this provides all the information needed to construct a device
cross-section, such as, for example, the doping profile. The second type of input consists of one
or more element lines that specify instances of a numerical model, describe their connection to
the rest of the circuit, and provide additional element-specific information such as device layout
dimensions ans initial bias information.

The format of a numerical device model description differs from the standard approach used
for SPICE3 compact models. It begins the same way with one line containing the .MODEL
keyword followed by the name of the model, device type and modeling level. However, instead
of providing a single long list of parameters and their values, numerical model parameters are
grouped onto cards. Each type of card has its own set of valid parameters. In all cases, the
relative ordering of different types of cards is unimportant. However, for cards of the same type
(such as mesh-specification cards), their order in the input file can be important in determining
the device structure.

Each card begins on a separate line of the input file. In order to let CIDER know that card
lines are continuations of a numerical model description, each must begin with the continuation
character ‘+’. If there are too many parameters on a given card to allow it fit on a single line,

639

http://www.eecs.berkeley.edu/Pubs/TechRpts/1993/2382.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1990/1611.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1988/1118.htmlTechRpt%20
http://www.eecs.berkeley.edu/Pubs/TechRpts/1988/1118.htmlTechRpt%20

640 CHAPTER 26. CIDER USER’S MANUAL

the card can be continued by adding a second ‘+’ to the beginning of the next line. However,
the name and value of a parameter should always appear on the same line.

Several features are provided to make the numerical model format more convenient.

Blank space can follow the initial ‘+’ to separate it from the name of a card or the card con-
tinuation ‘+’. Blank lines are also permitted, as long as they also begin with an initial ‘+’.
Parentheses and commas can be used to visually group or separate parameter definitions. In
addition, while it is common to add an equal sign between a parameter and its value, this is not
strictly necessary.

The name of any card can be abbreviated, provided that the abbreviation is unique. Parameter
name abbreviations can also be used if they are unique in the list of a card’s parameters. Numeric
parameter values are treated identically as in SPICE3, so exponential notation, engineering
scale factors and units can be attached to parameter values: tau=10ns, nc=3.0e19cm^-3. In
SPICE3, the value of a FLAG model parameter is changed to TRUE simply by listing its name
on the model line. In CIDER, the value of a numerical model FLAG parameter can be turned
back to FALSE by preceding it by a caret ‘^’. This minimizes the amount of input change
needed when features such as debugging are turned on and off. In certain cases it is necessary
to include file names in the input description and these names may contain capital letters. If
the file name is part of an element line, the inout parser will convert these capitals to lowercase
letters. To protect capitalization at any time, simply enclose the string in double quotes ‘”’.

The remainder of this manual describes how numerically analyzed elements and models can be
used in CIDER simulations. The manual consists of three parts. First, all of the model cards and
their parameters are described. This is followed by a section describing the three basic types of
numerical models and their corresponding element lines. In the final section, several complete
examples of CIDER simulations are presented.

Several conventions are used in the card descriptions. In the card synopses, the name of a
card is followed by a list of parameter classes. Each class is represented by a section in the
card parameter table, in the same order as it appears in the synopsis line. Classes that contain
optional parameters are surrounded by brackets: [...]. Sometimes it only makes sense for a
single parameter to take effect. (For example, a material can not simultaneously be both Si
and SiO2.) In such cases, the various choices are listed sequentially, separated by colons. The
same parameter often has a number of different acceptable names, some of which are listed in
the parameter tables.1 These aliases are separated by vertical bars: ‘|’. Finally, in the card
examples, the model continuation pluses have been removed from the card lines for clarity’s
sake.

26.1.1 Examples

The model description for a two-dimensional numerical diode might look something like what
follows. This example demonstrates many of the features of the input format described above.
Notice how the .MODEL line and the leading pluses form a border around the model description:

1Some of the possibilities are not listed in order to shorten the lengths of the parameter tables. This makes
the use of parameter abbreviations somewhat troublesome since an unlisted parameter may abbreviate to the same
name as one that is listed. CIDER will produce a warning when this occurs. Many of the undocumented parameter
names are the PISCES names for the same parameters. The adventurous soul can discover these names by delving
through the ‘cards’ directory of the source code distribution looking for the C parameter tables.

26.2. BOUNDARY, INTERFACE 641

Example: Numerical diode

.MODEL M_NUMERICAL NUPD LEVEL=2
+ cardnamel numberl=val1 (number2 val2), (number3 = val3)
+ cardname2 numberl=val1 string1 = name1
+
+ cardname3 numberl=val1, flag1, ^flag2
+ + number2=val2, flag3

The element line for an instance of this model might look something like the following. Double
quotes are used to protect the file name from decapitalization:

dl 1 2 M_NUMERICAL area=lOOpm^2 ic.file = "diode.IC"

26.2 BOUNDARY, INTERFACE

Specify properties of a domain boundary or the interface between two boundaries.

SYNOPSIS

boundary domain [bounding-box] [properties]
interface domain neighbor [bounding-box] [properties]

26.2.1 DESCRIPTION

The boundary and interface cards are used to set surface physics parameters along the boundary
of a specified domain. Normally, the parameters apply to the entire boundary, but there are two
ways to restrict the area of interest. If a neighboring domain is also specified, the parameters
are only set on the interface between the two domains. In addition, if a bounding box is given,
only that portion of the boundary or interface inside the bounding box will be set.

If a semiconductor-insulator interface is specified, then an estimate of the width of any inversion
or accumulation layer that may form at the interface can be provided. If the surface mobility
model (cf. models card) is enabled, then the model will apply to all semiconductor portions of
the device within this estimated distance of the interface. If a point lies within the estimated
layer width of more than one interface, it belong to the interface specified first in the input file.
If the layer width given is less than or equal to zero, it is automatically replaced by an estimate
calculated from the doping near the interface. As a consequence, if the doping varies so will the
layer width estimate.

Each edge of the bounding box can be specified in terms of its location or its mesh-index in the
relevant dimension, or defaulted to the respective boundary of the simulation mesh.

642 CHAPTER 26. CIDER USER’S MANUAL

26.2.2 PARAMETERS

Name Type Description Units
Domain Integer ID number of primary domain
Neighbor Integer ID number of neighboring domain
X.Low Real Lowest X location of bounding box µm
: IX.Low Integer Lowest X mesh-index of bounding box
X.High Real Highest X location of bounding box µm
: IX.High Integer Highest X mesh-index of bounding box
Y.Low Real Lowest Y location of bounding box µm
: IY.Low Integer Lowest Y mesh-index of bounding box
Y.High Real Highest Y location of bounding box µm
: IY.High Integer Highest Y mesh-index of bounding box
Qf Real Fixed interface charge C/cm2

SN Real Surface recombination velocity - electrons cm/s

SP Real Surface recombination velocity - holes cm/s

Layer.Width Real Width of surface layer µm

26.2.3 EXAMPLES

The following shows how the surface recombination velocities at an Si-SiO2 interface might be
set:

interface dom=l neigh=2 sn=l.Oe4 sp=l.Oe4

In a MOSFET with a 2.0µm gate width and 0.1µm source and drain overlap, the surface channel
can be restricted to the region between the metallurgical junctions and within 100Ȧ (0.01 µm)
of the interface:

interface dom=l neigh=2 x.l=l.l x.h=2.9 layer.w=0.01

The inversion layer width in the previous example can be automatically determined by setting
the estimate to 0.0:

interface dom=l neigh=% x.l=l.l x.h=2.9 layer.w=0.0

26.3 COMMENT

Add explanatory comments to a device definition.

SYNOPSIS

comment [text]

* [text]
$ [text]
[text]

26.4. CONTACT 643

26.3.1 DESCRIPTION

Annotations can be added to a device definition using the comment card. All text on a comment
card is ignored. Several popular commenting characters are also supported as aliases: ‘*’ from
SPICE, ‘$’ from PISCES, and ‘#’ from Linux shell scripts.

26.3.2 EXAMPLES

A SPICE-like comment is followed by a PISCES-like comment and shell script comment:

* CIDER and SPICE would ignore this input line
$ CIDER and PISCES would ignore this , but SPICE wouldn’t
CIDER and Linux Shell scripts would ignore this input line

26.4 CONTACT

Specify properties of an electrode

SYNOPSIS

contact number [workfunction]

26.4.1 DESCRIPTION

The properties of an electrode can be set using the contact card. The only changeable property is
the work-function of the electrode material and this only affects contacts made to an insulating
material. All contacts to semiconductor material are assumed to be ohmic in nature.

26.4.2 PARAMETERS

Name Type Description
Number Integer ID number of the electrode

Work-function Real Work-function of electrode material. (eV)

26.4.3 EXAMPLES

The following shows how the work-function of the gate contact of a MOSFET might be changed
to a value appropriate for a P+ polysilicon gate:

contact num=2 workf=5.29

644 CHAPTER 26. CIDER USER’S MANUAL

26.4.4 SEE ALSO

electrode, material

26.5 DOMAIN, REGION

Identify material-type for section of a device

SYNOPSIS

domain number material [position]
region number material [position]

26.5.1 DESCRIPTION

A device is divided into one or more rectilinear domains, each of which has a unique identifica-
tion number and is composed of a particular material.

Domain (aka region) cards are used to build up domains by associating a material type with a
box-shaped section of the device. A single domain may be the union of multiple boxes. When
multiple domain cards overlap in space, the one occurring last in the input file will determine
the ID number and material type of the overlapped region.

Each edge of a domain box can be specified in terms of its location or mesh-index in the relevant
dimension, or defaulted to the respective boundary of the simulation mesh.

26.5.2 PARAMETERS

Name Type Description
Number Integer ID number of this domain
Material Integer ID number of material used by this domain
X.Low Real Lowest X location of domain box, (µm)

: IX.Low Integer Lowest X mesh-index of domain box
X.High Real Highest X location of domain box, (µm)

: IX-High Integer Highest X mesh-index of domain box
Y.Low Real Lowest Y location of domain box, (µm)

: IY.Low Integer Lowest Y mesh-index of domain box
Y.High Real Highest Y location of domain box, (µm)

: IY.High Integer Highest Y mesh-index of domain box

26.5.3 EXAMPLES

Create a 4.0 pm wide by 2.0 pm high domain out of material #1:

domain num=l material=l x.l=O.O x.h=4.0 y.l=O.O y.h=2.0

26.6. DOPING 645

The next example defines the two domains that would be typical of a planar MOSFET simula-
tion. One occupies all of the mesh below y = 0 and the other occupies the mesh above y = 0.
Because the x values are left unspecified, the low and high x boundaries default to the edges of
the mesh:

domain n=l m=l y.l=O.O
domain n=2 m=2 y.h=O.O

26.5.4 SEE ALSO

x.mesh, material

26.6 DOPING

Add dopant to regions of a device

SYNOPSIS

doping [domains] profile-type [lateral-profile-type] [axis]
[impurity-type1 [constant-box] [profile-specifications]

26.6.1 DESCRIPTION

Doping cards are used to add impurities to the various domains of a device. Initially each
domain is dopant-free. Each new doping card creates a new doping profile that defines the
dopant concentration as a function of position. The doping at a particular location is then the
sum over all profiles of the concentration values at that position. Each profile can be restricted
to a subset of a device’s domains by supplying a list of the desired domains.

Otherwise, all domains are doped by each profile.

A profile has uniform concentration inside the constant box. Outside this region, it varies ac-
cording to the primary an lateral profile shapes. In 1D devices the lateral shape is unused and in
2D devices the y-axis is the default axis for the primary profile. Several analytic functions can
be used to define the primary profile shape. Alternatively, empirical or simulated profile data
can be extracted from a file. For the analytic profiles, the doping is the product of a profile func-
tion (e.g. Gaussian) and a reference concentration, which is either the constant concentration
of a uniform profile, or the peak concentration for any of the other functions. If concentration
data is used instead take from an ASCII file containing a list of location-concentration pairs
or a SUPREM3 exported file, the name of the file must be provided. If necessary, the final
concentration at a point is then found by multiplying the primary profile concentration by the
value of the lateral profile function at that point. Empirical profiles must first be normalized by
the value at 0.0 to provide a usable profile functions. Alternatively, the second dimension can
be included by assigning the same concentration to all points equidistant from the edges of the
constant box. The contours of the profile are the circular.

646 CHAPTER 26. CIDER USER’S MANUAL

Figure 26.1: 1D doping profiles with location > 0.

Unless otherwise specified, the added impurities are assumes to be N type. However, the name
of a specific dopant species is needed when extracting concentration information for that impu-
rity from a SUPREM3 exported file.

Several parameters are used to adjust the basic shape of a profile functions so that the final,
constructed profile, matches the doping profile in the real device. The constant box region
should coincide with a region of constant concentration in the device. For uniform profiles its
boundaries default to the mesh boundaries. For the other profiles the constant box starts as a
point and only acquires width or height if both the appropriate edges are specified. The location
of the peak of the primary profile can be moved away from the edge of the constant box. A
positive location places the peak outside the constant box (cf. Fig. 26.1), and a negative value
puts it inside the constant box (cf. Fig. 26.2). The concentration in the constant box is then
equal to the value of the profile when it intersects the edge of the constant box. The argument
of the profile function is a distance expressed in terms of the characteristic length (by default
equal to 1µm). The longer this length, the more gradually the profile will change. For example,
in Fig. 26.1 and Fig. 26.2, the profiles marked (a) have characteristic lengths twice those of the
profiles marked (b). The location and characteristic length for the lateral profile are multiplied
by the lateral ratio. This allows the use of different length scales for the primary and lateral
profiles. For rotated profiles, this scaling is taken into account, and the profile contours are
elliptical rather than circular.

26.6. DOPING 647

Figure 26.2: 1D doping profiles with location < 0.

648 CHAPTER 26. CIDER USER’S MANUAL

26.6.2 PARAMETERS

Name Type Description
Domains Int List List of domains to dope
Uniform : Flag Primary profile type
Linear :
Erfc :

Exponential :
Suprem3 :

Ascii :
Ascii Suprem3

InFile String Name of Suprem3, Ascii or Ascii Suprem3 input file
Lat.Rotate : Flag Lateral profile type
Lat.Unif :
Lat.Lin :

Lat.Gauss :
Lat.Erfc :
Lat.Exp

X.Axis:Y.Axis Flag Primary profile direction
N.Type : P.Type : Flag Impurity type

Donor : Acceptor :
Phosphorus :

Arsenic :
Antimony :

Boron
X.Low Real Lowest X location of constant box, (µm)
X.High Real Highest X location of constant box, (µm)
Y.Low Real Lowest Y location of constant box, (µm)
Y.High Real Highest Y location of constant box, (µm)

Conic | Peak.conic Real Dopant concentration, (cm−3)
Location | Range Real Location of profile edge/peak, (µm)

Char.Length Real Characteristic length of profile, (µm)
Ratio.Lat Real Ratio of lateral to primary distances

26.6.3 EXAMPLES

This first example adds a uniform background P-type doping of 1.0× 1016cm−3 to an entire
device:

doping uniform p.type conc=l.0el6

A Gaussian implantation with rotated lateral falloff, such as might be used for a MOSFET
source, is then added:

doping gauss lat.rotate n.type conc=l.0el9
+ x.l=0.0 x.h=0.5 y.l=0.0 y.h=0.2 ratio=0.7

26.7. ELECTRODE 649

Alternatively, an error-function falloff could be used:

doping gauss lat.erfc conc=l.0el9
+ x.l=0.0 x.h=0.5 y.l=0.0 y.h=0.2 ratio=0.7

Finally, the MOSFET channel implant is extracted from an ASCII-format SUPREM3 file. The
lateral profile is uniform, so that the implant is confined between X = 1µm and X = 3µm. The
profile begins at Y = 0µm (the high Y value defaults equal to the low Y value):

doping ascii suprem3 infile=implant.s3 lat.unif boron
+ x.l=1.0 x.h=3.0 y.l=0.0

26.6.4 SEE ALSO

domain, mobility, contact, boundary

26.7 ELECTRODE

Set location of a contact to the device

SYNOPSIS

electrode [number] [position]

26.7.1 DESCRIPTION

Each device has several electrodes that are used to connect the device to the rest of the circuit.
The number of electrodes depends on the type of device. For example, a MOSFET needs 4
electrodes. A particular electrode can be identified by its position in the list of circuit nodes
on the device element line. For example, the drain node of a MOSFET is electrode number 1,
while the bulk node is electrode number 4. Electrodes for which an ID number has not been
specified are assigned values sequentially in the order they appear in the input file.

For lD devices, the positions of two of the electrodes are predefined to be at the ends of the
simulation mesh. The first electrode is at the low end of the mesh, and the last electrode is at
the high end. The position of the special lD BJT base contact is set on the options card. Thus,
electrode cards are used exclusively for 2D devices.

Each card associates a portion of the simulation mesh with a particular electrode. In contrast to
domains, which are specified only in terms of boxes, electrodes can also be specified in terms of
line segments. Boxes and segments for the same electrode do not have to overlap. If they don’t,
it is assumed that the electrode is wired together outside the area covered by the simulation
mesh. However, pieces of different electrodes must not overlap, since this would represent
a short circuit. Each electrode box or segment can be specified in terms of the locations or
mesh-indices of its boundaries. A missing value defaults to the corresponding mesh boundary.

650 CHAPTER 26. CIDER USER’S MANUAL

26.7.2 PARAMETERS

Name Type Description
Number Integer ID number of this domain
X.Low Real Lowest X location of electrode, (µm)

: IX.Low Integer Lowest X mesh-index of electrode
X.High Real Highest X location of electrode, (µm)

: IX.High Integer Highest X mesh-index of electrode
Y.Low Real Lowest Y location of electrode, (µm)

: IY.Low Integer Lowest Y mesh-index of electrode
Y.High Real Highest Y location of electrode, (µm)

: IY.High Integer Highest Y mesh-index of electrode

26.7.3 EXAMPLES

The following shows how the four contacts of a MOSFET might be specified:

* DRAIN
electrode x.l=0.0 x.h=0.5 y.l=0.0 y.h=0.0

* GATE
electrode x.l=1.0 x.h=3.0 iy.l=0 iy.h=0

* SOURCE
electrode x.l=3.0 x.h=4.0 y.l=0.0 y.h=0.0

* BULK
electrode x.l=0.0 x.h=4.0 y.l=2.0 y.h=2.0

The numbering option can be used when specifying bipolar transistors with dual base contacts:

* EMITTER
electrode num=3 x.l=1.0 x.h=2.0 y.l=0.0 y.h=0.0

* BASE
electrode num=2 x.l=0.0 x.h=0.5 y.l=0.0 y.h=0.0
electrode num=2 x.l=2.5 x.h=3.0 y.l=0.0 y.h=0.0

* COLLECTOR
electrode num=1 x.l=0.0 x.h=3.0 y.l=1.0 y.h=1.0

26.7.4 SEE ALSO

domain, contact

26.8 END

Terminate processing of a device definition

26.9. MATERIAL 651

SYNOPSIS

end

26.8.1 DESCRIPTION

The end card stops processing of a device definition. It may appear anywhere within a definition.
Subsequent continuation lines of the definition will be ignored. If no end card is supplied, all
the cards will be processed.

26.9 MATERIAL

Specify physical properties of a material

SYNOPSIS

material number type [physical-constants]

26.9.1 DESCRIPTION

The material card is used to create an entry in the list of materials used in a device. Each entry
needs a unique identification number and the type of the material. Default values are assigned
to the physical properties of the material. Most material parameters are accessible either here
or on the mobility or contact cards. However, some parameters remain inaccessible (e.g.
the ionization coefficient parameters). Parameters for most physical effect models are collected
here. Mobility parameters are handled separately by the mobility card. Properties of electrode
materials are set using the contact card.

652 CHAPTER 26. CIDER USER’S MANUAL

26.9.2 PARAMETERS

Name Type Description
Number Integer ID number of this material

Semiconductor : Silicon Flag Type of this material
: Polysilicon : GaAs
: Insulator : Oxide

: Nitride
Affinity Real Electron affinity (eV)

Permittivity Real Dielectric permittivity (F/cm)
Nc Real Conduction band density (cm−3)
Nv Real Valence band density (cm−3)
Eg Real Energy band gap (eV)

dEg.dT Real Bandgap narrowing with temperature (eV/◦K)
Eg.Tref Real Bandgap reference temperature, (°K)
dEg.dN Real Bandgap narrowing with N doping, (eV/cm−3)
Eg.Nref Real Bandgap reference concentration - N type, (cm−3)
dEg.dP Real Bandgap narrowing with P doping, (eV/cm−3)
Eg.Pref Real Bandgap reference concentration - P type, (cm−3)

TN Real SRH lifetime - electrons, (sec)
SRH.Nref Real SRH reference concentration - electrons (cm−3)

TP Real SRH lifetime - holes, (sec)
SRH.Pref Real SRH reference concentration - holes (cm−3)

CN Real Auger coefficient - electrons (cm6/sec)
CP Real Auger coefficient - holes (cm6/sec)

ARichN Real Richardson constant - electrons, (A/ cm2
◦K2)

ARichP Real Richardson constant - holes, (A/ cm2
◦K2)

26.9.3 EXAMPLES

Set the type of material #1 to silicon, then adjust the values of the temperature-dependent
bandgap model parameters:

material num=1 silicon eg=1.12 deg.dt=4.7e-4 eg.tref=640.0

The recombination lifetimes can be set to extremely short values to simulate imperfect semi-
conductor material:

material num=2 silicon tn=1ps tp=1ps

26.9.4 SEE ALSO

domain, mobility, contact, boundary

26.10. METHOD 653

26.10 METHOD

Choose types and parameters of numerical methods

SYNOPSIS

method [types] [parameters]

26.10.1 DESCRIPTION

The method card controls which numerical methods are used during a simulation and the pa-
rameters of these methods. Most of these methods are optimizations that reduce run time, but
may sacrifice accuracy or reliable convergence.

For majority-carrier devices such as MOSFETs, one carrier simulations can be used to save
simulation time. The systems of equations in AC analysis may be solved using either direct
or successive-over-relaxation techniques. Successive-over-relaxation is faster, but at high fre-
quencies, it may fail to converge or may converge to the wrong answer. In some cases, it is
desirable to obtain AC parameters as functions of DC bias conditions. If necessary, a one-point
AC analysis is performed at a predefined frequency in order to obtain these small-signal param-
eters. The default for this frequency is 1 Hz. The Jacobian matrix for DC and transient analyses
can be simplified by ignoring the derivatives of the mobility with respect to the solution vari-
ables. However, the resulting analysis may have convergence problems. Additionally, if they
are ignored during AC analyses, incorrect results may be obtained.

A damped Newton method is used as the primary solution technique for the device-level partial
differential equations. This algorithm is based on an iterative loop that terminates when the error
in the solution is small enough or the iteration limit is reached. Error tolerances are used when
determining if the error is ‘small enough’. The tolerances are expressed in terms of an absolute,
solution-independent error and a relative, solution-dependent error. The absolute-error limit can
be set on this card. The relative error is computed by multiplying the size of the solution by the
circuit level SPICE parameter RELTOL.

26.10.2 Parameters

Name Type Description
OneCarrier Flag Solve for majority carriers only
AC analysis String AC analysis method, (either DIRECT or SOR)

NoMobDeriv Flag Ignore mobility derivatives
Frequency Real AC analysis frequency, (Hz)

ItLim Integer Newton iteration limit
DevTol Real Maximum residual error in device equations

26.10.3 Examples

Use one carrier simulation for a MOSFET, and choose direct method AC analysis to ensure
accurate, high frequency results:

654 CHAPTER 26. CIDER USER’S MANUAL

method onec ac.an=direct

Tolerate no more than 10−10 as the absolute error in device-level equations, and perform no
more than 15 Newton iterations in any one loop:

method devtol=1e-10 itlim=15

26.11 Mobility

Specify types and parameters of mobility models

SYNOPSIS

mobility material [carrier] [parameters] [models] [initialize]

26.11.1 Description

The mobility model is one of the most complicated models of a material’s physical properties.
As a result, separate cards are needed to set up this model for a given material.

Mobile carriers in a device are divided into a number of different classes, each of which has
different mobility modeling. There are three levels of division. First, electrons and holes are
obviously handled separately. Second, carriers in surface inversion or accumulation layers are
treated differently than carriers in the bulk. Finally, bulk carriers can be either majority or
minority carriers.

For surface carriers, the normal-field mobility degradation model has three user-modifiable pa-
rameters. For bulk carriers, the ionized impurity scattering model has four controllable pa-
rameters. Different sets of parameters are maintained for each of the four bulk carrier types:
majority-electron, minority-electron, majority-hole and minority-hole. Velocity saturation mod-
eling can be applied to both surface and bulk carriers. However, only two sets of parameters are
maintained: one for electrons and one for holes. These must be changed on a majority carrier
card (i.e. when the majority flag is set).

Several models for the physical effects are available, along with appropriate default values.
Initially, a universal set of default parameters usable with all models is provided. These can be
overridden by defaults specific to a particular model by setting the initialization flag. These can
then be changed directly on the card itself. The bulk ionized impurity models are the Caughey-
Thomas (CT) model and the Scharfetter-Gummel (SG) model [CAUG671, [SCHA69]. Three
alternative sets of defaults are available for the Caughey-Thomas expression. They are the Arora
(AR) parameters for Si [AROR82], the University of Florida (UF) parameters for minority
carriers in Si [SOLL90], and a set of parameters appropriate for GaAs (GA). The velocity-
saturation models are the Caughey-Thomas (CT) and Scharfetter-Gummel (SG) models for Si,
and the PISCES model for GaAs (GA). There is also a set of Arora (AR) parameters for the
Caughey-Thomas model.

26.11. MOBILITY 655

26.11.2 Parameters

Name Type Description
Material Integer ID number of material

Electron : Hole Flag Mobile carrier
Majority : Minority Flag Mobile carrier type

MUS Real Maximum surface mobility, (cm2/Vs)
EC.A Real Surface mobility 1st-order critical field, (V/cm)
EC.B Real Real Surface mobility 2nd-order critical field, (V2/cm2)

MuMax Real Maximum bulk mobility, (cm2/Vs)
MuMin Real Minimum bulk mobility, (cm2/Vs)
NtRef Real Ionized impurity reference concentration, (cm-3)
NtExp Real Ionized impurity exponent
Vsat Real Saturation velocity, (cm/s)

Vwarm Real Warm carrier reference velocity, (cm/s)
ConcModel String Ionized impurity model, (CT, AR, UF, SG, Dr GA)
FieldModel String Velocity saturation model, (CT, AR, SG, or GA)

Init Flag Copy model-specific defaults

26.11.3 Examples

The following set of cards completely updates the bulk mobility parameters for material #1:

mobility mat=l concmod=sg fieldmod=sg
mobility mat=l elec major mumax=1000.0 mumin=l00.0
+ ntref=l.0el6 ntexp=0.8 vsat=l.0e7 vwarm=3.0e6
mobility mat=l elec minor mumax=1000.0 mumin=200.O
+ ntref=l.0el7 ntexp=0.9
mobility mat=l hole major mumax=500.0 mumin=50.0
+ ntref=l.0el6 ntexp=0.7 vsat=8.0e6 vwarm=l.0e6
mobility mat=l hole minor mumax=500.0 mumin=150.0
+ ntref=l.0el7 ntexp=0.8

The electron surface mobility is changed by the following:

mobility mat=l elec mus=800.0 ec.a=3.0e5 ec.b=9.0e5

Finally, the default Scharfetter-Gummel parameters can be used in Si with the GaAs velocity-
saturation model (even though it doesn’t make physical sense!):

mobility mat=l init elec major fieldmodel=sg
mobility mat=l init hole major fieldmodel=sg
mobility mat=l fieldmodel=ga

26.11.4 SEE ALSO

material

656 CHAPTER 26. CIDER USER’S MANUAL

26.11.5 BUGS

The surface mobility model does not include temperature-dependence for the transverse-field
parameters. Those parameters will need to be adjusted by hand.

26.12 MODELS

Specify which physical models should be simulated

SYNOPSIS

models [model flags]

26.12.1 DESCRIPTION

The models card indicates which physical effects should be modeled during a simulation. Ini-
tially, none of the effects are included. A flag can be set false by preceding by a caret.

26.12.2 Parameters

Name Type Description
BGN Flag Bandgap narrowing
SRH Flag Shockley-Reed-Hall recombination

ConcTau Flag Concentration-dependent SRH lifetimes
Auger Flag Auger recombination

Avalanche Flag Local avalanche generation
TempMob Flag Temperature-dependent mobility
ConcMob Flag Concentration-dependent mobility
FieldMob Flag Lateral-field-dependent mobility
TransMob Flag Transverse-field-dependent surface mobility
SurfMob Flag Activate surface mobility model

26.12.3 Examples

Turn on bandgap narrowing, and all of the generation-recombination effects:

models bgn srh conctau auger aval

Amend the first card by turning on lateral- and transverse-field-dependent mobility in surface
charge layers, and lateral-field-dependent mobility in the bulk. Also, this line turns avalanche
generation modeling off.

models surfmob transmob fieldmob ^aval

26.13. OPTIONS 657

26.12.4 See also

material, mobility

26.12.5 Bugs

The local avalanche generation model for 2D devices does not compute the necessary contri-
butions to the device-level Jacobian matrix. If this model is used, it may cause convergence
difficulties and it will cause AC analyses to produce incorrect results.

26.13 OPTIONS

Provide optional device-specific information

SYNOPSIS

options [device-type] [initial-state] [dimensions]
[measurement-temperature]

26.13.1 DESCRIPTION

The options card functions as a catch-all for various information related to the circuit-device
interface. The type of a device can be specified here, but will be defaulted if none is given.
Device type is used primarily to determine how to limit the changes in voltage between the
terminals of a device. It also helps determine what kind of boundary conditions are used as
defaults for the device electrodes.

A previously calculated state, stored in the named initial-conditions file, can be loaded at the
beginning of an analysis. If it is necessary for each instance of a numerical model to start in a
different state, then the unique flag can be used to generate unique filenames for each instance
by appending the instance name to the given filename. This is the same method used by CIDER
to generate unique filenames when the states are originally saved. If a particular state file does
not fit. this pattern, the filename can be entered directly on the instance line.

Mask dimension defaults can be set so that device sizes can be specified in terms of area or
width. Dimensions for the special lD BJT base contact can also be controlled. The measurement
temperature of material parameters, normally taken to be the circuit default, can be overridden.

658 CHAPTER 26. CIDER USER’S MANUAL

26.13.2 Parameters

Name Type Description
Resistor Flag Resistor

: Capacitor Flag Capacitor
: Diode Flag Diode

: Bipolar|BJT Flag Bipolar transistor
: MOSFET Flag MOS field-effect transistor

: JFET Flag Junction field-effect transistor
: MESFET Flag MES field-effect transistor

IC.File String Initial-conditions filename
Unique Flag Append instance name to filename
DefA Real Default Mask Area, (m²)
DefW Real Default Mask Width, (m)
DefL Real Default Mask Length, (m)

Base.Area Real lD BJT base area relative to emitter area
Base.Length Real Real lD BJT base contact length, (µm)
Base.Depth Real lD BJT base contact depth, (µm)

TNom Real Nominal measurement temperature, (°C)

26.13.3 Examples

Normally, a ’numos’ device model is used for MOSFET devices. However, it can be changed
into a bipolar-with-substrate-contact model, by specifying a bipolar structure using the other
cards, and indicating the device-structure type as shown here. The default length is set to 1.0
µm so that when mask area is specified on the element line it can be divided by this default to
obtain the device width.

options bipolar defl=1.0

Specify that a 1D BJT has base area 1/10th that of the emitter, has an effective depth of 0.2 µm
and a length between the internal and external base contacts

options base.area=0.1 base.depth=0.2 base.len=1.5

If a circuit contains two instances of a bipolar transistor model named ’q1’ and ’q2’, the fol-
lowing line tells the simulator to look for initial conditions in the ’OP1.q2’, respectively. The
period in the middle of the names is added automatically:

options unique ic.file="OP1"

26.13.4 See also

numd, nbjt, numos

26.14. OUTPUT 659

26.14 OUTPUT

Identify information to be printed or saved

SYNOPSIS

output [debugging-flags] [general-info] [saved-solutions]

26.14.1 DESCRIPTION

The output card is used to control the amount of information that is either presented to or saved
for the user. Three types of information are available. Debugging information is available as
a means to monitor program execution. This is useful during long simulations when one is
unsure about whether the program has become trapped at some stage of the simulation. General
information about a device such as material parameters and resource usage can be obtained.
Finally, information about the internal and external states of a device is available. Since this
data is best interpreted using a post-processor, a facility is available for saving device solutions
in auxiliary output files. Solution filenames are automatically generated by the simulator. If the
named file already exists, the file will be overwritten. A filename unique to a particular circuit
or run can be generated by providing a root filename. This root name will be added onto the
beginning of the automatically generated name. This feature can be used to store solutions in
a directory other than the current one by specifying the root filename as the path of the desired
directory. Solutions are only saved for those devices that specify the ‘save’ parameter on their
instance lines.

The various physical values that can be saved are named below. By default, the following values
are saved: the doping, the electron and hole concentrations, the potential, the electric field, the
electron and hole current densities, and the displacement current density. Values can be added
to or deleted from this list by turning the appropriate flag on or off. For vector-valued quantities
in two dimensions, both the X and Y components are saved. The vector magnitude can be
obtained during post-processing.

Saved solutions can be used in conjunction with the options card and instance lines to reuse
previously calculated solutions as initial guesses for new solutions. For example, it is typical
to initialize the device to a known state prior to beginning any DC transfer curve or operating
point analysis. This state is an ideal candidate to be saved for later use when it is known that
many analyses will be performed on a particular device structure.

Depending on the global variable filetype the outputs may be stored as (compact) binary or
text processor readable ascii formatted data.

660 CHAPTER 26. CIDER USER’S MANUAL

26.14.2 Parameters

Name Type Description
All.Debug Flag Debug all analyses
OP.Debug Flag .OP analyses
DC.Debug Flag .DC analyses

TRAN.Debug Flag .TRAN analyses
AC.Debug Flag .AC analyses
PZ.Debug Flag .PZ analyses
Material Flag Physical material information

Statistics | Resources Flag Resource usage information
RootFile String Root of output file names

Psi Flag Potential (V)
Equ.Psi Flag Equilibrium potential (V)
Vac.Psi Flag Vacuum potential (V)
Doping Flag Net doping (cm³)
N.Conc Flag Electron concentration (cm³)
P.Conc Flag Hole concentration (cm³)
PhiN Flag Electron quasi-fermi potential (V)
PhiP Flag Hole quasi-fermi potential (V)
PhiC Flag Conduction band potential (V)
PhiV Flag Valence band potential (V)

E.Field Flag Electric field (V/cm)
JC Flag Conduction current density (A/cm²)
JD Flag Displacement current density (A/cm²)
JN Flag Electron current density (A/cm²)
JP Flag Hole current density (A/cm²)
JT Flag Total current density (A/cm²)

Unet Flag Net recombination (1/cm³ s)
MuN Flag Electron mobility (low-field) (cm²/Vs)
MuP Flag Hole mobility (low-field) (cm²/Vs)

26.14.3 Examples

The following example activates all potentially valuable diagnostic output:

output all.debug mater stat

Energy band diagrams generally contain the potential, the quasi-fermi levels, the energies and
the vacuum energy. The following example enables saving of the r values needed to make
energy band diagrams:

output phin phjp phic phiv vac.psi

Sometimes it is desirable to save certain key solutions, and then reload them for use in subse-
quent simulations. In such cases only the essential values (Ψ, n, and p) need to be saved. This
example turns off the nonessential default values (and indicates the essential ones explicitly):

26.15. TITLE 661

output psi n.conc p.conc ^e.f ^jn ^jp ^jd

26.14.4 SEE ALSO

options, numd, nbjt, numos

26.15 TITLE

Provide a label for this device’s output

SYNOPSIS

title [text]

26.15.1 DESCRIPTION

The title card provides a label for use as a heading in various output files. The text can be any
length, but titles that fit on a single line will produce more aesthetically pleasing output.

26.15.2 EXAMPLES

Set the title for a minimum gate length NMOSFET in a 1.0µm BiCMOS process

title L=1.0um NMOS Device, 1.0um BiCMOS Process

26.15.3 BUGS

The title is currently treated like a comment.

26.16 X.MESH, Y.MESH

Define locations of lines and nodes in a mesh

SYNOPSIS

x.mesh position numbering-method [spacing-parameters]
y.mesh position numbering-method [spacing-parameters]

662 CHAPTER 26. CIDER USER’S MANUAL

26.16.1 DESCRIPTION

The domains of a device are discretized onto a rectangular finite-difference mesh using x.mesh
cards for 1D devices, or x.mesh and y.mesh cards for 2D devices. Both uniform and non-
uniform meshes can be specified.

A typical mesh for a 2D device is shown in Fig. 26.3.

Figure 26.3: Typical mesh for 2D devices

The mesh is divided into intervals by the reference lines. The other lines in each interval are
automatically generated by CIDER using the mesh spacing parameters. In general, each new
mesh card adds one reference line and multiple automatic lines to the mesh. Conceptually, a 1D
mesh is similar to a 2D mesh except that there are no reference or automatic lines needed in the
second dimension.

The location of a reference line in the mesh must either be given explicitly (using Location) or
defined implicitly relative to the location of the previous reference line (by using Width). (If the
first card in either direction is specified using Width, an initial reference line is automatically
generated at location 0.0.) The line number of the reference line can be given explicitly, in
which case the automatic lines are evenly spaced within the interval, and the number of lines
is determined from the difference between the current line number and that of the previous
reference line. However, if the interval width is given, then the line number is interpreted
directly as the number of additional lines to add to the mesh.

For a nonuniformly spaced interval, the number of automatic lines has to be determined using
the mesh spacing parameters. Nonuniform spacing is triggered by providing a desired ratio for
the lengths of the spaces between adjacent pairs of lines. This ratio should always be greater
than one, indicating the ratio of larger spaces to smaller spaces. In addition to the ratio, one
or both of the space widths at the ends of the interval must be provided. If only one is given,

26.16. X.MESH, Y.MESH 663

it will be the smallest space and the largest space will be at the opposite end of the interval.
If both are given, the largest space will be in the middle of the interval. In certain cases it is
desirable to limit the growth of space widths in order to control the solution accuracy. This can
be accomplished by specifying a maximum space size, but this option is only available when
one of the two end lengths is given. Note that once the number of new lines is determined
using the desired ratio, the actual spacing ratio may be adjusted so that the spaces exactly fill
the interval.

26.16.2 Parameters

Name Type Description
Location Real Location of this mesh line, (µm)
:Width Real Width between this and previous mesh lines, (µm)

Number | Node Integer Number of this mesh line
:Ratio Real Ratio of sizes of adjacent spaces

H.Start | H1 Real Space size at start of interval, (µm)
H.End | H2 Real Space size at end of interval, (µm)
H.Max | H3 Real Maximum space size inside interval, (µm)

26.16.3 EXAMPLES

A 50 node, uniform mesh for a 5 µm long semiconductor resistor can be specified as:

x.mesh loc=0.0 n=1
x.mesh loc=5.0 n=50

An accurate mesh for a 1D diode needs fine spacing near the junction. In this example, the junc-
tion is assumed to be 0.75 µm deep. The spacing near the diode ends is limited to a maximum
of 0.1 µm:

x.mesh w=0.75 h.e=0.001 h.m=0.l ratio=1.5
x.mesh w=2.25 h.s=0.001 h.m=0.l ratio=1.5

The vertical mesh spacing of a MOSFET can generally be specified as uniform through the gate
oxide, very fine for the surface inversion layer, moderate down to the so source/drain junction
depth, and then increasing all the way to the bulk contact:

y.mesh loc=-0.04 node=1
y.mesh loc=0.0 node=6
y.mesh width=0.5 h.start=0.001 h.max=.05 ratio=2.0
y.mesh width=2.5 h.start=0.05 ratio=2.0

26.16.4 SEE ALSO

domain

664 CHAPTER 26. CIDER USER’S MANUAL

26.17 NUMD

Diode / two-terminal numerical models and elements

SYNOPSIS Model:

.MODEL model-name NUMD [level]
+ ...

SYNOPSIS Element:

DXXXXXXX nl n2 model-name [geometry] [temperature] [initial-conditions]

SYNOPSIS Output:

.SAVE [small-signal values]

26.17.1 DESCRIPTION

NUMD is the name for a diode numerical model. In addition, this same model can be used
to simulate other two-terminal structures such as semiconductor resistors and MOS capacitors.
See the options card for more information on how to customize the device type.

Both 1D and 2D devices are supported. These correspond to the LEVEL=l and LEVEL=2
models, respectively. If left unspecified, it is assumed that the device is one-dimensional.

All numerical two-terminal element names begin with the letter ‘D. The element name is then
followed by the names of the positive (n1) and negative (n2) nodes. After this must come the
name of the model used for the element. The remaining information can come in any order. The
layout dimensions of an element are specified relative to the geometry of a default device. For
1D devices, the default device has an area of 1m², and for 2D devices, the default device has
a width of 1 m. However, these defaults can be overridden on an options card. The operating
temperature of a device can be set independently from that of the rest of the circuit in order to
simulate non-isothermal circuit operation. Finally, the name of a file containing an initial state
for the device can be specified. Remember that if the filename contains capital letters, they
must be protected by surrounding the filename with double quotes. Alternatively, the device
can be placed in an OFF state (thermal equilibrium) at the beginning of the analysis. For more
information on the use of initial conditions, see the ngspice User’s Manual, Chapt. 7.2.

In addition to the element input parameters, there are output-only parameters that can be shown
using the ngspice show command (13.5.82) or captured using the save/.SAVE (13.5.71/11.6.1)
command. These parameters are the elements of the indefinite conductance (G), capacitance
(C), and admittance (Y) matrices where Y = G+ jωC. By default, the parameters are com-
puted at 1 Hz. Each element is accessed using the name of the matrix (g, c or y) followed by
the node indices of the output terminal and the input terminal (e.g. g11). Beware that names are
case-sensitive for save/show, so lower-case letters must be used.

26.17. NUMD 665

26.17.2 Parameters

Name Type Description
Level Integer Dimensionality of numerical model
Area Real Multiplicative area factor
W Real Multiplicative width factor

Temp Real Element operating temperature
IC.File String Initial-conditions filename

Off Flag Device initially in OFF state
gIJ Flag Conductance element Gi j, (Ω)
cIJ Flag Capacitance element Ci j, (F)
yIJ Flag Admittance element Yi j, (Ω)

26.17.3 EXAMPLES

A one-dimensional numerical switching-diode element/model pair with an area twice that of
the default device (which has a size of l µm x 1 µm) can be specified using:

DSWITCH 1 2 M_SWITCH_DIODE AREA=2
.MODEL M_SWITCH_DIODE NUMD
+ options defa=1p ...
+ ...

A two-dimensional two-terminal MOS capacitor with a width of 20 µm and an initial condition
of 3 V is created by:

DMOSCAP 11 12 M_MOSCAP W=20um IC=3v
.MODEL M_MOSCAP NUMD LEVEL=2
+ options moscap defw=1m
+ ...

The next example shows how both the width and area factors can be used to create a power
diode with area twice that of a 6µm-wide device (i.e. a 12µm-wide device). The device is
assumed to be operating at a temperature of 100°C:

D1 POSN NEGN POWERMOD AREA=2 W=6um TEMP=100.0
.MODEL POWERMOD NUMD LEVEL=2
+ ...

This example saves all the small-signal parameters of the previous diode:

.SAVE @d1[g11] @d1[g12] @d1[g21] @d1[g22]

.SAVE @d1[c11] @d1[c12] @d1[c21] @d1[c22]

.SAVE @d1[y11] @d1[y12] @d1[y21] @d1[y22]

666 CHAPTER 26. CIDER USER’S MANUAL

26.17.4 SEE ALSO

options, output

26.17.5 BUGS

Convergence problems may be experienced when simulating MOS capacitors due to singulari-
ties in the current-continuity equations.

26.18 NBJT

Bipolar / three-terminal numerical models and elements

SYNOPSIS Model:

.MODEL model-name NBJT [level]
+ ...

SYNOPSIS Element:

QXXXXXXX nl n2 n3 model-name [geometry]
+ [temperature] [initial-conditions]

SYNOPSIS Output:

.SAVE [small-signal values]

26.18.1 DESCRIPTION

NBJT is the name for a bipolar transistor numerical model. In addition, the 2D model can be
used to simulate other three-terminal structures such as a JFET or MESFET. However, the 1D
model is customized with a special base contact, and cannot be used for other purposes. See the
options card for more information on how to customize the device type and setup the 1D base
contact.

Both 1”and 2D devices are supported. These correspond to the LEVEL=l and models, respec-
tively. If left unspecified, it is assumed that the device is one-dimensional.

All numerical three-terminal element names begin with the letter ’Q’. If the device is a bipolar
transistor, then the nodes are specified in the order: collector (nl), base (n2), emitter (n3). For
a JFET or MESFET, the node order is: drain (n1), gate (n2), source (n3). After this must come
the name of the model used for the element. The remaining information can come in any order.
The layout dimensions of an element are specified relative to the geometry of a default device.
For the 1D BJT, the default device has an area of lm², and for 2D devices, the default device has
a width of lm. In addition, it is assumed that the default 1D BJT has a base contact with area
equal to the emitter area, length of 1µm and a depth automatically determined from the device
doping profile. However, all these defaults can be overridden on an options card.

26.18. NBJT 667

The operating temperature of a device can be set independently from the rest of that of the circuit
in order to simulate non-isothermal circuit operation. Finally, the name of a file containing an
initial state for the device can be specified. Remember that if the filename contains capital
letters, they must be protected by surrounding the filename with double quotes. Alternatively,
the device can be placed in an OFF state (thermal equilibrium) at the beginning of the analysis.
For more information on the use of initial conditions, see the ngspice User’s Manual.

In addition to the element input parameters, there are output-only parameters that can be shown
using the SPICE show command or captured using the save/.SAVE command. These param-
eters are the elements of the indefinite conductance (G), capacitance (C), and admittance (Y)
matrices where Y = G+ jωC. By default, the parameters are computed at 1Hz. Each element
is accessed using the name of the matrix (g, c or y) followed by the node indices of the output
terminal and the input terminal (e.g. g11). Beware that parameter names are case-sensitive for
save/show, so lower-case letters must be used.

26.18.2 Parameters

Name Type Description
Level Integer Dimensionality of numerical model
Area Real Multiplicative area factor
W Real Multiplicative width factor

Temp Real Element operating temperature
IC.File String Initial-conditions filename

Off Flag Device initially in OFF state
gIJ Flag Conductance element Gi j, (Ω)
cIJ Flag Capacitance element Ci j, (F)
yIJ Flag Admittance element Yi j, (Ω)

26.18.3 EXAMPLES

A one-dimensional numerical bipolar transistor with an emitter stripe 4 times as wide as the
default device is created using:

Q2 1 2 3 M_BJT AREA=4

This example saves the output conductance (go), transconductance (gm) and input conductance
(gpi) of the previous transistor in that order:

.SAVE @q2[g11] @q2[g12] @q2[g22]

The second example is for a two-dimensional JFET with a width of 5pm and initial conditions
obtained from file IC.jfet:

QJ1 11 12 13 M_JFET W=5um IC.FILE="IC.jfet"
.MODEL M_JFET NBJT LEVEL=2
+ options jfet
+ ...

668 CHAPTER 26. CIDER USER’S MANUAL

A final example shows how to use symmetry to simulate half of a 2D BJT, avoiding having the
user double the area of each instance:

Q2 NC2 NB2 NE2 BJTMOD AREA=1
Q3 NC3 NB3 NE3 BJTMOD AREA=1
.MODEL BJTMOD NBJT LEVEL=2
+ options defw=2um
+ * Define half of the device now
+ ...

26.18.4 SEE ALSO

options, output

26.18.5 BUGS

MESFETs cannot be simulated properly yet because Schottky contacts have not been imple-
mented.

26.19 NUMOS

MOSFET / four-terminal numerical models and elements

SYNOPSIS Model:

.MODEL model-name NUMOS [level]
+ ...

SYNOPSIS Element:

MXXXXXXX nl n2 n3 n4 model-name [geometry]
+ [temperature] [initial-conditions]

SYNOPSIS Output:

.SAVE [small-signal values]

26.19.1 DESCRIPTION

NUMOS is the name for a MOSFET numerical model. In addition, the 2D model can be used
to simulate other four-terminal structures such as integrated bipolar and JFET devices with
substrate contacts. However, silicon controlled rectifiers (SCRs) cannot be simulated because
of the snapback in the transfer characteristic. See the options card for more information on
how to customize the device type. The LEVEL parameter of two- and three-terminal devices is

26.19. NUMOS 669

not needed, because only 2D devices are supported. However, it will accepted and ignored if
provided.

All numerical four-terminal element names begin with the letter ‘M’. If the device is a MOSFET,
or JFET with a bulk contact, then the nodes are specified in the order: drain (n1), gate (n2),
source (n3), bulk (n4). If the device is a BJT, the node order is: collector (n1), base (n2),
emitter (n3), substrate (n4). After this must come the name of the model 1used for the element.
The remaining information can come in any order. The layout dimensions of an element are
specified relative to the geometry of a default device. The default device has a width of lm.
However, this default can be overridden on an options card. In addition, the element line will
accept a length parameter, L, but does not use it in any calculations. This is provided to enable
somewhat greater compatibility between numerical MOSFET models and the standard SPICE3
compact MOSFET models.

The operating temperature of a device can be set independently from that of the rest of the circuit
in order to simulate non-isothermal circuit operation. Finally, the name of a file containing an
initial state for the device can be specified. Remember that if the filename contains capital
letters, they must be protected by surrounding the filename with double quotes. Alternatively,
the device can be placed in an OFF state (thermal equilibrium) at the beginning of the analysis.
For more information on the use of initial conditions, see the ngspice User’s Manual.

In addition to the element input parameters, there are output-only parameters that can be shown
using the SPICE show command or captured using the save/.SAVE command.

These parameters are the elements of the indefinite conductance (G), capacitance (C), and ad-
mittance (Y) matrices where Y = G+ jωC. By default, the parameters are computed at 1 Hz.
Each element is accessed using the name of the matrix (g, c or y) followed by the node indices
of the output terminal and the input terminal (e.g. g11). Beware that parameter names are
case-sensitive for save/show, so lower-case letters must be used.

26.19.2 Parameters

Name Type Description
Level Integer Dimensionality of numerical model
Area Real Multiplicative area factor
W Real Multiplicative width factor
L Real Unused length factor

Temp Real Element operating temperature
IC.File String Initial-conditions filename

Off Flag Device initially in OFF state
gIJ Flag Conductance element Gi j, (Ω)
cIJ Flag Capacitance element Ci j, (F)
yIJ Flag Admittance element Yi j, (Ω)

26.19.3 EXAMPLES

A numerical MOSFET with a gate width of 5µm and length of 1µm is described below. How-
ever, the model can only be used for lµm length devices, so the length parameter is redundant.
The device is initially biased near its threshold by taking an initial state from the file NM1.vth.

670 CHAPTER 26. CIDER USER’S MANUAL

M1 1 2 3 4 M_NMOS_1UM W=5um L=1um IC.FILE="NM1.vth"
.MODEL MNMOS_1UM NUMOS
+ * Description of a lum device
+ ...

This example saves the definite admittance matrix of the previous MOSFET where the source
terminal (3) is used as the reference. (The definite admittance matrix is formed by deleting the
third row and column from the indefinite admittance matrix.)

.SAVE @m1[y11] @m1[y12] @ml[y14]

.SAVE @m1[y21] @m1[y22] @ml[y24]

.SAVE @m1[y41] @m1[y42] @ml[y44]

Bipolar transistors are usually specified in terms of their area relative to a unit device. The
following example creates a unit-sized device:

MQ1 NC NB NE NS N_BJT
.MODEL M_BJT NUMOS LEVEL=2
+ options bipolar defw=5um
+ ...

26.19.4 SEE ALSO

options, output

26.20 2D contour plots

2D contour plots of CIDER simulation results are available via Gnuplot (see 14.7.2).

26.21 Cider examples

The original Cider User’s manual, in its Appendix A, lists a lot of examples, starting at page
226. We do not reproduce these pages here, but ask you to refer to the original document. If
you experience any difficulties downloading it, please send a note to the ngspice users’ mailing
list.

http://www.eecs.berkeley.edu/Pubs/TechRpts/1993/2382.html
http://sourceforge.net/mailarchive/forum.php?forum_name=ngspice-users
http://sourceforge.net/mailarchive/forum.php?forum_name=ngspice-users

Part IV

Miscellaneous

671

Chapter 27

Model and Device Parameters

The following tables summarize the parameters available on each of the devices and models in
ngspice. There are two tables for each type of device supported by ngspice. Input parameters
to instances and models are parameters that can occur on an instance or model definition line in
the form keyword=value where keyword is the parameter name as given in the tables. Default
input parameters (such as the resistance of a resistor or the capacitance of a capacitor) obviously
do not need the keyword specified.

27.1 Accessing internal device parameters

Output parameters are those additional parameters that are available for many types of instances
for the output of operating point and debugging information. These parameters are specified as
@device[keyword] and are available for the most recent point computed or, if specified in
a .save statement, for an entire simulation as a normal output vector. Thus, to monitor the
gate-to-source capacitance of a MOSFET, a command

save @m1[cgs]

given before a transient simulation causes the specified capacitance value to be saved at each
time-point, and a subsequent command such as

plot @m1[cgs]

produces the desired plot. (Note that the show command does not use this format).

Some variables are listed as both input and output, and their output simply returns the previously
input value, or the default value after the simulation has been run. Some parameters are input
only because the output system can not handle variables of the given type yet, or the need for
them as output variables has not been apparent. Many such input variables are available as
output variables in a different format, such as the initial condition vectors that can be retrieved
as individual initial condition values. Finally, internally derived values are output only and are
provided for debugging and operating point output purposes.

673

674 CHAPTER 27. MODEL AND DEVICE PARAMETERS

If you want to access a device parameter of a device used inside of a subcircuit, you may use
the syntax as shown below.

General form:

@device_identifier.subcircuit_name.<subcircuit_name_nn>
+.device_name[parameter]

Example input file:

* transistor output characteristics

* two nested subcircuits
vdd d1 0 2.0
vss vsss 0 0
vsig g1 vsss 0
xmos1 d1 g1 vsss level1
.subckt level1 d3 g3 v3
xmos2 d3 g3 v3 level2
.ends
.subckt level2 d4 g4 v4
m1 d4 g4 v4 v4 nmos w=1e-5 l=3.5e-007
.ends
.dc vdd 0 5 0.1 vsig 0 5 1
.control
save all @m.xmos1.xmos2.m1[vdsat]
run
plot vss#branch $ current measured at the top level
plot @m.xmos1.xmos2.m1[vdsat]
.endc
.MODEL NMOS NMOS LEVEL = 8
+VERSION = 3.2.4 TNOM = 27 TOX = 7.4E-9
.end

The device identifier is the first letter extracted from the device name, e.g. m for a MOS tran-
sistor.

Please note that the parameter tables presented below do not provide the detailed information
available about the parameters provided in the section on each device and model, but are pro-
vided as a quick reference guide.

27.2. ELEMENTARY DEVICES 675

27.2 Elementary Devices

27.2.1 Resistor

27.2.1.1 Resistor instance parameters

Name Direction Type Description
1 resistance (r) InOut real Resistance

10 ac InOut real AC resistance value
8 temp InOut real Instance operating temperature

14 dtemp InOut real Instance temperature difference
with the rest of the circuit

3 l InOut real Length
2 w InOut real Width

12 m InOut real Multiplication factor
16 tc InOut real First order temp. coefficient
16 tc1 InOut real First order temp. coefficient
17 tc2 InOut real Second order temp. coefficient
13 scale InOut real Scale factor
15 noisy (noise) InOut integer Resistor generate noise
5 sens_resist In flag flag to request sensitivity WRT

resistance
6 i Out real Current
7 p Out real Power

206 sens_dc Out real dc sensitivity
201 sens_real Out real dc sensitivity and real part of ac

sensitivity
202 sens_imag Out real dc sensitivity and imag part of ac

sensitivity
203 sens_mag Out real ac sensitivity of magnitude
204 sens_ph Out real ac sensitivity of phase
205 sens_cplx Out complex ac sensitivity

676 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.2.1.2 Resistor model parameters

Name Direction Type Description
103 rsh InOut real Sheet resistance
106 narrow InOut real Narrowing of resistor
106 dw InOut real
109 short InOut real Shortening of resistor
109 dlr InOut real
101 tc1 InOut real First order temp. coefficient
102 tc2 InOut real Second order temp. coefficient
104 defw InOut real Default device width
104 w InOut real Default device width
105 l InOut real Default device length
110 kf InOut real Flicker noise coefficient
111 af InOut real Flicker noise exponent
108 tnom InOut real Parameter measurement temperature
107 r InOut real Resistance
107 res InOut real Resistance

wf InOut real Flicker noise width exponent
lf InOut real Flicker noise length exponent
ef InOut real Flicker noise frequency exponent
r In flag Device is a resistor model

27.2. ELEMENTARY DEVICES 677

27.2.2 Capacitor - Fixed capacitor

27.2.2.1 Capacitor instance parameters

Name Direction Type Description
1 capacitance InOut real Device capacitance
1 cap InOut real Device capacitance
1 c InOut real Device capacitance
2 ic InOut real Initial capacitor voltage
8 temp InOut real Instance operating temperature
9 dtemp InOut real Instance temperature difference

from the rest of the circuit
3 w InOut real Device width
4 l InOut real Device length

11 m InOut real Parallel multiplier
10 scale InOut real Scale factor
5 sens_cap In flag flag to request sens. WRT cap.
6 i Out real Device current
7 p Out real Instantaneous device power

206 sens_dc Out real dc sensitivity
201 sens_real Out real real part of ac sensitivity
202 sens_imag Out real dc sens. & imag part of ac sens.
203 sens_mag Out real sensitivity of ac magnitude
204 sens_ph Out real sensitivity of ac phase
205 sens_cplx Out complex ac sensitivity

27.2.2.2 Capacitor model parameters

Name Direction Type Description
112 cap InOut real Model capacitance
101 cj InOut real Bottom Capacitance per area
102 cjsw InOut real Sidewall capacitance per meter
103 defw InOut real Default width
113 defl InOut real Default length
105 narrow InOut real width correction factor
106 short InOut real length correction factor
107 tc1 InOut real First order temp. coefficient
108 tc2 InOut real Second order temp. coefficient
109 tnom InOut real Parameter measurement temperature
110 di InOut real Relative dielectric constant
111 thick InOut real Insulator thickness
104 c In flag Capacitor model

678 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.2.3 Inductor - Fixed inductor

27.2.3.1 Inductor instance parameters

Name Direction Type Description
1 inductance InOut real Inductance of inductor
2 ic InOut real Initial current through inductor
5 sens_ind In flag flag to request sensitivity WRT

inductance
9 temp InOut real Instance operating temperature

10 dtemp InOut real Instance temperature difference with the
rest of the circuit

8 m InOut real Multiplication Factor
11 scale InOut real Scale factor
12 nt InOut real Number of turns
3 flux Out real Flux through inductor
4 v Out real Terminal voltage of inductor
4 volt Out real
6 i Out real Current through the inductor
6 current Out real
7 p Out real instantaneous power dissipated by the

inductor
206 sens_dc Out real dc sensitivity sensitivity
201 sens_real Out real real part of ac sensitivity
202 sens_imag Out real dc sensitivity and imag part of ac

sensitivty
203 sens_mag Out real sensitivity of AC magnitude
204 sens_ph Out real sensitivity of AC phase
205 sens_cplx Out complex ac sensitivity

27.2.3.2 Inductor model parameters

Name Direction Type Description
100 ind InOut real Model inductance
101 tc1 InOut real First order temp. coefficient
102 tc2 InOut real Second order temp. coefficient
103 tnom InOut real Parameter measurement temperature
104 csect InOut real Inductor cross section
105 length InOut real Inductor length
106 nt InOut real Model number of turns
107 mu InOut real Relative magnetic permeability
108 l In flag Inductor model

27.2. ELEMENTARY DEVICES 679

27.2.4 Mutual - Mutual Inductor

27.2.4.1 Mutual instance parameters

Name Direction Type Description
401 k InOut real Mutual inductance
401 coefficient InOut real
402 inductor1 InOut instance First coupled inductor
403 inductor2 InOut instance Second coupled inductor
404 sens_coeff In flag flag to request sensitivity WRT coupling factor
606 sens_dc Out real dc sensitivity
601 sens_real Out real real part of ac sensitivity
602 sens_imag Out real dc sensitivity and imag part of ac sensitivty
603 sens_mag Out real sensitivity of AC magnitude
604 sens_ph Out real sensitivity of AC phase
605 sens_cplx Out complex mutual model parameters:

680 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.3 Voltage and current sources

27.3.1 Bxxxx - Arbitrary source (ASRC)

27.3.1.1 ASRC instance parameters

Name Direction Type Description
2 i In parsetree Current source
1 v In parsetree Voltage source
7 i Out real Current through source
6 v Out real Voltage across source
3 pos_node Out integer Positive Node
4 neg_node Out integer Negative Node

27.3. VOLTAGE AND CURRENT SOURCES 681

27.3.2 Isource - Independent current source

27.3.2.1 Isource instance parameters

Name Direction Type Description
1 dc InOut real DC value of source
2 acmag InOut real AC magnitude
3 acphase InOut real AC phase
5 pulse In real vector Pulse description
6 sine In real vector Sinusoidal source description
6 sin In real vector Sinusoidal source description
7 exp In real vector Exponential source description
8 pwl In real vector Piecewise linear description
9 sffm In real vector Single freq. FM description

21 am In real vector Amplitude modulation description
10 neg_node Out integer Negative node of source
11 pos_node Out integer Positive node of source
12 acreal Out real AC real part
13 acimag Out real AC imaginary part
14 function Out integer Function of the source
15 order Out integer Order of the source function
16 coeffs Out real vector Coefficients of the source
20 v Out real Voltage across the supply
17 p Out real Power supplied by the source

4 ac In real vector AC magnitude,phase vector
1 c In real Current through current source

22 current Out real Current in DC or Transient mode
18 distof1 In real vector f1 input for distortion
19 distof2 In real vector f2 input for distortion

682 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.3.3 Vsource - Independent voltage source

27.3.3.1 Vsource instance parameters

Name Direction Type Description
1 dc InOut real D.C. source value
3 acmag InOut real A.C. Magnitude
4 acphase InOut real A.C. Phase
5 pulse In real vector Pulse description
6 sine In real vector Sinusoidal source description
6 sin In real vector Sinusoidal source description
7 exp In real vector Exponential source description
8 pwl In real vector Piecewise linear description
9 sffm In real vector Single freq. FM descripton

22 am In real vector Amplitude modulation descripton
16 pos_node Out integer Positive node of source
17 neg_node Out integer Negative node of source
11 function Out integer Function of the source
12 order Out integer Order of the source function
13 coeffs Out real vector Coefficients for the function
14 acreal Out real AC real part
15 acimag Out real AC imaginary part

2 ac In real vector AC magnitude, phase vector
18 i Out real Voltage source current
19 p Out real Instantaneous power
20 distof1 In real vector f1 input for distortion
21 distof2 In real vector f2 input for distortion
23 r In real pwl repeat start time value
24 td In real pwl delay time value

27.3. VOLTAGE AND CURRENT SOURCES 683

27.3.4 Fxxxx: Current-Controlled Current Source (CCCS)

27.3.4.1 CCCS instance parameters

Name Direction Type Description
1 gain InOut real Gain of source
2 control InOut instance Name of controlling source
6 sens_gain In flag flag to request sensitivity WRT gain
4 neg_node Out integer Negative node of source
3 pos_node Out integer Positive node of source
7 i Out real CCCS output current
9 v Out real CCCS voltage at output
8 p Out real CCCS power

206 sens_dc Out real dc sensitivity
201 sens_real Out real real part of ac sensitivity
202 sens_imag Out real imag part of ac sensitivity
203 sens_mag Out real sensitivity of ac magnitude
204 sens_ph Out real sensitivity of ac phase
205 sens_cplx Out complex ac sensitivity

27.3.5 Hxxxx: Current-Controlled Voltage Source (CCVS)

27.3.5.1 CCVS instance parameters

Name Direction Type Description
1 gain InOut real Transresistance (gain)
2 control InOut instance Controlling voltage source
7 sens_trans In flag flag to request sens. WRT transimpedance
3 pos_node Out integer Positive node of source
4 neg_node Out integer Negative node of source
8 i Out real CCVS output current

10 v Out real CCVS output voltage
9 p Out real CCVS power

206 sens_dc Out real dc sensitivity
201 sens_real Out real real part of ac sensitivity
202 sens_imag Out real imag part of ac sensitivity
203 sens_mag Out real sensitivity of ac magnitude
204 sens_ph Out real sensitivity of ac phase
205 sens_cplx Out complex ac sensitivity

684 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.3.6 Gxxxx: Voltage-Controlled Current Source (VCCS)

27.3.6.1 VCCS instance parameters

Name Direction Type Description
1 gain InOut real Transconductance of source (gain)
8 sens_trans In flag flag to request sensitivity WRT transconductance
3 pos_node Out integer Positive node of source
4 neg_node Out integer Negative node of source
5 cont_p_node Out integer Positive node of contr. source
6 cont_n_node Out integer Negative node of contr. source
2 ic In real Initial condition of controlling source
9 i Out real Output current

11 v Out real Voltage across output
10 p Out real Power

206 sens_dc Out real dc sensitivity
201 sens_real Out real real part of ac sensitivity
202 sens_imag Out real imag part of ac sensitivity
203 sens_mag Out real sensitivity of ac magnitude
204 sens_ph Out real sensitivity of ac phase
205 sens_cplx Out complex ac sensitivity

27.3.7 Exxxx: Voltage-Controlled Voltage Source (VCVS)

27.3.7.1 VCVS instance parameters

Name Direction Type Description
1 gain InOut real Voltage gain
9 sens_gain In flag flag to request sensitivity WRT gain
2 pos_node Out integer Positive node of source
3 neg_node Out integer Negative node of source
4 cont_p_node Out integer Positive node of contr. source
5 cont_n_node Out integer Negative node of contr. source
7 ic In real Initial condition of controlling source

10 i Out real Output current
12 v Out real Output voltage
11 p Out real Power

206 sens_dc Out real dc sensitivity
201 sens_real Out real real part of ac sensitivity
202 sens_imag Out real imag part of ac sensitivity
203 sens_mag Out real sensitivity of ac magnitude
204 sens_ph Out real sensitivity of ac phase
205 sens_cplx Out complex ac sensitivity

27.4. TRANSMISSION LINES 685

27.4 Transmission Lines

27.4.1 CplLines - Simple Coupled Multiconductor Lines

27.4.1.1 CplLines instance parameters

Name Direction Type Description
1 pos_nodes InOut string vector in nodes
2 neg_nodes InOut string vector out nodes
3 dimension InOut integer number of coupled lines
4 length InOut real length of lines

27.4.1.2 CplLines model parameters

Name Direction Type Description
101 r InOut real vector resistance per length
104 l InOut real vector inductance per length
102 c InOut real vector capacitance per length
103 g InOut real vector conductance per length
105 length InOut real length
106 cpl In flag Device is a cpl model

686 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.4.2 LTRA - Lossy transmission line

27.4.2.1 LTRA instance parameters

Name Direction Type Description
6 v1 InOut real Initial voltage at end 1
8 v2 InOut real Initial voltage at end 2
7 i1 InOut real Initial current at end 1
9 i2 InOut real Initial current at end 2

10 ic In real vector Initial condition vector:v1,i1,v2,i2
13 pos_node1 Out integer Positive node of end 1 of t-line
14 neg_node1 Out integer Negative node of end 1 of t.line
15 pos_node2 Out integer Positive node of end 2 of t-line
16 neg_node2 Out integer Negative node of end 2 of t-line

27.4.2.2 LTRA model parameters

Name Direction Type Description
0 ltra InOut flag LTRA model
1 r InOut real Resistance per meter
2 l InOut real Inductance per meter
3 g InOut real
4 c InOut real Capacitance per meter
5 len InOut real length of line

11 rel Out real Rel. rate of change of deriv. for bkpt
12 abs Out real Abs. rate of change of deriv. for bkpt
28 nocontrol InOut flag No timestep control
32 steplimit InOut flag always limit timestep to 0.8*(delay of line)
33 nosteplimit InOut flag don’t always limit timestep to 0.8*(delay of

line)
34 lininterp InOut flag use linear interpolation
35 quadinterp InOut flag use quadratic interpolation
36 mixedinterp InOut flag use linear interpolation if quadratic results look

unacceptable
46 truncnr InOut flag use N-R iterations for step calculation in

LTRAtrunc
47 truncdontcut InOut flag don’t limit timestep to keep impulse response

calculation errors low
42 compactrel InOut real special reltol for straight line checking
43 compactabs InOut real special abstol for straight line checking

27.4. TRANSMISSION LINES 687

27.4.3 Tranline - Lossless transmission line

27.4.3.1 Tranline instance parameters

Name Direction Type Description
1 z0 InOut real Characteristic impedance
1 zo InOut real
4 f InOut real Frequency
2 td InOut real Transmission delay
3 nl InOut real Normalized length at frequency given
5 v1 InOut real Initial voltage at end 1
7 v2 InOut real Initial voltage at end 2
6 i1 InOut real Initial current at end 1
8 i2 InOut real Initial current at end 2
9 ic In real vector Initial condition vector:v1,i1,v2,i2

10 rel Out real Rel. rate of change of deriv. for bkpt
11 abs Out real Abs. rate of change of deriv. for bkpt
12 pos_node1 Out integer Positive node of end 1 of t. line
13 neg_node1 Out integer Negative node of end 1 of t. line
14 pos_node2 Out integer Positive node of end 2 of t. line
15 neg_node2 Out integer Negative node of end 2 of t. line
18 delays Out real vector Delayed values of excitation

688 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.4.4 TransLine - Simple Lossy Transmission Line

27.4.4.1 TransLine instance parameters

Name Direction Type Description
1 pos_node In integer Positive node of txl
2 neg_node In integer Negative node of txl
3 length InOut real length of line

27.4.4.2 TransLine model parameters

Name Direction Type Description
101 r InOut real resistance per length
104 l InOut real inductance per length
102 c InOut real capacitance per length
103 g InOut real conductance per length
105 length InOut real length
106 txl In flag Device is a txl model

27.4. TRANSMISSION LINES 689

27.4.5 URC - Uniform R. C. line

27.4.5.1 URC instance parameters

Name Direction Type Description
1 l InOut real Length of transmission line
2 n InOut real Number of lumps
3 pos_node Out integer Positive node of URC
4 neg_node Out integer Negative node of URC
5 gnd Out integer Ground node of URC

27.4.5.2 URC model parameters

Name Direction Type Description
101 k InOut real Propagation constant
102 fmax InOut real Maximum frequency of interest
103 rperl InOut real Resistance per unit length
104 cperl InOut real Capacitance per unit length
105 isperl InOut real Saturation current per length
106 rsperl InOut real Diode resistance per length
107 urc In flag Uniform R.C. line model

690 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.5 BJTs

27.5.1 BJT - Bipolar Junction Transistor

27.5.1.1 BJT instance parameters

Name Direction Type Description
2 off InOut flag Device initially off
3 icvbe InOut real Initial B-E voltage
4 icvce InOut real Initial C-E voltage
1 area InOut real (Emitter) Area factor

10 areab InOut real Base area factor
11 areac InOut real Collector area factor
9 m InOut real Parallel Multiplier
5 ic In real vector Initial condition vector
6 sens_area In flag flag to request sensitivity WRT area

202 colnode Out integer Number of collector node
203 basenode Out integer Number of base node
204 emitnode Out integer Number of emitter node
205 substnode Out integer Number of substrate node
206 colprimenode Out integer Internal collector node
207 baseprimenode Out integer Internal base node
208 emitprimenode Out integer Internal emitter node
211 ic Out real Current at collector node
212 ib Out real Current at base node
236 ie Out real Emitter current
237 is Out real Substrate current
209 vbe Out real B-E voltage
210 vbc Out real B-C voltage
215 gm Out real Small signal transconductance
213 gpi Out real Small signal input conductance - pi
214 gmu Out real Small signal conductance - mu
225 gx Out real Conductance from base to internal base
216 go Out real Small signal output conductance
227 geqcb Out real d(Ibe)/d(Vbc)
228 gcsub Out real Internal Subs. cap. equiv. cond.
243 gdsub Out real Internal Subs. Diode equiv. cond.
229 geqbx Out real Internal C-B-base cap. equiv. cond.
239 cpi Out real Internal base to emitter capactance
240 cmu Out real Internal base to collector capactiance
241 cbx Out real Base to collector capacitance
242 csub Out real Substrate capacitance
218 cqbe Out real Cap. due to charge storage in B-E jct.
220 cqbc Out real Cap. due to charge storage in B-C jct.
222 cqsub Out real Cap. due to charge storage in Subs. jct.
224 cqbx Out real Cap. due to charge storage in B-X jct.

27.5. BJTS 691

226 cexbc Out real Total Capacitance in B-X junction
217 qbe Out real Charge storage B-E junction
219 qbc Out real Charge storage B-C junction
221 qsub Out real Charge storage Subs. junction
223 qbx Out real Charge storage B-X junction
238 p Out real Power dissipation
235 sens_dc Out real dc sensitivity
230 sens_real Out real real part of ac sensitivity
231 sens_imag Out real dc sens. & imag part of ac sens.
232 sens_mag Out real sensitivity of ac magnitude
233 sens_ph Out real sensitivity of ac phase
234 sens_cplx Out complex ac sensitivity

7 temp InOut real instance temperature
8 dtemp InOut real instance temperature delta from circuit

27.5.1.2 BJT model parameters

Name Direction Type Description
309 type Out string NPN or PNP
101 npn InOut flag NPN type device
102 pnp InOut flag PNP type device
147 subs InOut integer Vertical or Lateral device
103 is InOut real Saturation Current
146 iss InOut real Substrate Jct. Saturation Current
104 bf InOut real Ideal forward beta
105 nf InOut real Forward emission coefficient
106 vaf InOut real Forward Early voltage
106 va InOut real
107 ikf InOut real Forward beta roll-off corner current
107 ik InOut real
108 ise InOut real B-E leakage saturation current
110 ne InOut real B-E leakage emission coefficient
111 br InOut real Ideal reverse beta
112 nr InOut real Reverse emission coefficient
113 var InOut real Reverse Early voltage
113 vb InOut real
114 ikr InOut real reverse beta roll-off corner current
115 isc InOut real B-C leakage saturation current
117 nc InOut real B-C leakage emission coefficient
118 rb InOut real Zero bias base resistance
119 irb InOut real Current for base resistance=(rb+rbm)/2
120 rbm InOut real Minimum base resistance
121 re InOut real Emitter resistance
122 rc InOut real Collector resistance
123 cje InOut real Zero bias B-E depletion capacitance

692 CHAPTER 27. MODEL AND DEVICE PARAMETERS

124 vje InOut real B-E built in potential
124 pe InOut real
125 mje InOut real B-E junction grading coefficient
125 me InOut real
126 tf InOut real Ideal forward transit time
127 xtf InOut real Coefficient for bias dependence of TF
128 vtf InOut real Voltage giving VBC dependence of TF
129 itf InOut real High current dependence of TF
130 ptf InOut real Excess phase
131 cjc InOut real Zero bias B-C depletion capacitance
132 vjc InOut real B-C built in potential
132 pc InOut real
133 mjc InOut real B-C junction grading coefficient
133 mc InOut real
134 xcjc InOut real Fraction of B-C cap to internal base
135 tr InOut real Ideal reverse transit time
136 cjs InOut real Zero bias Substrate capacitance
136 csub InOut real
137 vjs InOut real Substrate junction built in potential
137 ps InOut real
138 mjs InOut real Substrate junction grading coefficient
138 ms InOut real
139 xtb InOut real Forward and reverse beta temp. exp.
140 eg InOut real Energy gap for IS temp. dependency
141 xti InOut real Temp. exponent for IS
148 tre1 InOut real Temp. coefficient 1 for RE
149 tre2 InOut real Temp. coefficient 2 for RE
150 trc1 InOut real Temp. coefficient 1 for RC
151 trc2 InOut real Temp. coefficient 2 for RC
152 trb1 InOut real Temp. coefficient 1 for RB
153 trb2 InOut real Temp. coefficient 2 for RB
154 trbm1 InOut real Temp. coefficient 1 for RBM
155 trbm2 InOut real Temp. coefficient 2 for RBM
142 fc InOut real Forward bias junction fit parameter
301 invearlyvoltf Out real Inverse early voltage:forward
302 invearlyvoltr Out real Inverse early voltage:reverse
303 invrollofff Out real Inverse roll off - forward
304 invrolloffr Out real Inverse roll off - reverse
305 collectorconduct Out real Collector conductance
306 emitterconduct Out real Emitter conductance
307 transtimevbcfact Out real Transit time VBC factor
308 excessphasefactor Out real Excess phase fact.
143 tnom InOut real Parameter measurement temperature
145 kf InOut real Flicker Noise Coefficient
144 af InOut real Flicker Noise Exponent

27.5. BJTS 693

27.5.2 VBIC - Vertical Bipolar Inter-Company Model

27.5.2.1 VBIC instance parameters

Name Direction Type Description
1 area InOut real Area factor
2 off InOut flag Device initially off
3 ic In real vector Initial condition vector
4 icvbe InOut real Initial B-E voltage
5 icvce InOut real Initial C-E voltage
6 temp InOut real Instance temperature
7 dtemp InOut real Instance delta temperature
8 m InOut real Multiplier

212 collnode Out integer Number of collector node
213 basenode Out integer Number of base node
214 emitnode Out integer Number of emitter node
215 subsnode Out integer Number of substrate node
216 collCXnode Out integer Internal collector node
217 collCInode Out integer Internal collector node
218 baseBXnode Out integer Internal base node
219 baseBInode Out integer Internal base node
220 baseBPnode Out integer Internal base node
221 emitEInode Out integer Internal emitter node
222 subsSInode Out integer Internal substrate node
223 vbe Out real B-E voltage
224 vbc Out real B-C voltage
225 ic Out real Collector current
226 ib Out real Base current
227 ie Out real Emitter current
228 is Out real Substrate current
229 gm Out real Small signal transconductance dIc/dVbe
230 go Out real Small signal output conductance dIc/dVbc
231 gpi Out real Small signal input conductance dIb/dVbe
232 gmu Out real Small signal conductance dIb/dVbc
233 gx Out real Conductance from base to internal base
247 cbe Out real Internal base to emitter capacitance
248 cbex Out real External base to emitter capacitance
249 cbc Out real Internal base to collector capacitance
250 cbcx Out real External Base to collector capacitance
251 cbep Out real Parasitic Base to emitter capacitance
252 cbcp Out real Parasitic Base to collector capacitance
259 p Out real Power dissipation
243 geqcb Out real Internal C-B-base cap. equiv. cond.
246 geqbx Out real External C-B-base cap. equiv. cond.
234 qbe Out real Charge storage B-E junction
235 cqbe Out real Cap. due to charge storage in B-E jct.

694 CHAPTER 27. MODEL AND DEVICE PARAMETERS

236 qbc Out real Charge storage B-C junction
237 cqbc Out real Cap. due to charge storage in B-C jct.
238 qbx Out real Charge storage B-X junction
239 cqbx Out real Cap. due to charge storage in B-X jct.
258 sens_dc Out real DC sensitivity
253 sens_real Out real Real part of AC sensitivity
254 sens_imag Out real DC sens. & imag part of AC sens.
255 sens_mag Out real Sensitivity of AC magnitude
256 sens_ph Out real Sensitivity of AC phase
257 sens_cplx Out complex AC sensitivity

27.5.2.2 VBIC model parameters

Name Direction Type Description
305 type Out string NPN or PNP
101 npn InOut flag NPN type device
102 pnp InOut flag PNP type device
103 tnom (tref) InOut real Parameter measurement temperature
104 rcx InOut real Extrinsic coll resistance
105 rci InOut real Intrinsic coll resistance
106 vo InOut real Epi drift saturation voltage
107 gamm InOut real Epi doping parameter
108 hrcf InOut real High current RC factor
109 rbx InOut real Extrinsic base resistance
110 rbi InOut real Intrinsic base resistance
111 re InOut real Intrinsic emitter resistance
112 rs InOut real Intrinsic substrate resistance
113 rbp InOut real Parasitic base resistance
114 is InOut real Transport saturation current
115 nf InOut real Forward emission coefficient
116 nr InOut real Reverse emission coefficient
117 fc InOut real Fwd bias depletion capacitance limit
118 cbeo InOut real Extrinsic B-E overlap capacitance
119 cje InOut real Zero bias B-E depletion capacitance
120 pe InOut real B-E built in potential
121 me InOut real B-E junction grading coefficient
122 aje InOut real B-E capacitance smoothing factor
123 cbco InOut real Extrinsic B-C overlap capacitance
124 cjc InOut real Zero bias B-C depletion capacitance
125 qco InOut real Epi charge parameter
126 cjep InOut real B-C extrinsic zero bias capacitance
127 pc InOut real B-C built in potential
128 mc InOut real B-C junction grading coefficient
129 ajc InOut real B-C capacitance smoothing factor
130 cjcp InOut real Zero bias S-C capacitance

27.5. BJTS 695

131 ps InOut real S-C junction built in potential
132 ms InOut real S-C junction grading coefficient
133 ajs InOut real S-C capacitance smoothing factor
134 ibei InOut real Ideal B-E saturation current
135 wbe InOut real Portion of IBEI from Vbei, 1-WBE from Vbex
136 nei InOut real Ideal B-E emission coefficient
137 iben InOut real Non-ideal B-E saturation current
138 nen InOut real Non-ideal B-E emission coefficient
139 ibci InOut real Ideal B-C saturation current
140 nci InOut real Ideal B-C emission coefficient
141 ibcn InOut real Non-ideal B-C saturation current
142 ncn InOut real Non-ideal B-C emission coefficient
143 avc1 InOut real B-C weak avalanche parameter 1
144 avc2 InOut real B-C weak avalanche parameter 2
145 isp InOut real Parasitic transport saturation current
146 wsp InOut real Portion of ICCP
147 nfp InOut real Parasitic fwd emission coefficient
148 ibeip InOut real Ideal parasitic B-E saturation current
149 ibenp InOut real Non-ideal parasitic B-E saturation current
150 ibcip InOut real Ideal parasitic B-C saturation current
151 ncip InOut real Ideal parasitic B-C emission coefficient
152 ibcnp InOut real Nonideal parasitic B-C saturation current
153 ncnp InOut real Nonideal parasitic B-C emission coefficient
154 vef InOut real Forward Early voltage
155 ver InOut real Reverse Early voltage
156 ikf InOut real Forward knee current
157 ikr InOut real Reverse knee current
158 ikp InOut real Parasitic knee current
159 tf InOut real Ideal forward transit time
160 qtf InOut real Variation of TF with base-width modulation
161 xtf InOut real Coefficient for bias dependence of TF
162 vtf InOut real Voltage giving VBC dependence of TF
163 itf InOut real High current dependence of TF
164 tr InOut real Ideal reverse transit time
165 td InOut real Forward excess-phase delay time
166 kfn InOut real B-E Flicker Noise Coefficient
167 afn InOut real B-E Flicker Noise Exponent
168 bfn InOut real B-E Flicker Noise 1/f dependence
169 xre InOut real Temperature exponent of RE
170 xrb InOut real Temperature exponent of RB
171 xrbi InOut real Temperature exponent of RBI
172 xrc InOut real Temperature exponent of RC
173 xrci InOut real Temperature exponent of RCI
174 xrs InOut real Temperature exponent of RS
175 xvo InOut real Temperature exponent of VO
176 ea InOut real Activation energy for IS

696 CHAPTER 27. MODEL AND DEVICE PARAMETERS

177 eaie InOut real Activation energy for IBEI
179 eaic InOut real Activation energy for IBCI/IBEIP
179 eais InOut real Activation energy for IBCIP
180 eane InOut real Activation energy for IBEN
181 eanc InOut real Activation energy for IBCN/IBENP
182 eans InOut real Activation energy for IBCNP
183 xis InOut real Temperature exponent of IS
184 xii InOut real Temperature exponent of IBEI,IBCI,IBEIP,IBCIP
185 xin InOut real Temperature exponent of IBEN,IBCN,IBENP,IBCNP
186 tnf InOut real Temperature exponent of NF
187 tavc InOut real Temperature exponent of AVC2
188 rth InOut real Thermal resistance
189 cth InOut real Thermal capacitance
190 vrt InOut real Punch-through voltage of internal B-C junction
191 art InOut real Smoothing parameter for reach-through
192 ccso InOut real Fixed C-S capacitance
193 qbm InOut real Select SGP qb formulation
194 nkf InOut real High current beta rolloff
195 xikf InOut real Temperature exponent of IKF
196 xrcx InOut real Temperature exponent of RCX
197 xrbx InOut real Temperature exponent of RBX
198 xrbp InOut real Temperature exponent of RBP
199 isrr InOut real Separate IS for fwd and rev
200 xisr InOut real Temperature exponent of ISR
201 dear InOut real Delta activation energy for ISRR
202 eap InOut real Exitivation energy for ISP
203 vbbe InOut real B-E breakdown voltage
204 nbbe InOut real B-E breakdown emission coefficient
205 ibbe InOut real B-E breakdown current
206 tvbbe1 InOut real Linear temperature coefficient of VBBE
207 tvbbe2 InOut real Quadratic temperature coefficient of VBBE
208 tnbbe InOut real Temperature coefficient of NBBE
209 ebbe InOut real exp(-VBBE/(NBBE*Vtv))
210 dtemp InOut real Locale Temperature difference
211 vers InOut real Revision Version
212 vref InOut real Reference Version

27.6. MOSFETS 697

27.6 MOSFETs

27.6.1 MOS1 - Level 1 MOSFET model with Meyer capacitance model

27.6.1.1 MOS1 instance parameters

Name Direction Type Description
21 m InOut real Multiplier
2 l InOut real Length
1 w InOut real Width
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter
8 nrd InOut real Drain squares
7 nrs InOut real Source squares
9 off In flag Device initially off

12 icvds InOut real Initial D-S voltage
13 icvgs InOut real Initial G-S voltage
11 icvbs InOut real Initial B-S voltage
20 temp InOut real Instance temperature
22 dtemp InOut real Instance temperature difference
10 ic In real vector Vector of D-S, G-S, B-S voltages
15 sens_l In flag flag to request sensitivity WRT length
14 sens_w In flag flag to request sensitivity WRT width

215 id Out real Drain current
18 is Out real Source current
17 ig Out real Gate current
16 ib Out real Bulk current

217 ibd Out real B-D junction current
216 ibs Out real B-S junction current
231 vgs Out real Gate-Source voltage
232 vds Out real Drain-Source voltage
230 vbs Out real Bulk-Source voltage
229 vbd Out real Bulk-Drain voltage
203 dnode Out integer Number of the drain node
204 gnode Out integer Number of the gate node
205 snode Out integer Number of the source node
206 bnode Out integer Number of the node
207 dnodeprime Out integer Number of int. drain node
208 snodeprime Out integer Number of int. source node
211 von Out real
212 vdsat Out real Saturation drain voltage
213 sourcevcrit Out real Critical source voltage
214 drainvcrit Out real Critical drain voltage

Name Direction Type Description

698 CHAPTER 27. MODEL AND DEVICE PARAMETERS

Name Direction Type Description
258 rs Out real Source resistance
209 sourceconductance Out real Conductance of source
259 rd Out real Drain conductance
210 drainconductance Out real Conductance of drain
219 gm Out real Transconductance
220 gds Out real Drain-Source conductance
218 gmb Out real Bulk-Source transconductance
218 gmbs Out real
221 gbd Out real Bulk-Drain conductance
222 gbs Out real Bulk-Source conductance
223 cbd Out real Bulk-Drain capacitance
224 cbs Out real Bulk-Source capacitance
233 cgs Out real Gate-Source capacitance
236 cgd Out real Gate-Drain capacitance
239 cgb Out real Gate-Bulk capacitance
235 cqgs Out real Capacitance due to gate-source charge storage
238 cqgd Out real Capacitance due to gate-drain charge storage
241 cqgb Out real Capacitance due to gate-bulk charge storage
243 cqbd Out real Capacitance due to bulk-drain charge storage
245 cqbs Out real Capacitance due to bulk-source charge storage
225 cbd0 Out real Zero-Bias B-D junction capacitance
226 cbdsw0 Out real
227 cbs0 Out real Zero-Bias B-S junction capacitance
228 cbssw0 Out real
234 qgs Out real Gate-Source charge storage
237 qgd Out real Gate-Drain charge storage
240 qgb Out real Gate-Bulk charge storage
242 qbd Out real Bulk-Drain charge storage
244 qbs Out real Bulk-Source charge storage

19 p Out real Instaneous power
256 sens_l_dc Out real dc sensitivity wrt length
246 sens_l_real Out real real part of ac sensitivity wrt length
247 sens_l_imag Out real imag part of ac sensitivity wrt length
248 sens_l_mag Out real sensitivity wrt l of ac magnitude
249 sens_l_ph Out real sensitivity wrt l of ac phase
250 sens_l_cplx Out complex ac sensitivity wrt length
257 sens_w_dc Out real dc sensitivity wrt width
251 sens_w_real Out real real part of ac sensitivity wrt width
252 sens_w_imag Out real imag part of ac sensitivity wrt width
253 sens_w_mag Out real sensitivity wrt w of ac magnitude
254 sens_w_ph Out real sensitivity wrt w of ac phase
255 sens_w_cplx Out complex ac sensitivity wrt width

Name Direction Type Description

27.6.1.2 MOS1 model parameters

27.6. MOSFETS 699

Name Direction Type Description
133 type Out string N-channel or P-channel MOS
101 vto InOut real Threshold voltage
101 vt0 InOut real
102 kp InOut real Transconductance parameter
103 gamma InOut real Bulk threshold parameter
104 phi InOut real Surface potential
105 lambda InOut real Channel length modulation
106 rd InOut real Drain ohmic resistance
107 rs InOut real Source ohmic resistance
108 cbd InOut real B-D junction capacitance
109 cbs InOut real B-S junction capacitance
110 is InOut real Bulk junction sat. current
111 pb InOut real Bulk junction potential
112 cgso InOut real Gate-source overlap cap.
113 cgdo InOut real Gate-drain overlap cap.
114 cgbo InOut real Gate-bulk overlap cap.
122 rsh InOut real Sheet resistance
115 cj InOut real Bottom junction cap per area
116 mj InOut real Bottom grading coefficient
117 cjsw InOut real Side junction cap per area
118 mjsw InOut real Side grading coefficient
119 js InOut real Bulk jct. sat. current density
120 tox InOut real Oxide thickness
121 ld InOut real Lateral diffusion
123 u0 InOut real Surface mobility
123 uo InOut real
124 fc InOut real Forward bias jct. fit parm.
128 nmos In flag N type MOSfet model
129 pmos In flag P type MOSfet model
125 nsub InOut real Substrate doping
126 tpg InOut integer Gate type
127 nss InOut real Surface state density
130 tnom InOut real Parameter measurement temperature
131 kf InOut real Flicker noise coefficient
132 af InOut real Flicker noise exponent

700 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.6.2 MOS2 - Level 2 MOSFET model with Meyer capacitance model

27.6.2.1 MOS 2 instance parameters

Name Direction Type Description
80 m InOut real Multiplier
2 l InOut real Length
1 w InOut real Width
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter

34 id Out real Drain current
34 cd Out real
36 ibd Out real B-D junction current
35 ibs Out real B-S junction current
18 is Out real Source current
17 ig Out real Gate current
16 ib Out real Bulk current
50 vgs Out real Gate-Source voltage
51 vds Out real Drain-Source voltage
49 vbs Out real Bulk-Source voltage
48 vbd Out real Bulk-Drain voltage
8 nrd InOut real Drain squares
7 nrs InOut real Source squares
9 off In flag Device initially off

12 icvds InOut real Initial D-S voltage
13 icvgs InOut real Initial G-S voltage
11 icvbs InOut real Initial B-S voltage
77 temp InOut real Instance operating temperature
81 dtemp InOut real Instance temperature difference
10 ic In real vector Vector of D-S, G-S, B-S voltages
15 sens_l In flag flag to request sensitivity WRT

length
14 sens_w In flag flag to request sensitivity WRT

width
22 dnode Out integer Number of drain node
23 gnode Out integer Number of gate node
24 snode Out integer Number of source node
25 bnode Out integer Number of bulk node
26 dnodeprime Out integer Number of internal drain node
27 snodeprime Out integer Number of internal source node
30 von Out real
31 vdsat Out real Saturation drain voltage
32 sourcevcrit Out real Critical source voltage
33 drainvcrit Out real Critical drain voltage

27.6. MOSFETS 701

78 rs Out real Source resistance
28 sourceconductance Out real Source conductance
79 rd Out real Drain resistance
29 drainconductance Out real Drain conductance
38 gm Out real Transconductance
39 gds Out real Drain-Source conductance
37 gmb Out real Bulk-Source transconductance
37 gmbs Out real
40 gbd Out real Bulk-Drain conductance
41 gbs Out real Bulk-Source conductance
42 cbd Out real Bulk-Drain capacitance
43 cbs Out real Bulk-Source capacitance
52 cgs Out real Gate-Source capacitance
55 cgd Out real Gate-Drain capacitance
58 cgb Out real Gate-Bulk capacitance
44 cbd0 Out real Zero-Bias B-D junction

capacitance
45 cbdsw0 Out real
46 cbs0 Out real Zero-Bias B-S junction capacitance
47 cbssw0 Out real
54 cqgs Out real Capacitance due to gate-source

charge storage
57 cqgd Out real Capacitance due to gate-drain

charge storage
60 cqgb Out real Capacitance due to gate-bulk

charge storage
62 cqbd Out real Capacitance due to bulk-drain

charge storage
64 cqbs Out real Capacitance due to bulk-source

charge storage
53 qgs Out real Gate-Source charge storage
56 qgd Out real Gate-Drain charge storage
59 qgb Out real Gate-Bulk charge storage
61 qbd Out real Bulk-Drain charge storage
63 qbs Out real Bulk-Source charge storage
19 p Out real Instantaneous power
75 sens_l_dc Out real dc sensitivity wrt length
70 sens_l_real Out real real part of ac sensitivity wrt length
71 sens_l_imag Out real imag part of ac sensitivity wrt

length
74 sens_l_cplx Out complex ac sensitivity wrt length
72 sens_l_mag Out real sensitivity wrt l of ac magnitude
73 sens_l_ph Out real sensitivity wrt l of ac phase
76 sens_w_dc Out real dc sensitivity wrt width
65 sens_w_real Out real dc sensitivity and real part of ac

sensitivity wrt width

702 CHAPTER 27. MODEL AND DEVICE PARAMETERS

66 sens_w_imag Out real imag part of ac sensitivity wrt
width

67 sens_w_mag Out real sensitivity wrt w of ac magnitude
68 sens_w_ph Out real sensitivity wrt w of ac phase
69 sens_w_cplx Out complex ac sensitivity wrt width

27.6.2.2 MOS2 model parameters

Name Direction Type Description
141 type Out string N-channel or P-channel MOS
101 vto InOut real Threshold voltage
101 vt0 InOut real
102 kp InOut real Transconductance parameter
103 gamma InOut real Bulk threshold parameter
104 phi InOut real Surface potential
105 lambda InOut real Channel length modulation
106 rd InOut real Drain ohmic resistance
107 rs InOut real Source ohmic resistance
108 cbd InOut real B-D junction capacitance
109 cbs InOut real B-S junction capacitance
110 is InOut real Bulk junction sat. current
111 pb InOut real Bulk junction potential
112 cgso InOut real Gate-source overlap cap.
113 cgdo InOut real Gate-drain overlap cap.
114 cgbo InOut real Gate-bulk overlap cap.
122 rsh InOut real Sheet resistance
115 cj InOut real Bottom junction cap per area
116 mj InOut real Bottom grading coefficient
117 cjsw InOut real Side junction cap per area
118 mjsw InOut real Side grading coefficient
119 js InOut real Bulk jct. sat. current density
120 tox InOut real Oxide thickness
121 ld InOut real Lateral diffusion
123 u0 InOut real Surface mobility
123 uo InOut real
124 fc InOut real Forward bias jct. fit parm.
135 nmos In flag N type MOSfet model
136 pmos In flag P type MOSfet model
125 nsub InOut real Substrate doping
126 tpg InOut integer Gate type
127 nss InOut real Surface state density
129 delta InOut real Width effect on threshold
130 uexp InOut real Crit. field exp for mob. deg.
134 ucrit InOut real Crit. field for mob. degradation
131 vmax InOut real Maximum carrier drift velocity

27.6. MOSFETS 703

132 xj InOut real Junction depth
133 neff InOut real Total channel charge coeff.
128 nfs InOut real Fast surface state density
137 tnom InOut real Parameter measurement temperature
139 kf InOut real Flicker noise coefficient
140 af InOut real Flicker noise exponent

704 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.6.3 MOS3 - Level 3 MOSFET model with Meyer capacitance model

27.6.3.1 MOS3 instance parameters

Name Direction Type Description
80 m InOut real Multiplier

2 l InOut real Length
1 w InOut real Width
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter

34 id Out real Drain current
34 cd Out real Drain current
36 ibd Out real B-D junction current
35 ibs Out real B-S junction current
18 is Out real Source current
17 ig Out real Gate current
16 ib Out real Bulk current
50 vgs Out real Gate-Source voltage
51 vds Out real Drain-Source voltage
49 vbs Out real Bulk-Source voltage
48 vbd Out real Bulk-Drain voltage

8 nrd InOut real Drain squares
7 nrs InOut real Source squares
9 off In flag Device initially off

12 icvds InOut real Initial D-S voltage
13 icvgs InOut real Initial G-S voltage
11 icvbs InOut real Initial B-S voltage
10 ic InOut real vector Vector of D-S, G-S, B-S voltages
77 temp InOut real Instance operating temperature
81 dtemp InOut real Instance temperature difference
15 sens_l In flag flag to request sensitivity WRT length
14 sens_w In flag flag to request sensitivity WRT width
22 dnode Out integer Number of drain node
23 gnode Out integer Number of gate node
24 snode Out integer Number of source node
25 bnode Out integer Number of bulk node
26 dnodeprime Out integer Number of internal drain node
27 snodeprime Out integer Number of internal source node
30 von Out real Turn-on voltage
31 vdsat Out real Saturation drain voltage
32 sourcevcrit Out real Critical source voltage
33 drainvcrit Out real Critical drain voltage
78 rs Out real Source resistance
28 sourceconductance Out real Source conductance

27.6. MOSFETS 705

79 rd Out real Drain resistance
29 drainconductance Out real Drain conductance
38 gm Out real Transconductance
39 gds Out real Drain-Source conductance
37 gmb Out real Bulk-Source transconductance
37 gmbs Out real Bulk-Source transconductance
40 gbd Out real Bulk-Drain conductance
41 gbs Out real Bulk-Source conductance
42 cbd Out real Bulk-Drain capacitance
43 cbs Out real Bulk-Source capacitance
52 cgs Out real Gate-Source capacitance
55 cgd Out real Gate-Drain capacitance
58 cgb Out real Gate-Bulk capacitance
54 cqgs Out real Capacitance due to gate-source charge storage
57 cqgd Out real Capacitance due to gate-drain charge storage
60 cqgb Out real Capacitance due to gate-bulk charge storage
62 cqbd Out real Capacitance due to bulk-drain charge storage
64 cqbs Out real Capacitance due to bulk-source charge storage
44 cbd0 Out real Zero-Bias B-D junction capacitance
45 cbdsw0 Out real Zero-Bias B-D sidewall capacitance
46 cbs0 Out real Zero-Bias B-S junction capacitance
47 cbssw0 Out real Zero-Bias B-S sidewall capacitance
63 qbs Out real Bulk-Source charge storage
53 qgs Out real Gate-Source charge storage
56 qgd Out real Gate-Drain charge storage
59 qgb Out real Gate-Bulk charge storage
61 qbd Out real Bulk-Drain charge storage
19 p Out real Instantaneous power
76 sens_l_dc Out real dc sensitivity wrt length
70 sens_l_real Out real real part of ac sensitivity wrt length
71 sens_l_imag Out real imag part of ac sensitivity wrt length
74 sens_l_cplx Out complex ac sensitivity wrt length
72 sens_l_mag Out real sensitivity wrt l of ac magnitude
73 sens_l_ph Out real sensitivity wrt l of ac phase
75 sens_w_dc Out real dc sensitivity wrt width
65 sens_w_real Out real real part of ac sensitivity wrt width
66 sens_w_imag Out real imag part of ac sensitivity wrt width
67 sens_w_mag Out real sensitivity wrt w of ac magnitude
68 sens_w_ph Out real sensitivity wrt w of ac phase
69 sens_w_cplx Out complex ac sensitivity wrt width

706 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.6. MOSFETS 707

27.6.3.2 MOS3 model parameters

Name Direction Type Description
144 type Out string N-channel or P-channel MOS
133 nmos In flag N type MOSfet model
134 pmos In flag P type MOSfet model
101 vto InOut real Threshold voltage
101 vt0 InOut real
102 kp InOut real Transconductance parameter
103 gamma InOut real Bulk threshold parameter
104 phi InOut real Surface potential
105 rd InOut real Drain ohmic resistance
106 rs InOut real Source ohmic resistance
107 cbd InOut real B-D junction capacitance
108 cbs InOut real B-S junction capacitance
109 is InOut real Bulk junction sat. current
110 pb InOut real Bulk junction potential
111 cgso InOut real Gate-source overlap cap.
112 cgdo InOut real Gate-drain overlap cap.
113 cgbo InOut real Gate-bulk overlap cap.
114 rsh InOut real Sheet resistance
115 cj InOut real Bottom junction cap per area
116 mj InOut real Bottom grading coefficient
117 cjsw InOut real Side junction cap per area
118 mjsw InOut real Side grading coefficient
119 js InOut real Bulk jct. sat. current density
120 tox InOut real Oxide thickness
121 ld InOut real Lateral diffusion
145 xl InOut real Length mask adjustment
146 wd InOut real Width Narrowing (Diffusion)
147 xw InOut real Width mask adjustment
148 delvto InOut real Threshold voltage Adjust
148 delvt0 InOut real
122 u0 InOut real Surface mobility
122 uo InOut real
123 fc InOut real Forward bias jct. fit parm.
124 nsub InOut real Substrate doping
125 tpg InOut integer Gate type
126 nss InOut real Surface state density
131 vmax InOut real Maximum carrier drift velocity
135 xj InOut real Junction depth
129 nfs InOut real Fast surface state density
138 xd InOut real Depletion layer width
139 alpha InOut real Alpha
127 eta InOut real Vds dependence of threshold voltage
128 delta InOut real Width effect on threshold
140 input_delta InOut real
130 theta InOut real Vgs dependence on mobility
132 kappa InOut real Kappa
141 tnom InOut real Parameter measurement temperature
142 kf InOut real Flicker noise coefficient
143 af InOut real Flicker noise exponent

708 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.6.4 MOS6 - Level 6 MOSFET model with Meyer capacitance model

27.6.4.1 MOS6 instance parameters

Name Direction Type Description
2 l InOut real Length
1 w InOut real Width

22 m InOut real Parallel Multiplier
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter

215 id Out real Drain current
215 cd Out real Drain current

18 is Out real Source current
17 ig Out real Gate current
16 ib Out real Bulk current

216 ibs Out real B-S junction capacitance
217 ibd Out real B-D junction capacitance
231 vgs Out real Gate-Source voltage
232 vds Out real Drain-Source voltage
230 vbs Out real Bulk-Source voltage
229 vbd Out real Bulk-Drain voltage

8 nrd InOut real Drain squares
7 nrs InOut real Source squares
9 off In flag Device initially off

12 icvds InOut real Initial D-S voltage
13 icvgs InOut real Initial G-S voltage
11 icvbs InOut real Initial B-S voltage
20 temp InOut real Instance temperature
21 dtemp InOut real Instance temperature difference
10 ic In real vector Vector of D-S, G-S, B-S voltages
15 sens_l In flag flag to request sensitivity WRT length
14 sens_w In flag flag to request sensitivity WRT width

203 dnode Out integer Number of the drain node
204 gnode Out integer Number of the gate node
205 snode Out integer Number of the source node
206 bnode Out integer Number of the node
207 dnodeprime Out integer Number of int. drain node
208 snodeprime Out integer Number of int. source node
258 rs Out real Source resistance
209 sourceconductance Out real Source conductance
259 rd Out real Drain resistance
210 drainconductance Out real Drain conductance
211 von Out real Turn-on voltage
212 vdsat Out real Saturation drain voltage

27.6. MOSFETS 709

213 sourcevcrit Out real Critical source voltage
214 drainvcrit Out real Critical drain voltage
218 gmbs Out real Bulk-Source transconductance
219 gm Out real Transconductance
220 gds Out real Drain-Source conductance
221 gbd Out real Bulk-Drain conductance
222 gbs Out real Bulk-Source conductance
233 cgs Out real Gate-Source capacitance
236 cgd Out real Gate-Drain capacitance
239 cgb Out real Gate-Bulk capacitance
223 cbd Out real Bulk-Drain capacitance
224 cbs Out real Bulk-Source capacitance
225 cbd0 Out real Zero-Bias B-D junction capacitance
226 cbdsw0 Out real
227 cbs0 Out real Zero-Bias B-S junction capacitance
228 cbssw0 Out real
235 cqgs Out real Capacitance due to gate-source charge storage
238 cqgd Out real Capacitance due to gate-drain charge storage
241 cqgb Out real Capacitance due to gate-bulk charge storage
243 cqbd Out real Capacitance due to bulk-drain charge storage
245 cqbs Out real Capacitance due to bulk-source charge storage
234 qgs Out real Gate-Source charge storage
237 qgd Out real Gate-Drain charge storage
240 qgb Out real Gate-Bulk charge storage
242 qbd Out real Bulk-Drain charge storage
244 qbs Out real Bulk-Source charge storage

19 p Out real Instaneous power
256 sens_l_dc Out real dc sensitivity wrt length
246 sens_l_real Out real real part of ac sensitivity wrt length
247 sens_l_imag Out real imag part of ac sensitivity wrt length
248 sens_l_mag Out real sensitivity wrt l of ac magnitude
249 sens_l_ph Out real sensitivity wrt l of ac phase
250 sens_l_cplx Out complex ac sensitivity wrt length
257 sens_w_dc Out real dc sensitivity wrt width
251 sens_w_real Out real real part of ac sensitivity wrt width
252 sens_w_imag Out real imag part of ac sensitivity wrt width
253 sens_w_mag Out real sensitivity wrt w of ac magnitude
254 sens_w_ph Out real sensitivity wrt w of ac phase
255 sens_w_cplx Out complex ac sensitivity wrt width

710 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.6.4.2 MOS6 model parameters

Name Direction Type Description
140 type Out string N-channel or P-channel MOS
101 vto InOut real Threshold voltage
101 vt0 InOut real
102 kv InOut real Saturation voltage factor
103 nv InOut real Saturation voltage coeff.
104 kc InOut real Saturation current factor
105 nc InOut real Saturation current coeff.
106 nvth InOut real Threshold voltage coeff.
107 ps InOut real Sat. current modification par.
108 gamma InOut real Bulk threshold parameter
109 gamma1 InOut real Bulk threshold parameter 1
110 sigma InOut real Static feedback effect par.
111 phi InOut real Surface potential
112 lambda InOut real Channel length modulation param.
113 lambda0 InOut real Channel length modulation param. 0
114 lambda1 InOut real Channel length modulation param. 1
115 rd InOut real Drain ohmic resistance
116 rs InOut real Source ohmic resistance
117 cbd InOut real B-D junction capacitance
118 cbs InOut real B-S junction capacitance
119 is InOut real Bulk junction sat. current
120 pb InOut real Bulk junction potential
121 cgso InOut real Gate-source overlap cap.
122 cgdo InOut real Gate-drain overlap cap.
123 cgbo InOut real Gate-bulk overlap cap.
131 rsh InOut real Sheet resistance
124 cj InOut real Bottom junction cap per area
125 mj InOut real Bottom grading coefficient
126 cjsw InOut real Side junction cap per area
127 mjsw InOut real Side grading coefficient
128 js InOut real Bulk jct. sat. current density
130 ld InOut real Lateral diffusion
129 tox InOut real Oxide thickness
132 u0 InOut real Surface mobility
132 uo InOut real
133 fc InOut real Forward bias jct. fit parm.
137 nmos In flag N type MOSfet model
138 pmos In flag P type MOSfet model
135 tpg InOut integer Gate type
134 nsub InOut real Substrate doping
136 nss InOut real Surface state density
139 tnom InOut real Parameter measurement temperature

27.6. MOSFETS 711

27.6.5 MOS9 - Modified Level 3 MOSFET model

27.6.5.1 MOS9 instance parameters

Name Direction Type Description
80 m InOut real Multiplier

2 l InOut real Length
1 w InOut real Width
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter

34 id Out real Drain current
34 cd Out real Drain current
36 ibd Out real B-D junction current
35 ibs Out real B-S junction current
18 is Out real Source current
17 ig Out real Gate current
16 ib Out real Bulk current
50 vgs Out real Gate-Source voltage
51 vds Out real Drain-Source voltage
49 vbs Out real Bulk-Source voltage
48 vbd Out real Bulk-Drain voltage

8 nrd InOut real Drain squares
7 nrs InOut real Source squares
9 off In flag Device initially off

12 icvds InOut real Initial D-S voltage
13 icvgs InOut real Initial G-S voltage
11 icvbs InOut real Initial B-S voltage
10 ic InOut real vector Vector of D-S, G-S, B-S voltages
77 temp InOut real Instance operating temperature
81 dtemp InOut real Instance operating temperature difference
15 sens_l In flag flag to request sensitivity WRT length
14 sens_w In flag flag to request sensitivity WRT width
22 dnode Out integer Number of drain node
23 gnode Out integer Number of gate node
24 snode Out integer Number of source node
25 bnode Out integer Number of bulk node
26 dnodeprime Out integer Number of internal drain node
27 snodeprime Out integer Number of internal source node
30 von Out real Turn-on voltage
31 vdsat Out real Saturation drain voltage
32 sourcevcrit Out real Critical source voltage
33 drainvcrit Out real Critical drain voltage
78 rs Out real Source resistance
28 sourceconductance Out real Source conductance

712 CHAPTER 27. MODEL AND DEVICE PARAMETERS

79 rd Out real Drain resistance
29 drainconductance Out real Drain conductance
38 gm Out real Transconductance
39 gds Out real Drain-Source conductance
37 gmb Out real Bulk-Source transconductance
37 gmbs Out real Bulk-Source transconductance
40 gbd Out real Bulk-Drain conductance
41 gbs Out real Bulk-Source conductance
42 cbd Out real Bulk-Drain capacitance
43 cbs Out real Bulk-Source capacitance
52 cgs Out real Gate-Source capacitance
55 cgd Out real Gate-Drain capacitance
58 cgb Out real Gate-Bulk capacitance
54 cqgs Out real Capacitance due to gate-source charge storage
57 cqgd Out real Capacitance due to gate-drain charge storage
60 cqgb Out real Capacitance due to gate-bulk charge storage
62 cqbd Out real Capacitance due to bulk-drain charge storage
64 cqbs Out real Capacitance due to bulk-source charge storage
44 cbd0 Out real Zero-Bias B-D junction capacitance
45 cbdsw0 Out real Zero-Bias B-D sidewall capacitance
46 cbs0 Out real Zero-Bias B-S junction capacitance
47 cbssw0 Out real Zero-Bias B-S sidewall capacitance
63 qbs Out real Bulk-Source charge storage
53 qgs Out real Gate-Source charge storage
56 qgd Out real Gate-Drain charge storage
59 qgb Out real Gate-Bulk charge storage
61 qbd Out real Bulk-Drain charge storage
19 p Out real Instantaneous power
76 sens_l_dc Out real dc sensitivity wrt length
70 sens_l_real Out real real part of ac sensitivity wrt length
71 sens_l_imag Out real imag part of ac sensitivity wrt length
74 sens_l_cplx Out complex ac sensitivity wrt length
72 sens_l_mag Out real sensitivity wrt l of ac magnitude
73 sens_l_ph Out real sensitivity wrt l of ac phase
75 sens_w_dc Out real dc sensitivity wrt width
65 sens_w_real Out real real part of ac sensitivity wrt width
66 sens_w_imag Out real imag part of ac sensitivity wrt width
67 sens_w_mag Out real sensitivity wrt w of ac magnitude
68 sens_w_ph Out real sensitivity wrt w of ac phase
69 sens_w_cplx Out complex ac sensitivity wrt width

27.6. MOSFETS 713

714 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.6.5.2 MOS9 model parameters

Name Direction Type Description
144 type Out string N-channel or P-channel MOS
133 nmos In flag N type MOSfet model
134 pmos In flag P type MOSfet model
101 vto InOut real Threshold voltage
101 vt0 InOut real
102 kp InOut real Transconductance parameter
103 gamma InOut real Bulk threshold parameter
104 phi InOut real Surface potential
105 rd InOut real Drain ohmic resistance
106 rs InOut real Source ohmic resistance
107 cbd InOut real B-D junction capacitance
108 cbs InOut real B-S junction capacitance
109 is InOut real Bulk junction sat. current
110 pb InOut real Bulk junction potential
111 cgso InOut real Gate-source overlap cap.
112 cgdo InOut real Gate-drain overlap cap.
113 cgbo InOut real Gate-bulk overlap cap.
114 rsh InOut real Sheet resistance
115 cj InOut real Bottom junction cap per area
116 mj InOut real Bottom grading coefficient
117 cjsw InOut real Side junction cap per area
118 mjsw InOut real Side grading coefficient
119 js InOut real Bulk jct. sat. current density
120 tox InOut real Oxide thickness
121 ld InOut real Lateral diffusion
145 xl InOut real Length mask adjustment
146 wd InOut real Width Narrowing (Diffusion)
147 xw InOut real Width mask adjustment
148 delvto InOut real Threshold voltage Adjust
148 delvt0 InOut real
122 u0 InOut real Surface mobility
122 uo InOut real
123 fc InOut real Forward bias jct. fit parm.
124 nsub InOut real Substrate doping
125 tpg InOut integer Gate type
126 nss InOut real Surface state density
131 vmax InOut real Maximum carrier drift velocity
135 xj InOut real Junction depth
129 nfs InOut real Fast surface state density
138 xd InOut real Depletion layer width
139 alpha InOut real Alpha
127 eta InOut real Vds dependence of threshold voltage
128 delta InOut real Width effect on threshold
140 input_delta InOut real
130 theta InOut real Vgs dependence on mobility
132 kappa InOut real Kappa
141 tnom InOut real Parameter measurement temperature
142 kf InOut real Flicker noise coefficient
143 af InOut real Flicker noise exponent

27.6. MOSFETS 715

27.6.6 BSIM1 - Berkeley Short Channel IGFET Model

27.6.6.1 BSIM1 instance parameters

Name Direction Type Description
2 l InOut real Length
1 w InOut real Width

14 m InOut real Parallel Multiplier
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter
8 nrd InOut real Number of squares in drain
7 nrs InOut real Number of squares in source
9 off InOut flag Device is initially off

11 vds InOut real Initial D-S voltage
12 vgs InOut real Initial G-S voltage
10 vbs InOut real Initial B-S voltage
13 ic In unknown vector Vector of DS,GS,BS initial voltages

27.6.6.2 BSIM1 Model Parameters

Name Direction Type Description
101 vfb InOut real Flat band voltage
102 lvfb InOut real Length dependence of vfb
103 wvfb InOut real Width dependence of vfb
104 phi InOut real Strong inversion surface potential
105 lphi InOut real Length dependence of phi
106 wphi InOut real Width dependence of phi
107 k1 InOut real Bulk effect coefficient 1
108 lk1 InOut real Length dependence of k1
109 wk1 InOut real Width dependence of k1
110 k2 InOut real Bulk effect coefficient 2
111 lk2 InOut real Length dependence of k2
112 wk2 InOut real Width dependence of k2
113 eta InOut real VDS dependence of threshold voltage
114 leta InOut real Length dependence of eta
115 weta InOut real Width dependence of eta
116 x2e InOut real VBS dependence of eta
117 lx2e InOut real Length dependence of x2e
118 wx2e InOut real Width dependence of x2e
119 x3e InOut real VDS dependence of eta
120 lx3e InOut real Length dependence of x3e
121 wx3e InOut real Width dependence of x3e
122 dl InOut real Channel length reduction in um

716 CHAPTER 27. MODEL AND DEVICE PARAMETERS

123 dw InOut real Channel width reduction in um
124 muz InOut real Zero field mobility at VDS=0 VGS=VTH
125 x2mz InOut real VBS dependence of muz
126 lx2mz InOut real Length dependence of x2mz
127 wx2mz InOut real Width dependence of x2mz
128 mus InOut real Mobility at VDS=VDD VGS=VTH, channel length modulation
129 lmus InOut real Length dependence of mus
130 wmus InOut real Width dependence of mus
131 x2ms InOut real VBS dependence of mus
132 lx2ms InOut real Length dependence of x2ms
133 wx2ms InOut real Width dependence of x2ms
134 x3ms InOut real VDS dependence of mus
135 lx3ms InOut real Length dependence of x3ms
136 wx3ms InOut real Width dependence of x3ms
137 u0 InOut real VGS dependence of mobility
138 lu0 InOut real Length dependence of u0
139 wu0 InOut real Width dependence of u0
140 x2u0 InOut real VBS dependence of u0
141 lx2u0 InOut real Length dependence of x2u0
142 wx2u0 InOut real Width dependence of x2u0
143 u1 InOut real VDS depence of mobility, velocity saturation
144 lu1 InOut real Length dependence of u1
145 wu1 InOut real Width dependence of u1
146 x2u1 InOut real VBS depence of u1
147 lx2u1 InOut real Length depence of x2u1
148 wx2u1 InOut real Width depence of x2u1
149 x3u1 InOut real VDS depence of u1
150 lx3u1 InOut real Length dependence of x3u1
151 wx3u1 InOut real Width depence of x3u1
152 n0 InOut real Subthreshold slope
153 ln0 InOut real Length dependence of n0
154 wn0 InOut real Width dependence of n0
155 nb InOut real VBS dependence of subthreshold slope
156 lnb InOut real Length dependence of nb
157 wnb InOut real Width dependence of nb
158 nd InOut real VDS dependence of subthreshold slope
159 lnd InOut real Length dependence of nd
160 wnd InOut real Width dependence of nd
161 tox InOut real Gate oxide thickness in um
162 temp InOut real Temperature in degree Celcius
163 vdd InOut real Supply voltage to specify mus
164 cgso InOut real Gate source overlap capacitance per unit channel width(m)
165 cgdo InOut real Gate drain overlap capacitance per unit channel width(m)
166 cgbo InOut real Gate bulk overlap capacitance per unit channel length(m)
167 xpart InOut real Flag for channel charge partitioning
168 rsh InOut real Source drain diffusion sheet resistance in ohm per square

27.6. MOSFETS 717

169 js InOut real Source drain junction saturation current per unit area
170 pb InOut real Source drain junction built in potential
171 mj InOut real Source drain bottom junction capacitance grading coefficient
172 pbsw InOut real Source drain side junction capacitance built in potential
173 mjsw InOut real Source drain side junction capacitance grading coefficient
174 cj InOut real Source drain bottom junction capacitance per unit area
175 cjsw InOut real Source drain side junction capacitance per unit area
176 wdf InOut real Default width of source drain diffusion in um
177 dell InOut real Length reduction of source drain diffusion
180 kf InOut real Flicker noise coefficient
181 af InOut real Flicker noise exponent
178 nmos In flag Flag to indicate NMOS
179 pmos In flag Flag to indicate PMOS

718 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.6.7 BSIM2 - Berkeley Short Channel IGFET Model

27.6.7.1 BSIM2 instance parameters

Name Direction Type Description
2 l InOut real Length
1 w InOut real Width

14 m InOut real Parallel Multiplier
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter
8 nrd InOut real Number of squares in drain
7 nrs InOut real Number of squares in source
9 off InOut flag Device is initially off

11 vds InOut real Initial D-S voltage
12 vgs InOut real Initial G-S voltage
10 vbs InOut real Initial B-S voltage
13 ic In unknown vector Vector of DS,GS,BS initial voltages

27.6.7.2 BSIM2 model parameters

Name Direction Type Description
101 vfb InOut real Flat band voltage
102 lvfb InOut real Length dependence of vfb
103 wvfb InOut real Width dependence of vfb
104 phi InOut real Strong inversion surface potential
105 lphi InOut real Length dependence of phi
106 wphi InOut real Width dependence of phi
107 k1 InOut real Bulk effect coefficient 1
108 lk1 InOut real Length dependence of k1
109 wk1 InOut real Width dependence of k1
110 k2 InOut real Bulk effect coefficient 2
111 lk2 InOut real Length dependence of k2
112 wk2 InOut real Width dependence of k2
113 eta0 InOut real VDS dependence of threshold voltage at VDD=0
114 leta0 InOut real Length dependence of eta0
115 weta0 InOut real Width dependence of eta0
116 etab InOut real VBS dependence of eta
117 letab InOut real Length dependence of etab
118 wetab InOut real Width dependence of etab
119 dl InOut real Channel length reduction in um
120 dw InOut real Channel width reduction in um
121 mu0 InOut real Low-field mobility, at VDS=0 VGS=VTH
122 mu0b InOut real VBS dependence of low-field mobility
123 lmu0b InOut real Length dependence of mu0b

27.6. MOSFETS 719

124 wmu0b InOut real Width dependence of mu0b
125 mus0 InOut real Mobility at VDS=VDD VGS=VTH
126 lmus0 InOut real Length dependence of mus0
127 wmus0 InOut real Width dependence of mus
128 musb InOut real VBS dependence of mus
129 lmusb InOut real Length dependence of musb
130 wmusb InOut real Width dependence of musb
131 mu20 InOut real VDS dependence of mu in tanh term
132 lmu20 InOut real Length dependence of mu20
133 wmu20 InOut real Width dependence of mu20
134 mu2b InOut real VBS dependence of mu2
135 lmu2b InOut real Length dependence of mu2b
136 wmu2b InOut real Width dependence of mu2b
137 mu2g InOut real VGS dependence of mu2
138 lmu2g InOut real Length dependence of mu2g
139 wmu2g InOut real Width dependence of mu2g
140 mu30 InOut real VDS dependence of mu in linear term
141 lmu30 InOut real Length dependence of mu30
142 wmu30 InOut real Width dependence of mu30
143 mu3b InOut real VBS dependence of mu3
144 lmu3b InOut real Length dependence of mu3b
145 wmu3b InOut real Width dependence of mu3b
146 mu3g InOut real VGS dependence of mu3
147 lmu3g InOut real Length dependence of mu3g
148 wmu3g InOut real Width dependence of mu3g
149 mu40 InOut real VDS dependence of mu in linear term
150 lmu40 InOut real Length dependence of mu40
151 wmu40 InOut real Width dependence of mu40
152 mu4b InOut real VBS dependence of mu4
153 lmu4b InOut real Length dependence of mu4b
154 wmu4b InOut real Width dependence of mu4b
155 mu4g InOut real VGS dependence of mu4
156 lmu4g InOut real Length dependence of mu4g
157 wmu4g InOut real Width dependence of mu4g
158 ua0 InOut real Linear VGS dependence of mobility
159 lua0 InOut real Length dependence of ua0
160 wua0 InOut real Width dependence of ua0
161 uab InOut real VBS dependence of ua
162 luab InOut real Length dependence of uab
163 wuab InOut real Width dependence of uab
164 ub0 InOut real Quadratic VGS dependence of mobility
165 lub0 InOut real Length dependence of ub0
166 wub0 InOut real Width dependence of ub0
167 ubb InOut real VBS dependence of ub
168 lubb InOut real Length dependence of ubb
169 wubb InOut real Width dependence of ubb

720 CHAPTER 27. MODEL AND DEVICE PARAMETERS

170 u10 InOut real VDS depence of mobility
171 lu10 InOut real Length dependence of u10
172 wu10 InOut real Width dependence of u10
173 u1b InOut real VBS depence of u1
174 lu1b InOut real Length depence of u1b
175 wu1b InOut real Width depence of u1b
176 u1d InOut real VDS depence of u1
177 lu1d InOut real Length depence of u1d
178 wu1d InOut real Width depence of u1d
179 n0 InOut real Subthreshold slope at VDS=0 VBS=0
180 ln0 InOut real Length dependence of n0
181 wn0 InOut real Width dependence of n0
182 nb InOut real VBS dependence of n
183 lnb InOut real Length dependence of nb
184 wnb InOut real Width dependence of nb
185 nd InOut real VDS dependence of n
186 lnd InOut real Length dependence of nd
187 wnd InOut real Width dependence of nd
188 vof0 InOut real Threshold voltage offset AT VDS=0 VBS=0
189 lvof0 InOut real Length dependence of vof0
190 wvof0 InOut real Width dependence of vof0
191 vofb InOut real VBS dependence of vof
192 lvofb InOut real Length dependence of vofb
193 wvofb InOut real Width dependence of vofb
194 vofd InOut real VDS dependence of vof
195 lvofd InOut real Length dependence of vofd
196 wvofd InOut real Width dependence of vofd
197 ai0 InOut real Pre-factor of hot-electron effect.
198 lai0 InOut real Length dependence of ai0
199 wai0 InOut real Width dependence of ai0
200 aib InOut real VBS dependence of ai
201 laib InOut real Length dependence of aib
202 waib InOut real Width dependence of aib
203 bi0 InOut real Exponential factor of hot-electron effect.
204 lbi0 InOut real Length dependence of bi0
205 wbi0 InOut real Width dependence of bi0
206 bib InOut real VBS dependence of bi
207 lbib InOut real Length dependence of bib
208 wbib InOut real Width dependence of bib
209 vghigh InOut real Upper bound of the cubic spline function.
210 lvghigh InOut real Length dependence of vghigh
211 wvghigh InOut real Width dependence of vghigh
212 vglow InOut real Lower bound of the cubic spline function.
213 lvglow InOut real Length dependence of vglow
214 wvglow InOut real Width dependence of vglow
215 tox InOut real Gate oxide thickness in um

27.6. MOSFETS 721

216 temp InOut real Temperature in degree Celcius
217 vdd InOut real Maximum Vds
218 vgg InOut real Maximum Vgs
219 vbb InOut real Maximum Vbs
220 cgso InOut real Gate source overlap capacitance per unit channel width(m)
221 cgdo InOut real Gate drain overlap capacitance per unit channel width(m)
222 cgbo InOut real Gate bulk overlap capacitance per unit channel length(m)
223 xpart InOut real Flag for channel charge partitioning
224 rsh InOut real Source drain diffusion sheet resistance in ohm per square
225 js InOut real Source drain junction saturation current per unit area
226 pb InOut real Source drain junction built in potential
227 mj InOut real Source drain bottom junction capacitance grading coefficient
228 pbsw InOut real Source drain side junction capacitance built in potential
229 mjsw InOut real Source drain side junction capacitance grading coefficient
230 cj InOut real Source drain bottom junction capacitance per unit area
231 cjsw InOut real Source drain side junction capacitance per unit area
232 wdf InOut real Default width of source drain diffusion in um
233 dell InOut real Length reduction of source drain diffusion
236 kf InOut real Flicker noise coefficient
237 af InOut real Flicker noise exponent
234 nmos In flag Flag to indicate NMOS
235 pmos In flag Flag to indicate PMOS

722 CHAPTER 27. MODEL AND DEVICE PARAMETERS

27.6.8 BSIM3

The accessible device parameters (see Chapt. 27.1 for the syntax) are listed here.

BSIM3 accessible instance parameters

Name Direction Type Description
1 id Out real Drain current
2 vgs Out real Gate-Source voltage
3 vds Out real Drain-Source voltage
4 vbs Out real Bulk-Source voltage
5 gm Out real Transconductance
6 gds Out real Drain-Source conductance
7 gmbs Out real Bulk-Source transconductance
8 vdsat Out real Saturation voltage
9 vth Out real Threshold voltage

10 ibd Out real
11 ibs Out real
12 gbd Out real
13 gbs Out real
14 qb Out real Qbulk
15 cqb Out real
16 qg Out real Qgate
17 cqg Out real
18 qd Out real Qdrain
19 cqd Out real
20 cgg Out real
21 cgd Out real
22 cgs Out real
23 cdg Out real
24 cdd Out real
25 cds Out real
26 cbg Out real
27 cbd Out real
28 cbs Out real
29 capbd Out real Diode capacitance
30 capbs Out real Diode capacitance

The parameters are available in the BSIM3 models (level=8 or level=49) version=3.2.4 and ver-
sion=3.3.0 only. Negative capacitance values may occur, depending on the internal calculation.
Please see the note in Chapt. 27.6.9.

BSIM3 manual Further detailed descriptions will not be given here. Unfortunately the details
on these parameters are not documented, even not in the otherwise excellent pdf manual issued
by University of California at Berkeley.

https://ngspice.sourceforge.io/external-documents/models/bsim330_manual.pdf

27.6. MOSFETS 723

27.6.9 BSIM4

The accessible device parameters (see Chapt. 27.1 for the syntax) are listed here.

BSIM4 accessible instance parameters

Name Direction Type Description
gmbs Out real Body effect (Back gate) transconductance
gm Out real Transconductance
gds Out real Drain-Source conductance
vdsat Out real Saturation voltage
vth Out real Threshold voltage
id Out real Drain current
ibd Out real Bulk-Drain junction current
ibs Out real Bulk-Source junction current
gbd Out real Bulk-Drain junction conductance
gbs Out real Bulk-Source junction conductance
isub Out real Substrate current
igidl Out real Gate-Induced Drain Leakage current
igisl Out real Gate-Induced Source Leakage current
igs Out real Gate-Source tunneling current
igd Out real Gate-Drain tunneling current
igb Out real Gate-Bulk tunneling current
igcs Out real Gate-Channel-Source tunneling current
igcd Out real Gate-Channel-Drain tunneling current
vbs Out real Bulk-Source voltage
vgs Out real Gate-Source voltage
vds Out real Drain-Source voltage
cgg Out real Intrinsic Gate capacitance
cgs Out real Intrinsic Gate-Source transcapacitance
cgd Out real Intrinsic Gate-Drain transcapacitance
cbg Out real Intrinsic Bulk-Gate transcapacitance
cbd Out real Intrinsic Bulk-Drain transcapacitance
cbs Out real Intrinsic Bulk-Source transcapacitance
cdg Out real Intrinsic Drain-Gate transcapacitance
cdd Out real Intrinsic Drain capacitance
cds Out real Intrinsic Drain-Source transcapacitance
csg Out real Intrinsic Source-Gate transcapacitance
csd Out real Intrinsic Source-Drain transcapacitance
css Out real Intrinsic Source capacitance
cgb Out real Intrinsic Gate-Bulk transcapacitance
cdb Out real Intrinsic Drain-Bulk transcapacitance
csb Out real Intrinsic Source-Bulk transcapacitance
cbb Out real Intrinsic Bulk capacitance
capbd Out real Drain-Bulk junction capacitance
capbs Out real Drain-Source junction capacitance

724 CHAPTER 27. MODEL AND DEVICE PARAMETERS

qg Out real Gate charge
qb Out real Bulk charge
qd Out real Drain charge
qs Out real Source charge
qinv Out real Channel charge
qdef Out real
gcrg Out real
gtau Out real
vgsteff Out real Effective Gate-Source voltage
vdseff Out real Effective Drain-Source voltage
cgso Out real Gate-Source overlap and fringing capacitance
cgdo Out real Gate-Drain overlap and fringing capacitance
cgbo Out real Gate-Bulk overlap and fringing capacitance
weff Out real Effective width
leff Out real Effective length

The parameters are available in all BSIM4 models (level=14 or level=54) version=4.2.1 to ver-
sion=4.8.

Negative capacitance values may occur, depending on the internal calculation. To compare with
measured data, please just use the absolute values of the capacitance data. For an explanation of
negative values and the basics on how capacitance values are evaluated in a BSIM model, please
refer to the book BSIM4 and MOSFET Modeling for IC Simulation by Liu and Hu, Chapt. 5.2.

BSIM4 manual Detailed descriptions will not be given here. Unfortunately the details on
these parameters are not documented, even not in the otherwise excellent pdf manual issued by
University of California at Berkeley.

http://ngspice.sourceforge.net/books.html
https://ngspice.sourceforge.io/external-documents/models/BSIM480_Manual.pdf

Chapter 28

Compilation notes

This file describes the procedures to install ngspice from sources.

Some special considerations are required when Verilog-A models are to be included (see chapter
9.2).

28.1 Ngspice Installation under Linux (and other ’UNIXes’)

28.1.1 Prerequisites

Ngspice is written in C and thus a complete C compilation environment is needed. Ngspice is
developed on GNU/Linux with autotools, gcc, and GNU make.

The following software must be installed in your system to compile ngspice: bison, flex, and
X11 (and Xaw, Xmu, Xext, Xft, FontConfig, Xrender, and freetype) headers (e.g. libX11-
devel) and libs (e.g. libX11-6).

The X11 headers and libraries are typically available in an X11 development package from your
Linux distribution.

If you want to compile the source code from Git, you will need additional software: autoconf,
automake, libtool.

For your convenience you always should add readline (or editline) libs and headers.

If you intend to make tclspice (see chapt. 16), you will need tcl/tk and blt.

If you want to have high performance and accurate FFT’s you should install: fftw-3. The
ngspice configure script will find the library and will induce the build process to link against it.

28.1.2 Install from Git

This section describes how to install from source code taken direct from Git. This will give
you access to the most recent enhancements and corrections. However be careful as the code
in Git may be under development and thus still unstable. For user install instructions using
source from released distributions, please see the sections titled ’Install from tarball’ (28.1.3)
and ’Advanced Install’ (28.1.8).

725

726 CHAPTER 28. COMPILATION NOTES

Download source from Git as described on the sourceforge ngspice Git page. Define and enter
a directory of your choice, e.g. /home/myname/software/. Download the complete ngspice
repository from Git, for example by anonymous access issuing the command

git clone git://git.code.sf.net/p/ngspice/ngspice

or via http protocol

git clone http://git.code.sf.net/p/ngspice/ngspice

You will find the sources in directory /home/myname/software/ngspice. Now enter the
ngspice top level directory ngspice (where the installation instruction file INSTALL can be
found).

The project uses the GNU build process. You should be able to do the following:

$./compile_linux.sh

This script will run autogen.sh, create a release directory, run ../configure, clean, make
and make install, all with suitable parameters to compile a 64 bit version of ngspice, includ-
ing the XSPICE code models.

A suitable manual approach for compiling (without release directory) might be:

$./autogen.sh

$./configure --with-x CFLAGS="-m64 -O2" LDFLAGS="-m64 -s"

$ make clean

$ make

$ sudo make install

See the section titled ’Advanced Install’ (28.1.8) for instructions about arguments that can be
passed to ./configure to customize the build and installation. CIDER is optional, as well as
the X11 plot interface. Both are included and used in ./compile_linux.sh:

--enable-cider Include CIDER numerical device simulator (see Chapt. 26).

--with-x Include the X11 graphics interface.

Starting with ngspice-43, the following options are included automatically: XSPICE (for XSPICE
extensions, see chapters 8 and 24), KLU (KLU matrix solver in addition to Sparse 1.3), read-
line, OpenMP (parallel model evaluation for selected device models), FFTW3 (use the fftw3 fast
Fourier library) and OSDI (interface for loading Verilog-A compact device models compiled by
OpenVAF (see 9.2)). These options may be de-selected, if not required:

--disable-xspice

--disable-klu

--with-readline=no If readline is not available, editline may be used.

--disable-openmp

--disable-osdi

--with-fftw3=no

http://sourceforge.net/scm/?type=git&group_id=38962

28.1. NGSPICE INSTALLATION UNDER LINUX (AND OTHER ’UNIXES’) 727

It is however recommended to keep the options, as they enhance ngspice capabilities signifi-
cantly.

CFLAGS="-m64 -O2" LDFLAGS="-m64 -s" will enable a 64 bit build (-m64) and stress the
optmisation (-O2). -s will yield a minimum size executable (debug information stripped). On
most systems --disable-debug will have the same effect. A 32bit build can be made if all 32
bit tools (compiler etc.) are installed and -m32 is given instead of -m64. This is however not
tested anymore, as 64 bit system prevail.

$make clean may sometimes help avoiding mixing up old and newly created object files.

For your convenience a shell script compile_linux.sh is available in ngspice directory. to be
started with ./compile_linux.sh <d> (d is optional for the debug build).

If a problem is found with the build process, please submit a report to the Ngspice development
team. Please provide information about your system and any ./configure arguments you
are using, together with any error messages. Ideally you would have tried to fix the problem
yourself first. If you have fixed the problem then the development team will love to hear from
you.

If you need updating your local source code tree from Git, just enter the ngspice directory and
issue the command

git pull

git pull will not overwrite modified files in your working directory. To drop your local
changes first, you can run

git reset --hard

To learn more about Git, which can be both powerful and difficult to master, please consult
http://git-scm.com/, especially: http://git-scm.com/documentation, which has links to docu-
mentation and tutorials.

28.1.3 Install from a tarball, e.g. from ngspice-44.tar.gz

This covers installation from a tarball (for example ngspice-39.tar.gz, to be found at http://sourceforge.net/projects/ngspice/files/ng-
spice-rework/43/). After downloading the tar ball to a local directory unpack it using:

$ tar -zxvf ngspice-44.tar.gz

Now change directories in to the top-level source directory (where this text from the INSTALL
file can be found).

You should be able to do:

$./configure --with-x11

$ make clean

$ make

$ sudo make install

The default install dir is /usr/local/bin

See the section titled ’Advanced Install’ (28.1.8) for instructions about arguments that can be
passed to ./configure to customize the build and installation.

http://git-scm.com/
http://git-scm.com/documentation

728 CHAPTER 28. COMPILATION NOTES

28.1.4 Compilation using an user defined directory tree for object files

The procedures described above will store the *.o files (output of the compilation step) into the
directories where the sources (*.c) are located. This may not be the best option if you want for
example to maintain a debug version and in parallel a release version of ngspice (./configure
--disable-debug). So if you intend to create a separate object file tree like ngspice/ng-
build/release, you may do the following, starting from the default directory ngspice:

mkdir -p release

cd release

../configure --with-x11 <more options>

make install

This will create an object file directory tree, similar to the source file directory tree, the object
files are now separated from the source files. For the debug version, you may do the same as
described above, replacing ’release’ by ’debug’, and obtain another separated object file direc-
tory tree. If you already have run ./configure in ngspice, you have to do a maintainer-clean,
before the above procedure will work. The script ./compile_linux.sh is made according to
the procedure described above.

28.1.5 ngspice as a shared library

From the tarball (for example ngspice-44.tar.gz, see above), with the GNU build process and
the following options selected:

$./configure --with-ngshared --enable-cider

$ make clean

$ make

$ sudo make install

you will get the ngspice shared library. A file ngspice.pc for pkg-config is generated.

$make clean may sometimes help avoiding mixing up old and newly created object files. It is
required if you make both shared and standard ngspice from the same setup.

With sources from git you have to do:

$./autogen.sh

$./configure --with-ngshared --enable-cider

$ make clean

$ make

$ sudo make install

28.1.6 Relative paths for spinit and code models

The ./configure option

$./configure --enable-relpath

28.1. NGSPICE INSTALLATION UNDER LINUX (AND OTHER ’UNIXES’) 729

deserves some extra mentioning:

It sets relative search paths for the file spinit and the XSPICE code models *.cm. spinit will
be look up in ../share/ngspice/scripts. The search path for the code models (as set by
the parameter to the codemodel command in spinit) is set to ../lib/ngspice. The binary is
found in ../bin. All these paths are relative to the current directory. Under MS Windows, this
is the directory of ngspice.exe as per default, but may be set to any other directory with the cd
(chapt. 13.5.12) command.

The install path for the ngspice executable is determined by the --prefix flag of ./configure.

The current directory for the ngspice shared library is determined by the calling program.

28.1.7 Installation on Red Hat or Oracle Linux (and similar, e.g. Centos)

These OSs, widely distributed among commercial users, require some special considerations.
There is an extra document, NGSPICE on Red Hat Like Distributions.pdf, provided by Justin
Fisher, available with the ngspice distribution.

28.1.8 Advanced Install

Some extra options can be provided to ./configure. To get all available options do:

$./configure --help

Some of these options are generic to the GNU build process that is used by Ngspice, other are
specific to Ngspice.

The following sections provide some guidance and descriptions for many, but not all, of these
options.

28.1.8.1 Options Specific to Using Ngspice

Already included options:

--enable-openmp Compile ngspice for multi-core processors. Paralleling is done by OpenMP
(see Chapt. 12.10).

--enable-xspice Enable XSPICE enhancements, yielding a mixed signal simulator integrated
into ngspice with codemodel dynamic loading support. See Chapt. 8 and section II for details.

--enable-osdi Enable the OSDI interface for loading Verilog-A compact device models com-
piled by OpenVAF (see 9.2)

--enable-klu Enable the KLU matrix solver

--with-readline=yes Enable GNU readline support for the command line interface.

User-selectable options:

--enable-cider Cider is a mixed-level simulator that couples Spice3 and DSIM to simulate
devices from their technological parameters. This part of the simulator is not compiled in by
default.

http://tiswww.case.edu/php/chet/readline/rltop.html

730 CHAPTER 28. COMPILATION NOTES

--with-editline=yes Enables the use of the BSD editline library (libedit).
See http://www.thrysoee.dk/editline/. To be used in addition with switching off readline by
--with-readline=no.

--without-x Disable the X-Windows graphical system. Compile without needing X headers
and X libraries. The plot command (13.5.56) is now disabled. You may use Gnuplot (13.5.38)
instead.

--with-tcl=tcldir When configured with this option the tcl module ‘tclspice’ is compiled
and installed instead of plain ngspice.

--with-ngshared This option will create a shared library (*.so in Linux) or dynamic link
library (*.dll) instead of plain ngspice.

--enable-relpath This options introduces a search path for spinit relative to the calling exe-
cutable (ngspice or the caller using the ngspice shared library) as ../share/ngspice. In spinit
the search path for code models is also set as relative as ../lib. This option may be effective
especially when not using standard installation paths in Linux, but especially for ngspice.dll
under MS Windows, if to be installed in other directories than in C:\Spice64.

--disable-debug This option will remove the ’-g’ option passed to the compiler. This speeds
up execution time, creates a small executable, and is recommended for normal use. If you want
to run ngspice in a debugger (e.g. gdb), you should not select this option.

--enable-pss This is an experimental feature to enable Periodic Steady State Analysis.

--enable-oldapps Beginning with ngspice-28, only ngspice executable is made. If you need
old apps like ngnutmeg, ngmakeidx, ngmultidec, ngproc2mod, ngsconvert, use this ./configure
flag.

--with-fftw3=noDo not check for and use the fftw fast fourier transform library (www.fftw.org).
Use an internal fft algorithm instead. Default is yes.

--disable-utf8 Switch off UNICODE support, use extended ASCII with Western character
support instead.

--disable-sp Switch off RF support: no integrated S-parameter simulation, no RF noise sim-
ulation (11.3.8).

--enable-shortcheck Enables a ’make check’ with strongly reduced runtime. Besides some
regression tests only BSIM3 and BSM4 devices are checked.

28.1.8.2 Options for experimental usage only

The following options are seldom used today, not tested, some may even no longer be imple-
mented (correctly) and lead to errors.

--enable-capbypass Bypass calculation of cbd/cbs in the mosfets if the vbs/vbd voltages are
unchanged.

--enable-capzerobypass Bypass all the cbd/cbs calculations if Czero is zero. This is enabled
by default since rework-18.

--enable-cluster Clustering code for distributed simulation. This is a contribution never
tested. This code comes from TCLspice implementation and is implemented for transient anal-
ysis only.

http://www.thrysoee.dk/editline/
http://www.fftw.org

28.1. NGSPICE INSTALLATION UNDER LINUX (AND OTHER ’UNIXES’) 731

--enable-expdevices Enable experimental devices. This option is used by developers to
mask devices under development. Almost useless for users.

--enable-experimental This may be used to enable some experimental code. The code
has to be encapsuated into #ifdef EXPERIMENTAL_CODE ... #endif constructs. Currently
there is no such code available.

--enable-help Force building nghelp. This is deprecated.

--enable-newpred Enable the NEWPRED symbol in the code.

--enable-newtrunc Enable the newtrunc option

--enable-nodelimiting Experimental damping scheme

--enable-nobypass Don’t bypass recalculations of slowly changing variables

--enable-nosqrt Use always log/exp for non-linear capacitances --enable-predictor En-
able a predictor method for convergence

--enable-sense2 Use spice2 sensitivity analysis

28.1.8.3 Options useful only for debugging specific issues in ngspice

The following options are seldom used today, not tested, some may even no longer be imple-
mented. Only experienced users should switch on these options, often they are effective only in
conjunction with looking at the respective source code.

--enable-ansi Configure will try to find an option for your compiler so that it expects ansi-C.

--enable-asdebug Debug sensitivity code *ASDEBUG*.

--enable-blktmsdebug Debug distortion code *BLOCKTIMES*

--enable-checkergcc Option for compilation with checkergcc.

--enable-cpdebug Enable ngspice shell code debug.

--enable-ftedebug Enable ngspice frontend debug.

--enable-gc Enable the Boehm-Weiser Conservative Garbage Collector.

--enable-pzdebug Debug pole/zero code.

--enable-sensdebug Debug sensitivity code *SENSDEBUG*.

--enable-smltmsdebug Debug distortion code *SMALLTIMES*

--enable-smoketest Enable smoketest compile.

--enable-stepdebug Turns on debugging of convergence steps in transient analysis

28.1.8.4 Compilers and Options

Some systems require unusual options for compilation or linking that the configure script does
not know about. You can give configure initial values for variables by setting them in the
environment. Using a Bourne-compatible shell, you can do that on the command line like this:

CC=c89

CFLAGS=-O2

732 CHAPTER 28. COMPILATION NOTES

LIBS=-lposix

./configure

Or on systems that have the env program, you can do it like this:

env CPPFLAGS=-I/usr/local/include

LDFLAGS=-s

./configure

28.1.8.5 Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the same time, by plac-
ing the object files for each architecture in their own directory. To do this, you must use a
version of make that supports the VPATH variable, such as GNU make. cd to the directory
where you want the object files and executables to go and run the configure script. configure
automatically checks for the source code in the directory that configure is in and in ‘..’.

If you have to use a make that does not supports the VPATH variable, you have to compile the
package for one architecture at a time in the source code directory. After you have installed the
package for one architecture, use make distclean before reconfiguring for another architecture.

28.1.8.6 Installation Names

By default, make install will install the package’s files in /usr/local/bin, /usr/local/man, etc.
You can specify an installation prefix other than /usr/local by giving configure the option
–prefix=PATH.

You can specify separate installation prefixes for architecture-specific files and architecture-
independent files. If you give configure the option –exec-prefix=PATH, the package will use
PATH as the prefix for installing programs and libraries. Documentation and other data files
will still use the regular prefix.

In addition, if you use an unusual directory layout you can give options like –bindir=PATH
to specify different values for particular kinds of files. Run configure –help for a list of the
directories you can set and what kinds of files go in them.

If the package supports it, you can cause programs to be installed with an extra prefix or suf-
fix on their names by giving configure the option –program-prefix=PREFIX or –program-
suffix=SUFFIX.

When installed on MinGW with MSYS alternative paths are not fully supported. See ‘How to
make ngspice with MINGW and MSYS’ (28.2.2) for details.

28.1.8.7 Optional Features

Some packages pay attention to –enable-FEATURE options to configure, where FEATURE
indicates an optional part of the package. They may also pay attention to –with-PACKAGE
options, where PACKAGE is something like gnu-as or ‘x’ (for the X Window System). The
README should mention any –enable- and –with- options that the package recognizes.

28.2. NGSPICE COMPILATION UNDER WINDOWS OS 733

For packages that use the X Window System, configure can usually find the X include and
library files automatically, but if it doesn’t, you can use the configure options –x-includes=DIR
and –x-libraries=DIR to specify their locations.

28.1.8.8 Specifying the System Type

There may be some features configure can not figure out automatically, but needs to determine
by the type of host the package will run on. Usually configure can figure that out, but if it
prints a message saying it can not guess the host type, give it the –host=TYPE option. TYPE
can either be a short name for the system type, such as ‘sun4’, or a canonical name with three
fields: CPU-COMPANY-SYSTEM

See the file config.sub for the possible values of each field. If config.sub isn’t included in this
package, then this package doesn’t need to know the host type.

If you are building compiler tools for cross-compiling, you can also use the –target=TYPE
option to select the type of system they will produce code for and the –build=TYPE option to
select the type of system on which you are compiling the package.

28.1.8.9 Sharing Defaults

If you want to set default values for configure scripts to share, you can create a site shell
script called config.site that gives default values for variables like CC, cache_file, and prefix.
configure looks for PREFIX/share/config.site if it exists, then PREFIX/etc/config.site if it
exists. Or, you can set the CONFIG_SITE environment variable to the location of the site
script. A warning: not all configure scripts look for a site script.

28.1.8.10 Operation Controls

configure recognizes the following options to control how it operates.

--cache-file=FILE Use and save the results of the tests in FILE instead of ./config.cache.
Set FILE to /dev/null to disable caching, for debugging configure.

--help Print a summary of the options to configure, and exit.

--quiet --silent -q Do not print messages saying which checks are being made. To sup-
press all normal output, redirect it to /dev/null (any error messages will still be shown).

--srcdir=DIR Look for the package’s source code in directory DIR. Usually configure can
determine that directory automatically.

--version Print the version of Autoconf used to generate the configure script, and exit.

configure also accepts some other, not widely useful, options.

28.2 Ngspice Compilation under Windows OS

28.2.1 Building ngspice with MS Visual Studio 2022

ngspice may be compiled and linked with MS Visual Studio 2022. Version 2019 is not compat-
ible with the new OSDI interface. A free version is offered by Microsoft as the Visual Studio

734 CHAPTER 28. COMPILATION NOTES

Community Edition. XSPICE project files are located in visualc/XSPICE and are automati-
cally invoked if you start the build procedure. The projects are in the format for Visual Studio
2022, but any later version of Visual Studio can upgrade the projects to its newer version. In
addition you will need to install FLEX and BISON (see below). Using FFTW-3 is optional and
requires a special VS project file (see below).

OSDI, KLU, CIDER, OpenMP and XSPICE are included, as well as the code models for
XSPICE (*.cm).

After compilation the executable, code models and initialization files are available in directory
C:\ as C:\Spice, C:\Spice64, C:\Spice64, or C:\Spice64d, depending on 32 or 64 bit and re-
lease or debug. However, 32-bit is no longer supported, compilation may fail in future releases.
A typical installation tree (64-bit, release) is shown below. A true Windows installer is how-
ever not yet available. The project’s ’home’ directory for Windows OS (ngspice/visualc) with
its files vngspice.sln (solution) and vngspice.vcxproj (project) allows compiling and linking
ngspice with MS Visual Studio.

On Windows 10 with its strict security model, some complications will arise. A normal user is
not allowed to create directories in C:\. You will need admin access rights. So how to cope with
this situation? Three different methods are listed below:

• Open and run Visual Studio as admin.

• Create the directories C:\Spice64, or C:\Spice64d as admin and give them full access
rights for the ordinary user.

• Select another storage place (e.g. D:\) to install the ngspice tree. To allow this, edit files
make-install-vngspice.bat (for 32 and 64 bit release) or make-install-vngspiced.bat
(for 32 or 64 bit debug), found in ngspice\visualc, and change lines 10 (set dst=c:\Spice)
and 40 to the new destination.

/visualc/src/include/ngspice contains a dedicated config.h file with the preprocessor defini-
tions required to properly compile the code.

Install Microsoft Visual Studio 2022 with its C/C++ option. The MS Visual Studio Community
Edition (which is available at no cost from https://www.visualstudio.com/) is fully adequate. It
will generate a 64 bit Release with or without OpenMP support and a Debug version of ngspice,
using the x64 flag. In addition you may select a console version without graphics interface.
Making ngspice with 32 bit is still possible, but is not recommended. 32 bit is available with
flag Win32. Standard for everyday use are the ReleaseOMP variants (GUI or console) for 64
bit.

Compilation of the ngspice and XSPICE codes requires the installation of FLEX and BISON.
They may be downloaded as Windows executables from winflexbison. Please unzip the zip
file and copy its content into a directory named flex-bison at the same level as the ngspice
directory. The resulting source tree then is:

https://www.visualstudio.com/
https://sourceforge.net/projects/winflexbison/files/win_flex_bison-latest.zip/download

28.2. NGSPICE COMPILATION UNDER WINDOWS OS 735

D:\MySpiceSources\
ngspice\

visualc\
...

flex-bison\
...

Table 28.1: ngspice source tree under MS Windows

Procedure:

Download ngspice. You may obtain a snapshot from ngspice git page at SourceForge, where
you will find on top of the page a link named ’Download Snapshot’. On the left you may select
any of the branches which are of interest. Branch ’master’ is the most mature code selection,
branch ’pre-master’ is an actual development branch. Another approach is to install ’git’ from
git for Windows and installing ngspice source code with the command

git clone git://git.code.sf.net/p/ngspice/ngspice

as described in chapter 28.1.2.

Go to directory /ngspice/visualc.

Start MS Visual Studio as admin if you need to create C:\Spice64 etc and open the input
file vngspice.sln. Or start MS Visual Studio by double click on vngspice.sln if C:\Spice64
etc. already exist or your have selected any other accessible stroage location (see comment
from above). After MS Visual Studio opens, select the debug or release version (with or with-
out OpenMP support) by checking Build, Configuration-Manager, Debug, Release or Re-
leaseOMP. Start making ngspice.exe by selecting Build and Build Solution. The executable
will be created and stored in visualc/vngspice/<configuration.platform>. Object files will
be stored to visualc/vngspice/<configuration.platform>/obj. The debug version of the exe-
cutable (and code models) are made available in C:\Spice64d.

A simplified installation tree is created in parallel:

https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/
https://git-for-windows.github.io/

736 CHAPTER 28. COMPILATION NOTES

C:\Spice64\
bin\

ngspice.exe
vcomp14xx.dll

lib\
ngspice\

analog.cm
digital.cm
spice2poly.cm
extradev.cm
extravt.cm
table.cm

share\
ngspice\

scripts\
spinit
MSVC.CMD
vlnggen

Table 28.2: ngspice Visual Studio installation tree under MS Windows

The exact directory names depend on the configuration and platform you have selected (C:\Spice,
C:\Spice64, C:\Spiced, C:\Spice64d). If you intend to install ngspice into another directory,
e.g. D:\MySpice, you may simply copy the contents from C:\Spice to the new location. This
becomes possible because the paths to the code models or spinit are set relative to ngspice.exe.
As an alternative, you may edit make-install-vngspice.bat and alter the following entries
from:

set dst=c:\Spice

set dst=c:\Spice64

to

set dst=D:\MySpice

set dst=D:\MySpice64

To use the FFTW-3 library for a ’calibrated’ fast Fourier analysis with the fft command (see
13.5.33), download the precompiled MS Windows FFTW distribution (either 32 bit or 64 bit)
from http://www.fftw.org/install/windows.html. Extract at least the files fftw3.h, libfftw3-3.def,
and libfftw3-3.dll to directory ../../fftw-3.3-dll32 (from 32 bit fftw3 for ngspice 32 bit), or to
directory ../../fftw-3.3-dll64 (from 64 bit fftw3 for ngspice 64 bit). So both directories are at the
same level as the ngspice directory. Then select the MS VC++ project file visualc/vngspice-
fftw.vcxproj for starting VC++, select the appropriate configuration and platform, and off you
go. This is how the installed directory tree looks like:

http://www.fftw.org/install/windows.html

28.2. NGSPICE COMPILATION UNDER WINDOWS OS 737

D:\MySpiceSources\
ngspice\

visualc\
...

flex-bison\
...

fftw-3.3-dll32\
...

fftw-3.3-dll64\
...

Table 28.3: ngspice source tree under MS Windows (including fftw)

If you use the debugging features of Visual Studio, ngspice is started with a special spinit file
located in visualc\vngspice\share\ngspice\scripts. Your user-defined start-up commands are
best addressed in a .spiceinit file located in C:\users\<username>.

For compiling ngspice as a dll (shared library) there is a dedicated project file coming with the
source code to generate ngspice.dll. Go to the directory visualc and start the project with
double clicking on sharedspice.vcxproj.

28.2.2 How to make ngspice with MINGW and MSYS2

Creating ngspice with MINGW is a straightforward procedure, if you have MSYS2 and MINGW
installed properly. Go to https://www.msys2.org/ and install the 64-bit version of MSYS2, e.g.
to C:\msys64. There are now several ways to move on. A very nice description of the instal-
lation procedure for all the tools required to compile some source code is given in this link. In
addition to the compiler gcc you will need the packages libtool, autoconf, automake, bison, git,
and make.

64-bit ngspice is now the standard, making 32-bit ngspice is still possible if a suitable gcc is
installed, but is not tested any more. The procedure of compiling a distribution (for example, the
most recent stable distribution from the ngspice website, e.g. ngspice-44.tar.gz), is as follows:

$ cd ngspice

$ mkdir release

$ cd release

$../configure --with-wingui ...and other options (28.1.8.1)

$ make

$ make install

The useful options to ../configure are

--enable-cider

--disable-debug (-O2 optimization, no debug information), as XSPICE, OSDI, KLU, OpenMP
are already included.

An option to make is

-j8

https://www.msys2.org/
https://github.com/orlp/dev-on-windows/wiki/Installing-GCC--&-MSYS2

738 CHAPTER 28. COMPILATION NOTES

If you have a processor with 4 real (or 8 logical) cores, this will speed up compilation consider-
ably.

A complete ngspice (release version, no debug info, 64-bit optimized executable) may be made
available just by

$ cd ngspice

$./compile_min.sh

A debug version without optimization will be available by

$./compile_min.sh d

Options used in the script:

CIDER may be selected, XSPICE, KLU, and OpenMP deselected (only if really necessary).

–disable-debug will give O2 optimization (versus O0 for debug) and removes all debugging
info.

The install script will copy all files to C:\Spice64, the code models for XSPICE will be stored
in C:\Spice64\lib\spice.

If you don’t use the tarball, you may download the ngspice source code from the ngspice Git
distribution as described on the sourceforge ngspice Git page. Define and enter a directory of
your choice, e.g. /d/spice/. Download the complete ngspice repository from Git, for example
by anonymous access issuing the command

git clone git://git.code.sf.net/p/ngspice/ngspice

You will find the sources in directory /d/spice/ngspice/. Now enter the ngspice top level
directory ngspice. For compilation using

$./compile_min.sh

you have to edit this script and uncomment the two lines enabling ./autogen.sh. If you want
to compile ngspice manually, follow the procedure described below:

$ cd ngspice

$./autogen.sh

$ mkdir release

$ cd release

$../configure --with-wingui ...and other options (28.1.8.1)

$ make -j8

$ make install

The user defined build tree saves the object files, instead of putting them into the source tree, in
a release (and a debug) tree. Please see Chapt. 28.1.4 for instructions.

If you need updating your local source code tree from Git, just enter ngspice directory and
issue the command

git pull

https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/

28.2. NGSPICE COMPILATION UNDER WINDOWS OS 739

git pull will not overwrite modified files in your working directory. To drop your local
changes first, you can run

git reset --hard

To learn more about Git, which can be both powerful and difficult to master, please consult
http://git-scm.com/, especially: http://git-scm.com/documentation, which has pointers to docu-
mentation and tutorials.

The script ./compile_min.sh or the command make install will create a directory tree with
64-bit ngspice as shown below:

C:\Spice64\
bin\

ngspice.exe
cmpp.exe

lib\
ngspice\

analog.cm
digital.cm
spice2poly.cm
extradev.cm
extravt.cm

share\
info\

dir
ngspice.info
ngspice.info-1
..
ngspice.info-10

man\
man1\

ngspice.1
ngspice\

scripts\
ciderinit
devaxis
devload
setplot
spectrum
spinit
MSVC.CMD
vlnggen

Table 28.4: ngspice standard installation tree under MS Windows

The ./configure flag --enable-relpath may be useful if the install path (e.g. C:\Spice64) is
only preliminary, because a Windows installer is preferred. Then all search paths for spinit and

http://git-scm.com/
http://git-scm.com/documentation

740 CHAPTER 28. COMPILATION NOTES

code models are made relative to the executable (either ngspice.exe or the caller to ngspice.dll),
see 28.1.8.

For compiling ngspice as a dll (shared library) use the configure option --with-ngshared in-
stead of --with-wingui. In addition you might add (optionally) --enable-relpath to avoid
absolute paths when searching for code models. You may edit compile_min.sh accordingly
and compile using this script in the MSYS2 window.

28.2.3 make ngspice with pure CYGWIN

The procedure of compiling is the same as with Linux (see Chapt. 28.1). After you have moved
to the ngspice directory, the following command sequence may do the work for you:

$./autogen.sh

$ mkdir release-cyg

$ cd release-cyg

$../configure --with-x --enable-pss --enable-cider

$ make clean 2>&1 | tee make_clean.log

$ make 2>&1 -j8 | tee make.log

$ make install 2>&1 | tee make_install.log

The (optional) statement -j8 (or -jn, n is the number of logical cores available) will speed up
compilation considerably.

The CYGWIN console executable you have been creating is an X11 application. This is a not
a Windows native environment. So you have to add an X11 graphics interface by installing the
XServer from the CYGWIN project. Before starting ngspice, you have to start the XServer by
the following commands within the CYGWIN window:

$ export DISPLAY=:0.0

$ xwin -multiwindow -clipboard &

If you don’t have libdl.a you may need to link libcygwin.a to libdl.a symbolically, for example:

$ cd /lib $ ln -s libcygwin.a libdl.a.

28.2.4 ngspice mingw or cygwin console executable w/o graphics

If you omit the configure flag –with-wingui or –with-x, you will obtain a console application
without graphics interface.

./configure --enable-xspice --enable-cider --enable-openmp
--enable-osdi --disable-debug CFLAGS=-m32 LDFLAGS=-m32 prefix=C:/Spice

is an example for TDM mingw, 32 Bit ngspice console. No graphics interface is provided. A
warning message will be issued upon starting ngspice. However, you may invoke Gnuplot for
plotting (see 13.5.38).

28.3. NGSPICE COMPILATION UNDER MACOS 741

28.2.5 ngspice for MS Windows, cross compiled from Linux

The ngspice main directory contains two scripts that provide cross compiling ngspice.exe or
ngspice.dll from a Linux setup. For details and prerequisites please have a look at cross-compile.sh
or cross-compile-shared.sh.

28.3 Ngspice Compilation under macOS

Basically compiling for macOS is similar to compiling for Linux. But one has to take the many
special features of the Apple world into account. The following is just a coarse description of
a setup and compiling, tested under Big Sur (macOS 11) on an Apple MacBook-Air with Intel
i5 chip. I reflects my (H. Vogt) setup for achieving a complete compile, including all relevant
ngspice options. This setup has grown over time. Please check, and if something is missing if
you do a fresh install and compile, please let me know.

28.3.1 Prerequisites

Ngspice is written in C and thus a complete C/C++ compilation environment is needed. Ngspice
is developed with autotools, gcc, and GNU make. The graphics interface is using X11. Several
additional libraries have to be installed. As a first step install the Xquartz system, which enables
X11 support. Sevral additional tools and libraries need to by downloaded and installed, either
from Brew or MacPorts.

Required tools are autoconf, automake, libtool, bison.

Libraries are: readline, Xft2, Freetype, ncurses, fftw (optional), and several X11 extensions:
Xaw, Xmu, Xt, Xext, Xrender, SM, ICE.

The standard gcc provided by Apple Xcode (in fact a link to a clang/llvm compiler) does not
(yet?) support OpenMP, so you may use gcc-11 from Homebrew.

The following table lists the libraries required by ngspice. Libs located in /usr/local/opt/
and the compiler gcc-11 stem from Homebrewrew, the other libs are from macPorts.

https://www.xquartz.org/index.html
https://brew.sh/
https://www.macports.org/
https://developer.apple.com/xcode/

742 CHAPTER 28. COMPILATION NOTES

List of standard ngspice dependencies (acquired with command otool -L
/usr/local/bin/ngspice):

/usr/local/opt/ncurses/lib/libncursesw.6.dylib
/usr/local/opt/gcc/lib/gcc/11/libstdc++.6.dylib
/usr/local/opt/fftw/lib/fftw3.3.dylib
/usr/local/opt/readline/lib/libreadline.8.dylib
/opt/local/lib/libXaw.7.dylib
/opt/local/lib/libXmu.6.dylib
/opt/local/lib/libXt.6.dylib
/opt/local/lib/libXext.6.dylib
/opt/local/lib/libX11.6.dylib
/opt/local/lib/libfontconfig.1.dylib
/opt/local/lib/libXrender.1.dylib
/opt/local/lib/libfreetype.6.dylib
/opt/local/lib/libSM.6.dylib
/opt/local/lib/libICE.6.dylib
/usr/local/opt/gcc/lib/gcc/11/libgomp.1.dylib
/usr/lib/libSystem.B.dylib
/usr/local/lib/gcc/11/libgcc_s.1.dylib

28.3.2 Compiling ngspice

A compile script is provided, supporting gcc-11 from Homebrew, see
https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/compile_macos_gcc.sh.

ngspice is also available from MacPorts, Homebrew or Fink, partially as source code, partially
as an executable. ngspice from Homebrew for example currently does not offer the graphics
interface to X11 (thus not needing the above mentioned Quartz installation and X11 runtime
libraries).

28.3.3 Compiling ngspice shared library

The ngspice shared library does not have any command line or graphics interface, thus neither
needing X11 (Quartz) nor readline nor ncurses. Compilation (with gcc-11) is as straightforward
as running the compile script. The list of depencencies now is shorter than before:

List of shared ngspice dependencies (acquired with command otool -L
/usr/local/lib/libngspice.0.dylib):

/usr/local/opt/gcc/lib/gcc/11/libstdc++.6.dylib
/usr/local/opt/fftw/lib/libfftw3.3.dylib
/usr/local/opt/gcc/lib/gcc/11/libgomp.1.dylib
/usr/lib/libSystem.B.dylib
/usr/local/lib/gcc/11/libgcc_s.1.dylib

Currently no work has been done to create a package and have the package certified by Apple.

https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/compile_macos_gcc.sh
https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/compile_macos_shared.sh

28.4. REPORTING ERRORS 743

28.3.4 Compiling with Apple M2

Compiling on a MAC mini with Apple M2 chip and Sonoma 13.2.1 has been tested:

Install

• xcode command line tools,

Install from Homebrew:

• libtool. autoconf, automake readline

• ngspice (this provides a lot of dependencies, so helps with the overall install)

• gnuplot

• bison 3.8.2

• m4

• XQuartz

• ncurses

Install from mac.r-project.org

• openMP

Setting some paths in front of the path variable may be required (e.g. for bison, m4 ...). Two new
compile scripts are provied with ngspice: compile_macos_clang_M2.sh and compile_macos_clang_M2_shared.sh.

28.4 Reporting errors

Setting up ngspice is a complex task. The source code contains over 1500 files. ngspice should
run on various operating systems. Therefore errors may be found, some still evolving from the
original spice3f5 code, others introduced during the ongoing code enhancements.

If you happen to experience an error during compilation of ngspice, please send a report to the
development team. Ngspice is hosted on SourceForge, the preferred place to post a bug report is
the ngspice bug tracker. We would prefer to have your bug tested against the actual source code
available at Git, but of course a report using the most recent ngspice release is welcome! Please
provide the following information with your report: Ngspice version, Operating system, Small
input file to reproduce the bug (if to report a runtime error), Actual output versus the expected
output.

http://sourceforge.net/tracker/?group_id=38962&atid=423915

744 CHAPTER 28. COMPILATION NOTES

Chapter 29

Copyrights and licenses

29.1 Documentation license

The license for this document is covered by the Creative Commons Attribution Share-Alike
(CC-BY-SA) v4.0.

See here for details of the legal code.

Parts of chapters 12 and 25-27 are in the public domain.

Chapter 30 is covered by the 3-clause BSD (modified BSD).

29.2 ngspice license

The SPICE license is the ‘Modified’ BSD license, (see 29.3.2 and Spice link at UCB).

ngspice adopts this ‘Modified’ BSD license for all of its source code except for tclspice, and
numparam that are under LGPLv2, and XSPICE, which is in the public domain. The ngspice
licences are compliant with the DFSG (Debian Free Software Guidelines).

29.3 Some license details

29.3.1 CC-BY-SA

This is a human-readable summary of (and not a substitute for) the license CC-BY-SA.

You are free to:

Share — copy and redistribute the material in any medium or format Adapt — remix, transform,
and build upon the material for any purpose, even commercially.

This license is acceptable for Free Cultural Works.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

745

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/legalcode
http://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm
https://creativecommons.org/licenses/by-sa/4.0/

746 CHAPTER 29. COPYRIGHTS AND LICENSES

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that suggests
the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the public domain
or where your use is permitted by an applicable exception or limitation. No warranties are
given. The license may not give you all of the permissions necessary for your intended use.
For example, other rights such as publicity, privacy, or moral rights may limit how you use the
material.

Disclaimer:

This deed highlights only some of the key features and terms of the actual license. It is not a
license and has no legal value. You should carefully review all of the terms and conditions of
the actual license before using the licensed material.

29.3.2 ‘Modified’ BSD license

Copyright 1985 - 2017, Regents of the University of California and others

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to en-
dorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(Source)

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://opensource.org/licenses/BSD-3-Clause

29.4. ON THE HISTORICAL EVOLVEMENT OF THE NGSPICE LICENSES 747

29.4 On the historical evolvement of the ngspice licenses

The SPICE license is the ‘Modified’ BSD license, (see Spice link at UCB). The original
Spice3f5 had been released under the 4-clause BSD (the original BSD license), which has
been modified by UCB towards the now commonn 3-clause BSD. ngspice adopts this ‘Modi-
fied’ BSD license for all of its source code (except for tclspice, and numparam that are under
LGPLv2, and XSPICE, which is in the public domain (see 29.4.4)).

29.4.1 XSPICE SOFTWARE (documentation) copyright

Code added to SPICE3 to create the XSPICE Simulator and the XSPICE Code Model Subsys-
tem was developed at the Computer Science and Information Technology Laboratory, Georgia
Tech Research Institute, Atlanta GA, and is covered by license agreement the following copy-
right:

Copyright © 1992 Georgia Tech Research Corporation All Rights Reserved. This material may
be reproduced by or for the U.S. Government pursuant to the copyright license under the clause
at DFARS 252.227-7013 (Oct. 1988)

Refer to U.C. Berkeley and Georgia Tech license agreements for additional information.

This license is now superseded by Chapt. 29.4.4

29.4.2 CIDER RESEARCH SOFTWARE AGREEMENT (superseded by
29.4.3)

This chapter specifies the terms under which the CIDER software and documentation coming
with the original distribution are provided. This agreement is superseded by 29.4.3, the ‘modi-
fied’ BSD license.

Software is distributed as is, completely without warranty or service support. The University of
California and its employees are not liable for the condition or performance of the software.

The University does not warrant that it owns the copyright or other proprietary rights to all soft-
ware and documentation provided under this agreement, notwithstanding any copyright notice,
and shall not be liable for any infringement of copyright or proprietary rights brought by third
parties against the recipient of the software and documentation provided under this agreement.

THE UNIVERSITY OF CALIFORNIA HEREBY DISCLAIMS ALL IMPLIED WARRANTIES,
INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE UNIVERSITY IS NOT LIABLE FOR ANY DAM-
AGES INCURRED BY THE RECIPIENT IN USE OF THE SOFTWARE AND DOCUMEN-
TATION, INCLUDING DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUEN-
TIAL DAMAGES.

The University of California grants the recipient the right to modify, copy, and redistribute the
software and documentation, both within the recipient’s organization and externally, subject to
the following restrictions:

(a) The recipient agrees not to charge for the University of California code itself. The recipient
may, however, charge for additions, extensions, or support.

http://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm

748 CHAPTER 29. COPYRIGHTS AND LICENSES

(b) In any product based on the software, the recipient agrees to acknowledge the research group
that developed the software. This acknowledgment shall appear in the product documentation.

(c) The recipient agrees to obey all U.S. Government restrictions governing redistribution or
export of the software and documentation.

All BSD licenses have been changed to the ‘modified’ BSD license by UCB in 1999 (see Chapt.
29.4.3).

29.4.3 ‘Modified’ BSD license

All ‘old’ BSD licenses (of SPICE or CIDER) have been changed to the ‘modified’ BSD license
according to the following publication
(see ftp://ftp.cs.berkeley.edu/pub/4bsd/README.Impt.License.Change):

July 22, 1999

To All Licensees, Distributors of Any Version of BSD:

As you know, certain of the Berkeley Software Distribution (‘BSD’) source code files require
that further distributions of products containing all or portions of the software, acknowledge
within their advertising materials that such products contain software developed by UC Berke-
ley and its contributors.

Specifically, the provision reads:

‘3. All advertising materials mentioning features or use of this software must display the follow-
ing acknowledgment: This product includes software developed by the University of California,
Berkeley and its contributors.’

Effective immediately, licensees and distributors are no longer required to include the acknowl-
edgment within advertising materials. Accordingly, the foregoing paragraph of those BSD Unix
files containing it is hereby deleted in its entirety.

William Hoskins

Director, Office of Technology Licensing

University of California, Berkeley

29.4.4 XSPICE

According to https://web.archive.org/web/20161030172156/http://users.ece.gatech.edu/∼mrichard/Xspice/
(as of Feb. 2012) the XSPICE source code and documentation have been put into the public
domain by the Georgia Institute of Technology.

29.4.5 OSDI

The OSDI interface to OpenVAF-compiled device models is licensed according to the Mozilla
Public License, v. 2.0.(see https://mozilla.org/MPL/2.0/).

ftp://ftp.cs.berkeley.edu/pub/4bsd/README.Impt.License.Change
https://web.archive.org/web/20161030172156/http://users.ece.gatech.edu/~mrichard/Xspice/
https://mozilla.org/MPL/2.0/

29.4. ON THE HISTORICAL EVOLVEMENT OF THE NGSPICE LICENSES 749

29.4.6 tclspice, numparam

Both software packages are copyrighted and are released under LGPLv2
(see http://www.gnu.org/licenses/lgpl-2.1.html).

29.4.7 Linking to GPLd libraries (e.g. readline, fftw, table.cm):

The readline manual at http://tiswww.case.edu/php/chet/readline/rltop.html states: Readline is
free software, distributed under the terms of the GNU General Public License, version 3. This
means that if you want to use Readline in a program that you release or distribute to anyone, the
program must be free software and have a GPL-compatible license.

According to http://www.gnu.org/licenses/license-list.html, the modified BSD license, thus
also the ngspice license, belongs to the family of GPL-Compatible Free Software Licenses.
Therefore the linking restrictions to readline, which have existed with the old BSD license, are
no longer in effect.

http://www.gnu.org/licenses/lgpl-2.1.html
http://tiswww.case.edu/php/chet/readline/rltop.html
http://www.gnu.org/licenses/license-list.html

750 CHAPTER 29. COPYRIGHTS AND LICENSES

Index

C
Code models, 175

analog models, 181
creating code models, 588
digital models, 245
example circuits, 577
hybrid models, 234
netlist syntax, 175

D
Device models, 129

BJT, 139
Diode, 130
HICUM, 147
JFET, 149
MESFET, 154
MOSFET, 157
transmission lines, 121
VBIC, 146
VDMOS, 167

Dot commands, 49

N
Netlists, 47, 71

comments, 54
.control sections, 68, 381
devices instances, 51
dot commands, 49
syntax conventions, 48
title line, 47

O
Output to file

PNG, 481
postscript, 479
print, 485
redirection of command output, 484
spice rawfile, 483
SVG, 477
tabulated, 484
touchstone, 484
VCD, 482

Output: graphical
gnuplot, 486
plotting internally, 473

P
Parameters

instance parameters, 75
model parameters, 55, 71
numparam parameters, 59, 68

Parsers for expressions, 65
B source parser, 105
control language parser, 382
parametric netlists, numparam parser, 59

V
Verilog digital modules, 309
Verilog-A device models, 301

X
XSPICE, see Code models, 175

751

	I Ngspice User's Manual
	1 Introduction
	1.1 Simulation Algorithms
	1.1.1 Analog Simulation
	1.1.2 Matrix solvers
	1.1.3 Device Models for Analog Simulation
	1.1.4 Digital Simulation
	1.1.5 Mixed-Signal Simulation
	1.1.6 Mixed-Level Simulation (Electronic and TCAD)

	1.2 Supported Analyses
	1.2.1 DC Analysis
	1.2.2 AC Small-Signal Analysis
	1.2.3 Transient Analysis
	1.2.4 Pole-Zero Analysis
	1.2.5 Small-Signal Distortion Analysis
	1.2.6 Sensitivity Analysis
	1.2.7 Noise Analysis
	1.2.8 Periodic Steady State Analysis

	1.3 Analysis at Different Temperatures
	1.3.1 Introduction
	1.3.2 Controlling the temperature

	1.4 Convergence
	1.4.1 Voltage convergence criterion
	1.4.2 Current convergence criterion
	1.4.3 Convergence failure

	2 Circuit Description
	2.1 General Structure and Conventions
	2.1.1 Input file structure
	2.1.2 Syntax check
	2.1.3 Some naming conventions
	2.1.4 Topological constraints

	2.2 Dot commands
	2.3 Circuit elements (device instances)
	2.4 Basic lines
	2.4.1 .TITLE line
	2.4.2 .END Line
	2.4.3 Comments
	2.4.4 End-of-line comments
	2.4.5 Continuation lines

	2.5 .MODEL Device Models
	2.6 .SUBCKT Subcircuits
	2.6.1 .SUBCKT Line
	2.6.2 .ENDS Line
	2.6.3 Subcircuit Calls

	2.7 .GLOBAL
	2.8 .INCLUDE
	2.9 .INCPSLT
	2.10 .LIB
	2.11 .PARAM Parametric netlists
	2.11.1 .param line
	2.11.2 Brace expressions in circuit elements:
	2.11.3 Subcircuit parameters
	2.11.4 Symbol scope
	2.11.5 Syntax of expressions
	2.11.6 Reserved words
	2.11.7 A word of caution on the three ngspice expression parsers

	2.12 .FUNC
	2.13 .CSPARAM
	2.14 .TEMP
	2.15 .IF Condition-Controlled Netlist
	2.16 Parameters, functions, expressions, and command scripts
	2.16.1 Parameters
	2.16.2 Nonlinear sources
	2.16.3 Control commands, Command scripts

	3 Circuit Elements and Models
	3.1 About netlists, device instances, models and model parameters
	3.2 General options
	3.2.1 Paralleling devices with multiplier m
	3.2.2 Instance and model parameters
	3.2.3 Model binning
	3.2.4 Initial conditions

	3.3 Elementary Devices
	3.3.1 Resistors
	3.3.2 Semiconductor Resistors
	3.3.3 Semiconductor Resistor Model (R)
	3.3.4 Resistors, dependent on expressions (behavioral resistor)
	3.3.5 Resistor with nonlinear r2_cmc or r3_cmc models
	3.3.6 Capacitors
	3.3.7 Semiconductor Capacitors
	3.3.8 Semiconductor Capacitor Model (C)
	3.3.9 Capacitors, dependent on expressions (behavioral capacitor)
	3.3.10 Inductors
	3.3.11 Inductor model
	3.3.12 Coupled (Mutual) Inductors
	3.3.13 Inductors, dependent on expressions (behavioral inductor)
	3.3.14 Capacitor or inductor with initial conditions
	3.3.15 Switches
	3.3.16 Switch Model (SW/CSW)

	4 Voltage and Current Sources
	4.1 Independent Sources for Voltage or Current
	4.1.1 Pulse
	4.1.2 Sinusoidal
	4.1.3 Exponential
	4.1.4 Piece-Wise Linear
	4.1.5 Single-Frequency FM
	4.1.6 Amplitude modulated source (AM)
	4.1.7 Transient noise source
	4.1.8 Random voltage source
	4.1.9 External voltage or current input
	4.1.10 Arbitrary Phase Sources
	4.1.11 RF Port

	4.2 Linear Dependent Sources
	4.2.1 Gxxxx: Linear Voltage-Controlled Current Sources (VCCS)
	4.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS)
	4.2.3 Fxxxx: Linear Current-Controlled Current Sources (CCCS)
	4.2.4 Hxxxx: Linear Current-Controlled Voltage Sources (CCVS)
	4.2.5 Polynomial Source Compatibility

	5 Non-linear Dependent Sources (Behavioral Sources)
	5.1 Bxxxx: Nonlinear dependent source (ASRC)
	5.1.1 Syntax and usage
	5.1.2 Special B-Source Variables time, temper, hertz
	5.1.3 par('expression')
	5.1.4 Piecewise Linear Function: pwl

	5.2 Exxxx: non-linear voltage source
	5.2.1 VOL
	5.2.2 VALUE
	5.2.3 TABLE
	5.2.4 POLY
	5.2.5 LAPLACE
	5.2.6 FREQ
	5.2.7 AND/OR/NAND/NOR

	5.3 Gxxxx: non-linear current source
	5.3.1 CUR
	5.3.2 VALUE
	5.3.3 TABLE
	5.3.4 POLY
	5.3.5 LAPLACE
	5.3.6 FREQ
	5.3.7 Example

	5.4 Debugging a behavioral source
	5.5 POLY Sources
	5.5.1 E voltage source, G current source
	5.5.2 F voltage source, H current source

	6 Transmission Lines
	6.1 Lossless Transmission Lines
	6.2 Lossy Transmission Lines
	6.2.1 Lossy Transmission Line Model (LTRA)

	6.3 Uniform Distributed RC Lines
	6.3.1 Uniform Distributed RC Model (URC)

	6.4 KSPICE Lossy Transmission Lines
	6.4.1 Single Lossy Transmission Line (TXL)
	6.4.2 Coupled Multiconductor Line (CPL)

	7 Device Models
	7.1 Instance lines and .model lines
	7.2 Junction Diodes
	7.2.1 Diode Model (D)
	7.2.2 Diode Equations
	7.2.3 Diode models available via OpenVAF/OSDI

	7.3 BJT
	7.3.1 Bipolar Junction Transistors (BJTs)
	7.3.2 BJT Models (NPN/PNP)
	7.3.3 Gummel-Poon Models
	7.3.4 VBIC Model
	7.3.5 HICUM level 2 Model
	7.3.6 BJT models available via OpenVAF/OSDI

	7.4 JFETs
	7.4.1 Junction Field-Effect Transistors (JFETs)
	7.4.2 JFET Models (NJF/PJF)
	7.4.3 Basic model statement
	7.4.4 JFET level 1 model with Parker Skellern modification
	7.4.5 JFET level 2 Parker Skellern model

	7.5 MESFETs
	7.5.1 MESFET devices
	7.5.2 MESFET Models (NMF/PMF)
	7.5.3 Model by Statz e.a.
	7.5.4 Model by Ytterdal e.a.
	7.5.5 hfet1 and hfet2

	7.6 MOSFETs
	7.6.1 MOSFET devices
	7.6.2 MOSFET models (NMOS/PMOS)
	7.6.3 BSIM Models
	7.6.4 BSIMSOI models (levels 10, 58, 55, 56, 57)
	7.6.5 SOI3 model (level 60)
	7.6.6 HiSIM models of the University of Hiroshima
	7.6.7 MOS models available via OpenVAF/OSDI

	7.7 Power MOSFET model (VDMOS)

	8 Mixed-Mode and Behavioral Modeling with XSPICE
	8.1 Code Model Element & .MODEL Cards
	8.1.1 Syntax
	8.1.2 Examples
	8.1.3 Search path for file input
	8.1.4 Code model location and assessment

	8.2 Analog Models
	8.2.1 Gain
	8.2.2 Summer
	8.2.3 Multiplier
	8.2.4 Divider
	8.2.5 Limiter
	8.2.6 Controlled Limiter
	8.2.7 PWL Controlled Source
	8.2.8 PWL Time Controlled Source with optional edge smoothing
	8.2.9 Filesource (PWL sourced from file)
	8.2.10 Multi_input_PWL_block
	8.2.11 Analog Switch
	8.2.12 Alternative Analog Switch
	8.2.13 Zener Diode
	8.2.14 Current Limiter
	8.2.15 Hysteresis Block
	8.2.16 Differentiator
	8.2.17 Integrator
	8.2.18 S-Domain Transfer Function
	8.2.19 PWL Transfer Function
	8.2.20 Slew Rate Block
	8.2.21 Inductive Coupling
	8.2.22 Magnetic Core
	8.2.23 Controlled Sine Wave Oscillator
	8.2.24 Controlled Triangle Wave Oscillator
	8.2.25 Controlled Square Wave Oscillator
	8.2.26 Controlled One-Shot
	8.2.27 Capacitance Meter
	8.2.28 Inductance Meter
	8.2.29 Memristor
	8.2.30 2D table model
	8.2.31 3D table model
	8.2.32 Simple Diode Model
	8.2.33 Analog delay
	8.2.34 Potentiometer

	8.3 Hybrid Models
	8.3.1 Digital-to-Analog Node Bridge
	8.3.2 Analog-to-Digital Node Bridge
	8.3.3 Bidirectional Analog/Digital Node Bridge
	8.3.4 Controlled Digital Oscillator
	8.3.5 Node bridge from digital to real with enable
	8.3.6 A Z**-1 block working on real data
	8.3.7 A gain block for event-driven real data
	8.3.8 Node bridge from real to analog voltage
	8.3.9 Controlled PWM Oscillator

	8.4 Digital Models
	8.4.1 Buffer
	8.4.2 Inverter
	8.4.3 And
	8.4.4 Nand
	8.4.5 Or
	8.4.6 Nor
	8.4.7 Xor
	8.4.8 Xnor
	8.4.9 Tristate
	8.4.10 Pullup
	8.4.11 Pulldown
	8.4.12 D Flip Flop
	8.4.13 JK Flip Flop
	8.4.14 Toggle Flip Flop
	8.4.15 Set-Reset Flip Flop
	8.4.16 D Latch
	8.4.17 Set-Reset Latch
	8.4.18 State Machine
	8.4.19 Frequency Divider
	8.4.20 RAM
	8.4.21 Digital Source
	8.4.22 LUT
	8.4.23 General LUT
	8.4.24 D_process
	8.4.25 d_cosim

	8.5 Transmission lines models
	8.5.1 Generic transmission line
	8.5.2 Generic coupled lines
	8.5.3 Microstip line
	8.5.4 Coupled microstrip
	8.5.5 Microstrip open end

	8.6 Predefined Node Types for event driven simulation
	8.6.1 Digital Node Type
	8.6.2 Real Node Type
	8.6.3 Int Node Type
	8.6.4 (Digital) Input/Output

	8.7 Automatic insertion of bridging devices

	9 Verilog-A Compact Device Models
	9.1 Introduction
	9.2 OSDI/OpenVAF
	9.3 How to create and apply OpenVAF models
	9.3.1 Preparing for simulation
	9.3.2 OSDI/OpenVAF examples distributed with ngspice

	10 Digital Device Models
	10.1 U devices (basic digital building blocks)
	10.1.1 General format
	10.1.2 List of devices available in ngspice (basic types)
	10.1.3 URC transmission line versus U devices

	10.2 Support for standard digital devices
	10.3 Digital devices defined by a Hardware Description Language
	10.3.1 Using Verilator, Verilog, and code model d_cosim
	10.3.2 Using Icarus Verilog, and code model d_cosim
	10.3.3 Using GHDL and code model d_cosim.
	10.3.4 Using independent processes (e.g. C coded), pipes, and code model d_process
	10.3.5 Using Yosys to map digital Verilog onto basic code model cells

	11 Analyses and Output Control (batch mode)
	11.1 Simulator Variables (.options)
	11.1.1 General Options
	11.1.2 OP and DC Solution Options
	11.1.3 AC Solution Options
	11.1.4 Transient Analysis Options
	11.1.5 ELEMENT Specific options
	11.1.6 Transmission Lines Specific Options
	11.1.7 Precedence of option and .options commands

	11.2 Initial Conditions
	11.2.1 .NODESET: Specify Initial Node Voltage Guesses
	11.2.2 .IC: Set Initial Conditions

	11.3 Analyses
	11.3.1 .AC: Small-Signal AC Analysis
	11.3.2 .DC: DC Transfer Function
	11.3.3 .DISTO: Distortion Analysis
	11.3.4 .NOISE: Noise Analysis
	11.3.5 .OP: Operating Point Analysis
	11.3.6 .PZ: Pole-Zero Analysis
	11.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis
	11.3.8 .SP S-Parameter Analysis
	11.3.9 .TF: Transfer Function Analysis
	11.3.10 .TRAN: Transient Analysis
	11.3.11 Transient noise analysis (at low frequency)
	11.3.12 .PSS: Periodic Steady State Analysis

	11.4 Measurements after AC, DC and Transient Analysis
	11.4.1 .meas(ure)
	11.4.2 batch versus interactive mode
	11.4.3 General remarks
	11.4.4 Input
	11.4.5 Trig Targ
	11.4.6 Find ... When
	11.4.7 AVG|MIN|MAX|PP|RMS|MIN_AT|MAX_AT
	11.4.8 Integ
	11.4.9 param
	11.4.10 par('expression')
	11.4.11 Deriv
	11.4.12 More examples

	11.5 Safe Operating Area (SOA) warning messages
	11.5.1 Resistor and Capacitor SOA model parameters
	11.5.2 Diode SOA model parameters
	11.5.3 BJT SOA model parameters
	11.5.4 MOS SOA model parameters
	11.5.5 VDMOS SOA model parameters

	11.6 Batch Output
	11.6.1 .SAVE: Name vector(s) to be saved in raw file
	11.6.2 .PRINT Lines
	11.6.3 .PLOT Lines
	11.6.4 .FOUR: Fourier Analysis of Transient Analysis Output
	11.6.5 .PROBE: Save device node currents, device power dissipation, or differential voltages between arbitrary nodes
	11.6.6 par('expression'): Algebraic expressions for output
	11.6.7 .width

	11.7 Measuring current through device terminals
	11.7.1 Using the .probe command
	11.7.2 Adding a voltage source in series
	11.7.3 Using option 'savecurrents'

	12 Starting ngspice
	12.1 Introduction
	12.2 Where to obtain ngspice
	12.3 Command line options for starting ngspice
	12.4 Starting options
	12.4.1 Batch mode
	12.4.2 Interactive mode
	12.4.3 Control mode (Interactive mode with control file or control section)

	12.5 Standard configuration file spinit
	12.6 User defined configuration file .spiceinit
	12.7 Environmental variables
	12.7.1 Ngspice specific variables
	12.7.2 Common environment variables

	12.8 Memory usage
	12.9 Simulation time
	12.10 Ngspice on multi-core processors using OpenMP
	12.10.1 Introduction
	12.10.2 Internals
	12.10.3 Some results
	12.10.4 Usage
	12.10.5 Literature

	12.11 Server mode option -s
	12.12 Pipe mode option -p
	12.13 Ngspice control via input, output fifos
	12.14 Compatibility
	12.14.1 Compatibility mode
	12.14.2 Missing functions
	12.14.3 Devices
	12.14.4 Controls and commands
	12.14.5 PSPICE Compatibility mode
	12.14.6 LTSPICE Compatibility mode
	12.14.7 LTSPICE/PSPICE Compatibility mode
	12.14.8 KiCad Compatibility mode
	12.14.9 Spectre Compatibility mode
	12.14.10 HSPICE Compatibility mode

	12.15 Tests
	12.16 Tools for debugging a circuit netlist
	12.16.1 options and initial conditions
	12.16.2 set debug
	12.16.3 set ngdebug
	12.16.4 miscellaneous

	12.17 Reporting bugs and errors

	13 Interactive Interpreter
	13.1 Introduction
	13.2 Expressions, Functions, and Constants
	13.3 Plots
	13.4 Command Interpretation
	13.4.1 On the console
	13.4.2 Scripts
	13.4.3 Add-on to circuit file

	13.5 Commands
	13.5.1 Ac: Perform an AC, small-signal frequency response analysis
	13.5.2 Alias: Create an alias for a command
	13.5.3 Alter: Change a device or model parameter
	13.5.4 Altermod: Change model parameter(s)
	13.5.5 Alterparam: Change value of a global parameter
	13.5.6 Asciiplot: Plot values using old-style character plots
	13.5.7 Aspice*: Asynchronous ngspice run
	13.5.8 Bg_ctrl**: suspend running controls until bg_run has finished
	13.5.9 Bg_halt**: halt a run
	13.5.10 Bg_run**: Run analysis from the input file in the background thread
	13.5.11 Bug: Output URL for ngspice bug tracker
	13.5.12 Cd: Change directory
	13.5.13 Cdump: Dump the control flow to the screen
	13.5.14 Circbyline: Enter a circuit line by line
	13.5.15 Codemodel: Load an XSPICE code model library
	13.5.16 Compose: Compose a vector
	13.5.17 Cutout: Cut out a section of all vectors in a tran plot
	13.5.18 Dc: Perform a DC-sweep analysis
	13.5.19 Define: Define a function
	13.5.20 Deftype: Define a new type for a vector or plot
	13.5.21 Delete: Remove a trace or breakpoint
	13.5.22 Destroy: Delete an output data set
	13.5.23 Devhelp: information on available devices
	13.5.24 Diff: Compare vectors
	13.5.25 Display: List known vectors and types
	13.5.26 Echo: Print text
	13.5.27 Edit*: Edit the current circuit
	13.5.28 Edisplay: Print a list of all the event nodes
	13.5.29 Eprint: Print an event driven node
	13.5.30 Eprvcd: Dump nodes in VCD format
	13.5.31 Esave: Save a set of event node outputs
	13.5.32 Fclose: close an open file handle
	13.5.33 FFT: fast Fourier transform of vectors
	13.5.34 Fopen: open a text file
	13.5.35 Fourier: Perform a Fourier transform
	13.5.36 Fread: read into a variable from a text file
	13.5.37 Getcwd: Print the current working directory
	13.5.38 Gnuplot: Graphics output via gnuplot
	13.5.39 Hardcopy: Save a plot to a file for printing
	13.5.40 Help: Print summaries of Ngspice commands
	13.5.41 History: Review previous commands
	13.5.42 Inventory: Print circuit inventory
	13.5.43 Iplot*: Incremental plot
	13.5.44 Jobs*: List active asynchronous ngspice runs
	13.5.45 Let: Assign a value to a vector
	13.5.46 Linearize: Interpolate to a linear scale
	13.5.47 Listing: Print a listing of the current circuit
	13.5.48 Load: Load rawfile data
	13.5.49 Mc_source: Reload the circuit netlist from an internal storage
	13.5.50 Meas: Measurements on simulation data
	13.5.51 Mdump: Dump the matrix values to a file (or to console)
	13.5.52 Mrdump: Dump the matrix right hand side values to a file (or to console)
	13.5.53 Noise: Noise analysis
	13.5.54 Op: Perform an operating point analysis
	13.5.55 Option: Set a ngspice option
	13.5.56 Plot*: Plot vectors on the display
	13.5.57 Pre_<command>: execute commands prior to parsing the circuit
	13.5.58 Pre_OSDI: load a *.osdi compact device model shared library
	13.5.59 Print: Print values
	13.5.60 Psd: power spectral density of vectors
	13.5.61 Quit: Leave Ngspice
	13.5.62 Rehash: Reset internal hash tables
	13.5.63 Remcirc: Remove the current circuit
	13.5.64 Remzerovec: Remove zero length vectors
	13.5.65 Reset: Reset an analysis
	13.5.66 Reshape: Alter the dimensionality or dimensions of a vector
	13.5.67 Resume: Continue a simulation after a stop
	13.5.68 Rspice*: Remote ngspice submission
	13.5.69 Run: Run analysis from the input file
	13.5.70 Rusage: Resource usage
	13.5.71 Save: Save a set of outputs
	13.5.72 Sens: Run a sensitivity analysis
	13.5.73 Set: Set the value of a variable
	13.5.74 Setcs: Set the value of a variable, case preserved
	13.5.75 Setcirc: Change the current circuit
	13.5.76 Setplot: Switch the current set of vectors
	13.5.77 Setscale: Set the scale vector for the current plot
	13.5.78 Setseed: Set the seed value for the random number generator
	13.5.79 Settype: Set the type of a vector
	13.5.80 Shell: Call the command interpreter
	13.5.81 Shift: Alter a list variable
	13.5.82 Show: List device state
	13.5.83 Showmod: List model parameter values
	13.5.84 Snload: Load the snapshot file
	13.5.85 Snsave: Save a snapshot file
	13.5.86 Source: Read a ngspice input file
	13.5.87 Sp: S-Parameter Analysis
	13.5.88 Spec: Create a frequency domain plot
	13.5.89 Status: Display breakpoint information
	13.5.90 Step: Run a fixed number of time-points
	13.5.91 Stop: Set a breakpoint
	13.5.92 Strcmp: Compare two strings
	13.5.93 Strslice: Extract a substring
	13.5.94 Strstr: Find a substring
	13.5.95 Sysinfo: Print system information
	13.5.96 Tf: Run a Transfer Function analysis
	13.5.97 Trace: Trace nodes
	13.5.98 Tran: Perform a transient analysis
	13.5.99 Transpose: Swap the elements in a multi-dimensional data set
	13.5.100 Unalias: Retract an alias
	13.5.101 Undefine: Retract a definition
	13.5.102 Unlet: Delete the specified vector(s)
	13.5.103 Unset: Clear a variable
	13.5.104 Version: Print the version of ngspice
	13.5.105 Where: Identify troublesome node or device
	13.5.106 Wrdata: Write data to a file (simple table)
	13.5.107 Write: Write data to a file (Spice3f5 format)
	13.5.108 Wrnodev: Write node voltage values to a file (.ic=xx format)
	13.5.109 Wrs2p: Write scattering parameters to file (Touchstone® format)

	13.6 Control Structures
	13.6.1 While - End
	13.6.2 Repeat - End
	13.6.3 Dowhile - End
	13.6.4 Foreach - End
	13.6.5 If - Then - Else
	13.6.6 Label
	13.6.7 Goto
	13.6.8 Continue
	13.6.9 Break

	13.7 Internally predefined variables
	13.8 Scripts
	13.8.1 Variables
	13.8.2 Vectors
	13.8.3 Assessing vectors in subcircuits
	13.8.4 Commands
	13.8.5 control structures
	13.8.6 Example script 'spectrum'
	13.8.7 Example script for random numbers
	13.8.8 Parameter sweep
	13.8.9 Output redirection

	13.9 Scattering parameters (S-parameters)
	13.9.1 Intro
	13.9.2 S-parameter measurement basics
	13.9.3 Usage of .sp and sp
	13.9.4 Usage of the script

	13.10 Using shell variables
	13.11 MISCELLANEOUS
	13.12 Bugs

	14 Ngspice User Interfaces
	14.1 MS Windows Graphical User Interface
	14.2 MS Windows Console
	14.3 Linux
	14.4 CygWin
	14.5 Error handling
	14.6 Output-to-file options
	14.6.1 Graphics files
	14.6.2 Tabulated files

	14.7 Gnuplot
	14.7.1 Using Gnuplot to produce 1D graphs of (electrical) simulation results
	14.7.2 Using gnuplot to produce 2D contour plots for Cider

	14.8 Integration with CAD software and `third party' GUIs
	14.8.1 KiCad
	14.8.2 Xschem
	14.8.3 Qucs-S
	14.8.4 GNU Spice GUI
	14.8.5 XCircuit
	14.8.6 GEDA
	14.8.7 MSEspice
	14.8.8 GNU Octave

	15 ngspice as shared library or dynamic link library
	15.1 Compile options
	15.1.1 How to get the sources
	15.1.2 Linux, MINGW, CYGWIN
	15.1.3 MS Visual Studio

	15.2 Linking shared ngspice to a calling application
	15.2.1 Linking during creating the caller
	15.2.2 Loading at runtime

	15.3 Shared ngspice API
	15.3.1 structs and types defined for transporting data
	15.3.2 Exported functions
	15.3.3 Callback functions

	15.4 General remarks on using the API
	15.4.1 Loading a netlist
	15.4.2 Running the simulation
	15.4.3 Accessing data
	15.4.4 Altering model or device parameters
	15.4.5 Output
	15.4.6 Error handling

	15.5 Example applications
	15.6 ngspice parallel
	15.6.1 Go parallel!
	15.6.2 Additional exported functions
	15.6.3 Additional callback functions
	15.6.4 Parallel ngspice example

	16 TCLspice
	16.1 tclspice framework
	16.2 tclspice documentation
	16.3 spicetoblt
	16.4 Running TCLspice
	16.5 examples
	16.5.1 Active capacitor measurement
	16.5.2 Optimization of a linearization circuit for a Thermistor
	16.5.3 Progressive display

	16.6 Compiling
	16.6.1 Linux
	16.6.2 MS Windows

	16.7 MS Windows 32 Bit binaries

	17 Example Circuits
	17.1 AC coupled transistor amplifier
	17.2 Differential Pair
	17.3 MOSFET Characterization
	17.4 RTL Inverter
	17.5 Four-Bit Binary Adder (Bipolar)
	17.6 Four-Bit Binary Adder (MOS)
	17.7 Transmission-Line Inverter

	18 Statistical circuit analysis
	18.1 Introduction
	18.2 Using random param(eters)
	18.3 Behavioral sources (B, E, G, R, L, C) with random control
	18.4 ngspice control language
	18.5 Monte-Carlo Simulation
	18.5.1 Varying model or instance parameters
	18.5.2 Using the ngspice control language

	18.6 Data evaluation with Gnuplot

	19 Circuit optimization with ngspice
	19.1 Optimization of a circuit
	19.2 ngspice optimizer using ngspice scripts
	19.3 ngspice optimizer using tclspice
	19.4 ngspice optimizer using a Python script
	19.5 ngspice optimizer using ASCO
	19.5.1 Three stage operational amplifier
	19.5.2 Digital inverter
	19.5.3 Bandpass
	19.5.4 Class-E power amplifier

	20 Notes
	20.1 Glossary
	20.2 Acronyms and Abbreviations
	20.3 To Do

	II XSPICE Software User's Manual
	21 XSPICE Basics
	21.1 ngspice with the XSPICE option
	21.2 The XSPICE Code Model Subsystem
	21.3 XSPICE Top-Level Diagram

	22 Execution Procedures
	22.1 Simulation and Modeling Overview
	22.1.1 Describing the Circuit

	22.2 Circuit Description Syntax
	22.2.1 XSPICE Syntax Extensions

	22.3 How to create code models

	23 Example circuits
	23.1 Amplifier with XSPICE model `gain'
	23.2 XSPICE advanced usage
	23.2.1 Circuit example C3
	23.2.2 Running example C3

	24 Code Models and User-Defined Nodes
	24.1 Code Model Data Type Definitions
	24.2 Creating Code Models
	24.3 Creating User-Defined Nodes
	24.4 Adding a new code model library
	24.5 Compiling and loading the new code model (library)
	24.6 Interface Specification File
	24.6.1 The Name Table
	24.6.2 The Port Table
	24.6.3 The Parameter Table
	24.6.4 Static Variable Table

	24.7 Model Definition File
	24.7.1 Macros
	24.7.2 Function Library

	24.8 User-Defined Node Definition File
	24.8.1 Macros
	24.8.2 Function Library
	24.8.3 Example UDN Definition File

	25 Error Messages
	25.1 Preprocessor Error Messages
	25.2 Simulator Error Messages
	25.3 Code Model Error Messages
	25.3.1 Code Model aswitch
	25.3.2 Code Model climit
	25.3.3 Code Model core
	25.3.4 Code Model d_osc
	25.3.5 Code Model d_source
	25.3.6 Code Model d_state
	25.3.7 Code Model oneshot
	25.3.8 Code Model pwl
	25.3.9 Code Model s_xfer
	25.3.10 Code Model sine
	25.3.11 Code Model square
	25.3.12 Code Model triangle

	III CIDER
	26 CIDER User’s Manual
	26.1 SPECIFICATION
	26.1.1 Examples

	26.2 BOUNDARY, INTERFACE
	26.2.1 DESCRIPTION
	26.2.2 PARAMETERS
	26.2.3 EXAMPLES

	26.3 COMMENT
	26.3.1 DESCRIPTION
	26.3.2 EXAMPLES

	26.4 CONTACT
	26.4.1 DESCRIPTION
	26.4.2 PARAMETERS
	26.4.3 EXAMPLES
	26.4.4 SEE ALSO

	26.5 DOMAIN, REGION
	26.5.1 DESCRIPTION
	26.5.2 PARAMETERS
	26.5.3 EXAMPLES
	26.5.4 SEE ALSO

	26.6 DOPING
	26.6.1 DESCRIPTION
	26.6.2 PARAMETERS
	26.6.3 EXAMPLES
	26.6.4 SEE ALSO

	26.7 ELECTRODE
	26.7.1 DESCRIPTION
	26.7.2 PARAMETERS
	26.7.3 EXAMPLES
	26.7.4 SEE ALSO

	26.8 END
	26.8.1 DESCRIPTION

	26.9 MATERIAL
	26.9.1 DESCRIPTION
	26.9.2 PARAMETERS
	26.9.3 EXAMPLES
	26.9.4 SEE ALSO

	26.10 METHOD
	26.10.1 DESCRIPTION
	26.10.2 Parameters
	26.10.3 Examples

	26.11 Mobility
	26.11.1 Description
	26.11.2 Parameters
	26.11.3 Examples
	26.11.4 SEE ALSO
	26.11.5 BUGS

	26.12 MODELS
	26.12.1 DESCRIPTION
	26.12.2 Parameters
	26.12.3 Examples
	26.12.4 See also
	26.12.5 Bugs

	26.13 OPTIONS
	26.13.1 DESCRIPTION
	26.13.2 Parameters
	26.13.3 Examples
	26.13.4 See also

	26.14 OUTPUT
	26.14.1 DESCRIPTION
	26.14.2 Parameters
	26.14.3 Examples
	26.14.4 SEE ALSO

	26.15 TITLE
	26.15.1 DESCRIPTION
	26.15.2 EXAMPLES
	26.15.3 BUGS

	26.16 X.MESH, Y.MESH
	26.16.1 DESCRIPTION
	26.16.2 Parameters
	26.16.3 EXAMPLES
	26.16.4 SEE ALSO

	26.17 NUMD
	26.17.1 DESCRIPTION
	26.17.2 Parameters
	26.17.3 EXAMPLES
	26.17.4 SEE ALSO
	26.17.5 BUGS

	26.18 NBJT
	26.18.1 DESCRIPTION
	26.18.2 Parameters
	26.18.3 EXAMPLES
	26.18.4 SEE ALSO
	26.18.5 BUGS

	26.19 NUMOS
	26.19.1 DESCRIPTION
	26.19.2 Parameters
	26.19.3 EXAMPLES
	26.19.4 SEE ALSO

	26.20 2D contour plots
	26.21 Cider examples

	IV Miscellaneous
	27 Model and Device Parameters
	27.1 Accessing internal device parameters
	27.2 Elementary Devices
	27.2.1 Resistor
	27.2.2 Capacitor - Fixed capacitor
	27.2.3 Inductor - Fixed inductor
	27.2.4 Mutual - Mutual Inductor

	27.3 Voltage and current sources
	27.3.1 Bxxxx - Arbitrary source (ASRC)
	27.3.2 Isource - Independent current source
	27.3.3 Vsource - Independent voltage source
	27.3.4 Fxxxx: Current-Controlled Current Source (CCCS)
	27.3.5 Hxxxx: Current-Controlled Voltage Source (CCVS)
	27.3.6 Gxxxx: Voltage-Controlled Current Source (VCCS)
	27.3.7 Exxxx: Voltage-Controlled Voltage Source (VCVS)

	27.4 Transmission Lines
	27.4.1 CplLines - Simple Coupled Multiconductor Lines
	27.4.2 LTRA - Lossy transmission line
	27.4.3 Tranline - Lossless transmission line
	27.4.4 TransLine - Simple Lossy Transmission Line
	27.4.5 URC - Uniform R. C. line

	27.5 BJTs
	27.5.1 BJT - Bipolar Junction Transistor
	27.5.2 VBIC - Vertical Bipolar Inter-Company Model

	27.6 MOSFETs
	27.6.1 MOS1 - Level 1 MOSFET model with Meyer capacitance model
	27.6.2 MOS2 - Level 2 MOSFET model with Meyer capacitance model
	27.6.3 MOS3 - Level 3 MOSFET model with Meyer capacitance model
	27.6.4 MOS6 - Level 6 MOSFET model with Meyer capacitance model
	27.6.5 MOS9 - Modified Level 3 MOSFET model
	27.6.6 BSIM1 - Berkeley Short Channel IGFET Model
	27.6.7 BSIM2 - Berkeley Short Channel IGFET Model
	27.6.8 BSIM3
	27.6.9 BSIM4

	28 Compilation notes
	28.1 Ngspice Installation under Linux (and other 'UNIXes')
	28.1.1 Prerequisites
	28.1.2 Install from Git
	28.1.3 Install from a tarball, e.g. from ngspice-44.tar.gz
	28.1.4 Compilation using an user defined directory tree for object files
	28.1.5 ngspice as a shared library
	28.1.6 Relative paths for spinit and code models
	28.1.7 Installation on Red Hat or Oracle Linux (and similar, e.g. Centos)
	28.1.8 Advanced Install

	28.2 Ngspice Compilation under Windows OS
	28.2.1 Building ngspice with MS Visual Studio 2022
	28.2.2 How to make ngspice with MINGW and MSYS2
	28.2.3 make ngspice with pure CYGWIN
	28.2.4 ngspice mingw or cygwin console executable w/o graphics
	28.2.5 ngspice for MS Windows, cross compiled from Linux

	28.3 Ngspice Compilation under macOS
	28.3.1 Prerequisites
	28.3.2 Compiling ngspice
	28.3.3 Compiling ngspice shared library
	28.3.4 Compiling with Apple M2

	28.4 Reporting errors

	29 Copyrights and licenses
	29.1 Documentation license
	29.2 ngspice license
	29.3 Some license details
	29.3.1 CC-BY-SA
	29.3.2 `Modified' BSD license

	29.4 On the historical evolvement of the ngspice licenses
	29.4.1 XSPICE SOFTWARE (documentation) copyright
	29.4.2 CIDER RESEARCH SOFTWARE AGREEMENT (superseded by 29.4.3)
	29.4.3 `Modified' BSD license
	29.4.4 XSPICE
	29.4.5 OSDI
	29.4.6 tclspice, numparam
	29.4.7 Linking to GPLd libraries (e.g. readline, fftw, table.cm):

	Index

